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Abstract

Background: The purpose of this study was to implement and evaluate a deep learning (DL) approach for
automatically detecting shallow anterior chamber depth (ACD) from two-dimensional (2D) overview anterior
segment photographs.

Methods: We trained a DL model using a dataset of anterior segment photographs collected from Shanghai Aier
Eye Hospital from June 2018 to December 2019. A Pentacam HR system was used to capture a 2D overview eye
image and measure the ACD. Shallow ACD was defined as ACD less than 2.4 mm. The DL model was evaluated by
a five-fold cross-validation test in a hold-out testing dataset. We also evaluated the DL model by testing it against
two glaucoma specialists. The performance of the DL model was calculated by metrics, including accuracy,
sensitivity, specificity, and area under the receiver operating characteristic curve (AUC).

Results: A total of 3753 photographs (1720 shallow AC and 2033 deep AC images) were assigned to the training
dataset, and 1302 photographs (509 shallow AC and 793 deep AC images) were held out for two internal testing
datasets. In detecting shallow ACD in the internal hold-out testing dataset, the DL model achieved an AUC of 0.86
(95% CI, 0.83–0.90) with 80% sensitivity and 79% specificity. In the same testing dataset, the DL model also
achieved better performance than the two glaucoma specialists (accuracy of 80% vs. accuracy of 74 and 69%).

Conclusions: We proposed a high-performing DL model to automatically detect shallow ACD from overview
anterior segment photographs. Our DL model has potential applications in detecting and monitoring shallow ACD
in the real world.

Trial registration: http://clinicaltrials.gov, NCT04340635, retrospectively registered on 29 March 2020.
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Introduction
Anterior chamber depth (ACD) is an important biom-
etry parameter for the diagnosis and therapy of ocular
disease. In ophthalmology, AC depth measurements
have several important applications, such as screening
primary angle-closure glaucoma (PACG), calculating the
power of intraocular lenses to be implanted after cata-
ract extraction, and identifying the association with sys-
temic parameters [1–3]. Shallow AC was proved to be
associated with age, female gender, hyperopia, small
optic disk, short body stature, and chronic angle-closure
glaucoma [4]. Population screening for AC depth has
been suggested to be useful in identifying subjects at risk
of PACG [5]. Currently, the traditional methods for
ACD measurement include slit-lamp biomicroscopy,
IOLMaster, A-Scan ultrasound, and Pentacam [1, 6–8].
However all these techniques are time consuming and
require trained and experienced technicians. A fully au-
tomated system can improve the accessibility of ACD
measurement by creating a large-scale screening systems
with overview eye images.
Deep learning (DL) models, such as deep convolu-

tional neural networks, has become the state-of-the-art
methodology for analyzing medical images, such as for
the automated diagnosis of skin cancer, COVID-19, and
glioma [9–11]. DL models have also been used across
different sub-specialties in ophthalmology, such as in de-
tecting diabetic retinopathy, classifying retinal disorders
in optical coherence tomography images, and identifying
age-related macular degeneration from fundus photo-
graphs [12–14]. However, to the best of our knowledge,
no study has yet investigated the use of a DL model for
the detection of an anterior segment image-based shal-
low ACD. Therefore, this study aimed to implement and
evaluate a DL approach for detecting shallow ACD in
anterior segment photographs.

Methods
This study was approved by the Institutional Review
Board of Shanghai Aier Eye Hospital (IRB: SHAIER2020-
IRB10) and conducted in accordance with the tenets of
the Declaration of Helsinki, as revised in 2013. Informed
consent was waived because of the retrospective nature
of the fully anonymized images.

Two-dimensional (2D) anterior segment imaging and
anterior chamber (AC) depth measurement
In this study, we used a Pentacam HR system (Oculus
Optikgerate GmbH, Wetzlar, Germany) to capture an-
terior segment photographs and measure the AC depth.
The details of the Pentacam HR system have been de-
scribed previously [15]. Briefly, the Pentacam is a high-
resolution rotating Scheimpflug camera system for an-
terior segment (cornea, iris, and crystalline lens) imaging

and analysis. It has one front infrared camera to capture
the 2D overview eye image to evaluate the pupil size. It
has been proven to be a noninvasive, repeatable, accur-
ate, and reliable method for the measurement of anterior
segment parameters, such as AC depth and corneal
thickness [8, 16, 17]. After 5 min of dark adaption, the
patients were asked to stare at a fixed light until a per-
fect alignment between the visual axial and the machine
sensor was obtained. The Pentacam system then used a
360° rotating Scheimpflug camera with a monochro-
matic slit-light source (blue light-emitting diode at 475
nm) to calculate a three-dimensional (3D) anterior seg-
ment model and to capture photographs. The Pentacam
software automatically calculated the AC depth, which is
the distance from the corneal endothelium to the anter-
ior surface of the lens, defined as the true ACD in
Aung’s study [6]. Similar to Aung’s study, we also de-
fined shallow AC as an AC depth of less than 2.4 mm.
The anterior segment photographs taken by the front
camera were saved anonymously in JPEG format for fur-
ther analysis.

Image datasets
The anterior segment photographs were selected from
the cataract clinical databases of Shanghai Aier Eye Hos-
pital from June 2018 to December 2019. All photographs
were reviewed by licensed ophthalmologists. The exclu-
sion criteria for image grading were [1] images without a
quality parameter of the Pentacam HR marked “OK;” [2]
corneal diseases such as scar, corneal degeneration, and
pterygium; and [3] any sign of a previous eye surgery,
such as corneal nebula after pterygium excision, pseudo-
phakia, and filtering belb after trabeculectomy.
The whole image dataset was further randomized into

training (90%) and testing datasets (10%). The training
dataset was used to train the DL network, and the test-
ing dataset was used to evaluate the algorithm. We used
Tensorflow (https://www.tensorflow.org) to interpolate
image pixels to fill a 299 × 299 matrix (tf.image. Resize-
Method with NEAREST_NEIGHBOR algorithm), with
values in the range of 0–1 for the DL model training.
Preprocessed training images were further augmented
with Keras ImageDataGenerator (https://keras.io/) using
various methods, including horizontal flipping, rotation,
sharpening, adjustments to saturation, and zooming. We
used k-fold cross-validation (k = 5) to train and evaluate
the performance of the DL model [18]. This method has
been commonly used in machine learning applications
to avoid overfitting when dataset is small. In the cross-
validation, the training dataset was split into k groups,
with the (k − 1) groups used as the training data and one
group for validation. The training process was repeated
k times to allow for the use of all subsets exactly once as
a validation dataset. During the training process, the DL
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model is trained on the training data and the validation
data is used to tune the hyperparameters [19]. To evalu-
ate the DL model, besides the first testing data collected
from the cataract clinic, we further recruited the second
testing data collected from glaucoma clinical dataset in
the same center from March 2020 to December 2020.

Development of the DL model
To detect shallow or deep AC from anterior segment
images, we proposed the use of transfer learning based
on the pre-trained Inception-V3 (Google, Inc.) architec-
ture [20]. A pre-trained model is a saved network that
was previously trained on a large-scale image classifica-
tion task (ImageNet includes 1000 object categories with
more than one million images) [21]. Therefore, this
model effectively serves as a generic model of the visual
world. We further fine-tuned the higher-order feature
representations in the pre-trained Inception-V3 to make
the model more relevant to our specific task. The subse-
quent DL architecture consisted of one GlobalAverage-
Pooling layer, one hidden fully connected layer
(including 256 neurons), and a final sigmoid classifica-
tion layer to the output activation of shallow or deep
AC. We used the rectified linear unit (ReLU) activation
function to solve the vanishing gradient problem and the
Adam optimizer (learning rate = 0.0001) with a
minibatch size of 32 to update the weights and biases of
the fine-tuned model. The model was trained for 100
epochs with the absence of further improvement in both
accuracy and cross-entropy loss. The DL model was
trained and validated using Keras API (version 2.2.4),
with the Tensorflow framework (Google, version 2.1.0)
as the backend. The computer hardware used had the
following specifications: NVIDIA GTX 1080Ti 12 GB
GPU (NVIDIA, Santa Clara, CA, USA), 128 GB RAM,
and Intel Core i7-2700K 4.6 GHz CPU (Intel, Santa
Clara, CA, USA).

Evaluation of the DL model for detecting a shallow AC
from anterior segment photographs
We used t-distributed stochastic neighbor embedding (t-
SNE) to visualize the high-dimensional features learned
by the DL model in two dimensions [22]. In the t-SNE
scatter plot, t-SNE converts the similarities between data
points from the extracted hierarchical features (256 fea-
tures from the current InceptionV3 model), and each
point corresponds to an individual anterior segment
image, with similar images appearing nearer to one an-
other than dissimilar images.
Using AC depth of less than 2.4 mm as the reference

standard, a human-machine comparison was performed
to evaluate the performance of the DL model in the in-
ternal hold-out testing dataset. Two ophthalmologists
(L.JH and Q.ZY with 2 and 10 years of clinical

experience, respectively), who were blinded from the
dataset collection, were instructed to classify each image
independently. We modified oblique flashlight beam
methods to identify shallow AC. The AC would be
graded as shallow if there has more than half length of
the peripheral iris shadow or defocus in 2 dimensional
anterior segment photographs (Fig. 1) [23]. The time for
the evaluation of each image was controlled in 1 min.
To visualize the learning procedure of our DL model,

we used the gradient-weighted class activation mapping
(Grad-CAM) method to create heatmap images that in-
dicated where the DL model was focused [24]. The
Grad-CAM algorithm computed the weighted sum out-
putted by the last convolutional layer of the DL model.
A heat map was then generated based on the grad-CAM
to highlight the area for the DL model detection. The
grad-CAM algorithm was coded using the Keras API
and the Tensorflow framework as mentioned above. An
experienced ophthalmologist (C.Z.) reviewed the photo-
graphs misclassified by the DL model and categorized
them according to the two most commonly seen fea-
tures: [1] images with coexisting eye conditions (e.g.,
ptosis, poor eye exposure, and tearing eye) and [2] im-
ages with coexisting photo conditions (e.g., incorrect ex-
posure and off-center).

Statistical analysis
We used confusion matrices to compare the prediction
of DL models with the reference standard (ACD < 2.4
mm). The matrices included the area under the receiver
operating characteristic curve (AUC) of the receiver op-
erating characteristic (ROC) curves, accuracy, sensitivity,
and specificity. The ROC curve was plotted by applying
different thresholds to the output score maps from the
DL model. The closer the AUC is to 1, the better the DL

Fig. 1 The AC was graded as shallow by the ophthalmologists if
there has more than half length of the peripheral iris shadow or
defocus in 2 dimensional anterior segment photographs
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model. Accuracy, sensitivity, and specificity are
expressed as follows:

Accuracy ¼ TP þ TN
TP þ TN þ FN þ FP;

ð1Þ

Sensitivity ¼ TP
TP þ FN

; ð2Þ

Specificity ¼ TN
TN þ FP

; ð3Þ

TP, TN, FP, and FN represent true positive, true
negative, false positive, and false negative, respectively.
Python (version 3.7) and Scikit_learn modules
(Anaconda, version 1.9.12, Continuum Analytics) were
used to perform the statistical analysis.

Results
The whole raw dataset consisted of 5166 anterior segment
photographs with 2497 shallow AC (AC depth < 2.4 mm)
and 2669 deep AC (AC depth ≥ 2.4mm) images from
4562 subjects (1786 males and 2776 females with a mean
age of 54 ± 9 years). To prevent the data correlation, we
only selected one image for each subject (excluding 679
images with 398 shallow AC and 281 deep AC respect-
ively). A total of 314 images (186 shallow AC and 128
deep AC images) were further excluded by five licensed
ophthalmologists because of poor image quality, leaving

behind 4173 images (from 4173 subjects) with AC depth
measurement (Fig. 2). Using a simple random sampling
method, 3753 images (1720 shallow AC and 2033 deep
AC images) were assigned to the training dataset, and the
remaining 420 images (193 shallow AC and 227 deep AC
images) were held out for the first internal testing dataset.
The second raw testing dataset included 1269AC images
(502 shallow AC and 767 deep AC images). 387 images
were excluded as images were also recorded in training
dataset, leaving behind 882 AC images (316 shallow AC
and 566 deep AC images). For the second testing dataset,
we only enrolled one image for each subject.
In the first testing dataset, the AUCs, sensitivity, speci-

ficity, and accuracy of the proposed DL model for
shallow AC (AC depth < 2.4 mm) detection were 0.86
(95% CI, 0.83–0.90), 0.80 (95% CI, 0.76–0.84), 0.79 (95%
CI, 0.75–0.83), and 0.80 (95% CI, 0.76–0.84), respectively
(Table 1 and Fig. 3). Compared with the diagnostic per-
formance of the DL model, two ophthalmologists
showed limited ability to identify shallow AC from an-
terior segment photographs, with an accuracy of 0.74
(95% CI: 0.70–0.78) and 0.69 (95% CI: 0.65–0.73), re-
spectively. In the second testing dataset, the AUCs, sen-
sitivity, specificity, and accuracy of the proposed DL
model for shallow AC detection were 0.93 (95% CI,
0.91–0.95), 0.85 (95% CI, 0.83–0.87), 0.90 (95% CI,
0.88–0.92), and 0.88 (95% CI, 0.86–0.90), respectively
(Fig. 3).

Fig. 2 Flowchart of the grading and randomization processes of the image datasets
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Figure 4 shows the t-SNE visualization of the high-di-
mensional features learned by the DL model in two di-
mensions. This visualization demonstrated that the DL
model was able to automatically generate features that
roughly detect shallow AC from anterior segment photo-
graphs using an AC depth of less than 2.4 mm as the ref-
erence standard.
Figure 5A–B show a Grad CAM generated from the

InceptionV3 model. Interestingly, activation was
mostly shown in the central AC and the surrounding
iris area. Table 2 shows the proportion of the reasons
for misclassification by the DL Model in the internal
hold-out testing datasets. The most common reason
for misclassification was the images had coexisting
photo conditions (n = 57, 70.4%). Figure 5C–D shows
a shallow (AC depth = 2.07 mm) AC image misclassi-
fied by the DL model. The photo was defocused on
the eyelid, which was highlighted by Grad CAM. An-
other reason for misclassification was the images had
coexisting eye conditions (n = 24, 29.6%). In Fig. 5E–F,
a deep AC image (AC depth = 2.96 mm) was misclassi-
fied by the DL model. The image shows a high lacri-
mal meniscus, which was also highlighted by Grad_
CAM.

Discussion
In this study, using the pre-trained Inception-V3 with
transfer learning, the proposed DL model showed the
capability of automatically detecting shallow or deep AC
directly from overview anterior segment photographs
without slit-lamp illumination. A comparison of the
diagnostic accuracy between ophthalmologists and the
DL model revealed that ophthalmologists were less likely
to detect shallow AC through the anterior segment ap-
pearance. To the best of our knowledge, this study is the
first to report the classification ability of a DL model
with high accuracy in shallow AC detection using anter-
ior segment photographs.
In the clinical works, several clinical techniques have

been proposed for AC depth measurements, such as
IOLMaster, A-Scan ultrasound, and Pentacam [1, 6–8].
However, these techniques are expensive and require
trained nurses or technicians. In the current study, the
DL model requires only photos and shows a higher ac-
curacy (0.83 with 95% CI, 0.80–0.86) in screening shal-
low AC (AC depth < 2.4 mm) in the clinical hold-out
dataset. Most medical DL systems adopt senior doctors’
grading as ground truth, but this grading system is time
consuming and inherently subjective. The proposed DL

Table 1 The diagnostic performance of DL_Model and human graders testing in internal hold-out testing dataset

Accuracy (95% CI) Specificity (95% CI) Sensitivity (95% CI)

Deep learning models 0.80 (0.76 to 0.84) 0.79 (0.75 to 0.83) 0.80 (0.76 to 0.84)

Human experts

#1 Glaucoma specialist 0.74 (0.70 to 0.78) 0.81 (0.78 to 0.85) 0.68 (0.64 to 0.72)

#2 Glaucoma specialist 0.69 (0.65 to 0.73) 0.65 (0.61 to 0.69) 0.72 (0.68 to 0.76)

Fig. 3 Confusion matrix for the DL model testing in two internal testing datasets

Qian et al. BMC Ophthalmology          (2021) 21:341 Page 5 of 9



model used the quantitative measurement of Pentacam
as the gold standard to grade the dataset, and it made
the results more objective and reliable. Such advantages
make the DL technique an efficient means of screening
the general population.
AC depth is a 3D biometric parameter associated with

the anatomical structures of the anterior segment, such
as the lens vault and the posterior corneal arc length
[25]. In clinical practice, ophthalmologists can qualita-
tively assess the AC using the pen torch method, the
slit-lamp van Herick technique [26], or the Smith
method [27]. As knowledge and clinical experience vary
among different individuals, human performance shows
large variations in these techniques. Moreover, it is diffi-
cult to detect shallow AC directly from anterior segment
photographs because of the limitation of 3D informa-
tion. DL may address this by learning the critical fea-
tures from a high-dimensional space [28, 29]. For
classification tasks, higher layers of the DL model amp-
lify the aspects of the input that are important for the
discrimination and suppression of irrelevant variations.
Varadarajan [29] successfully used DL to make

predictions using simple 2D images by fundus photog-
raphy without sophisticated 3D imaging equipment in
diabetic macular edema grading. In our study, we used
t-SNE to create a 2D reduced representation of the 256-
dimensional space extracted from the last fully con-
nected layer of the DL model (Fig. 4). Our result shows
that the DL model is able to automatically generate fea-
tures that roughly detect shallow AC from anterior seg-
ment photographs using AC depth of less than 2.4 mm
as a reference standard.
Grad CAM is an algorithm used to create heatmap im-

ages that indicate where the DL model is focused. Note
that Grad CAM highlights the central AC, cornea, and
surrounding iris area, which is also where ophthalmolo-
gists assess the AC during routine clinical practice [27].
Grad CAM may also uncover the reasons that cause
false predictions of the DL model [30]. In the current
study, the most common reason for misclassification is
the images with coexisting photo conditions, especially
those that were defocused during photography. Figure
5C and D show that the DL model highlights the eyelid
area, which was focused when the photograph was

Fig. 4 t-distributed stochastic neighbor embedding visualization of the features extracted from a fully connected layer of the DL model for
shallow AC detection using AC depth of less than 2.4 mm as the reference standard
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taken. This issue can be solved using an advanced im-
aging technique, such as auto-focus [31]. Another reason
for misclassification is the images with coexisting eye
conditions, such as high lacrimal meniscus (Fig. 5E–F).
These nontraditional highlighted regions may offer some
additional information for further investigation by eye
care professionals.
This study has several limitations. First, the Pentacam

camera uses a monochromatic slit-light source to produce
only black and white images. Fortunately, the DL model can
be adopted to train with color images with other imaging
modalities. Second, the sample size of the training dataset is

relatively small, and the model can only predict shallow or
deep AC, not a specific value of AC depth. Third, all the sub-
jects involved in the study were Chinese. Future studies with
more subjects of multiple ethnicities and multiple imaging
modalities, such as mobile phone eye photography, will be
beneficial to provide more general predictions for clinical
practice or community screening. Fourth, In the current
study, DL model achieved better performance in the 2nd
testing dataset (collected from glaucoma clinical dataset)
than that in the 1st testing dataset (collected from cataract
clinical dataset). We presumed that different AC depth be-
tween two testing datasets may affect the performance of DL
model. The AC depth of shallow AC subjects in the 2nd
dataset was shallower than that in the 1st dataset (1.84 ±
0.09mm vs. 2.05 ± 0.13mm, with p < 0.01). Our DL model
cannot directly predict AC depth which may be more useful
in clinical practice. We are developing another DL model to
predict AC depth or volume using more data and will report
our results in the future.

Fig. 5 Anterior segment photographs showing correct and false classification cases. A, B: A deep AC image with AC depth = 3.12 mm and Grad
CAM highlighting the central AC, cornea, and surrounding iris area. C, D: A shallow AC image (AC depth = 2.07 mm) was misclassified by the DL
model, and the image was defocused on the eyelid highlighted by Grad CAM. E, F: A deep AC image (AC depth = 2.96 mm) was misclassified by
the DL model. The image shows a high lacrimal meniscus, which is highlighted by Grad CAM

Table 2 The proportion of reasons for misclassification by the
deep learning model in internal hold-out testing datasets

Reason No. (%)

With coexisting eye conditions 24 (29.6%)

With coexisting photo conditions 57 (70.4%)
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In conclusion, we proposed a DL model that can auto-
matically detect a shallow AC based on anterior segment
photographs. The results suggest that this DL model
may be a potential tool for routine eye screening. Future
efforts involving multiple ethnicities and multiple im-
aging modalities are warranted to investigate the applica-
tion of this technology in the clinical and research
setting or in community screening.
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