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Abstract

This study explores a new approach to pharmacophore screening involving the use of an optimized linear
combination of models instead of a single hypothesis. The implementation and evaluation of the developed
methodology are performed for a complete known chemical space of 5-HT,,R ligands (3616 active compounds with
K; < 100 nM) acquired from the ChEMBL database. Clusters generated from three different methods were the basis
for the individual pharmacophore hypotheses, which were assembled into optimal combinations to maximize the
different coefficients, namely, MCC, accuracy and recall, to measure the screening performance. Various factors that
influence filtering efficiency, including clustering methods, the composition of test sets (random, the most diverse and
cluster population-dependent) and hit mode (the compound must fit at least one or two models from a final
combination) were investigated. This method outmatched both single hypothesis and random linear combination
approaches.
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Introduction

A pharmacophore model (also called a pharmacophore
hypothesis) is one of the most important concepts in medicinal
chemistry. It is defined as the spatial orientation of different
features of a molecule (thus, pharmacophore modeling is a
ligand-based method) required for the activity towards a
biomolecular target [1-3]. Such a model can be used to
describe a large number of structurally diverse compounds with
only a handful of general features. Pharmacophore filtering is
widely used in virtual screening campaigns [4—10] and in other
drug development processes [11,12] This filter may be applied
as a standalone [7,8] or as one of the subsequent steps in a
screening cascade [9,10].

The attempts at pharmacophore modeling the known ligands
of 5-HT,,R [13-27], a well-recognized therapeutic target
[28,29] also intensively studied in our laboratory [30-33], have
focused solely on visualizations and explanations in SAR
studies [13—-27]. Only very recently published pharmacophores
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of 5-HT,,R ligands were intended for use in virtual screening
(VS), however only for the off-target activity of a1-adrenoceptor
antagonists [34].

It is nearly impossible to define a universal model that covers
the entire chemical space of the ligands of a particular target.
The use of multiple models at once led to search parameter
improvements, yet the arbitrariness of model selection makes it
strongly dependent on the researcher's knowledge and
experience. To address the downsides of pharmacophore
screening, we developed a novel approach involving the use of
a carefully selected collection of pharmacophore models
instead of a single hypothesis. The primary goal of the
research was to develop and to evaluate a screening protocol
that utilized a linear combination of pharmacophore models, i.e.
a collection of individual hypotheses covering as much as
possible the chemical space defined by ligands of a particular
target. From the single hypotheses, created from ligand
clusters, a group of models with the best combined
performance (chosen using a homemade script) was selected
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and evaluated on various test sets. In addition, the proposed
best combinations were compared with a single hypothesis and
with randomly composed groups of pharmacophore models of
equal length.

Materials and Methods

General

Figure 1 shows a protocol applied for the development of the
optimal linear combination of the pharmacophore models.
Compounds with proven activity toward 5-HT,,R were acquired
from the ChEMBL database version 5 [35], clustered, and
structures representative of each cluster were used for the
construction of a pharmacophore hypothesis. Each model
underwent evaluation via test sets composed of active
compounds, true decoys and ligands retrieved from the
DrugBank [36] that were assumed inactive. The best linear
combinations of pharmacophore models were then composed
and validated with new compounds (both active and inactives)
retrieved from the ChEMBL database v10 [37].

Data sets

The source of the active compounds was the ChEMBL
database version 5 (August 2010), containing 5-HT,,R ligands
retrieved from approximately 520 published papers. Due to a
large diversity of activity measures, only the compounds with
defined K, (IC5, — assumed as 2xK,, pK; or pIC,, were converted
to K;) as assayed on human cloned receptors or on rat cloned
or native receptors, were taken into account. In the case of
multiple data for one ligand, the K; and human receptors were
given preference; a median value was used in the case of
many biological results. The ligands were defined as active
when their binding constant was lower than or equal to 100 nM;
the threshold of inactivity was set at 1000 nM. The resulting
sets consisted of 3616 active (more than half with K, values
lower than 10 nM — see Figure 2 for details) and 438 inactive
(decoy) compounds (Figure 1).

Clustering

Three methods of clustering were applied: 3D
pharmacophore fingerprint-based (P3D), MOLPRINT 2D
fingerprint [38]-based (M2D) and the manual — classical
method (grouping the compounds by a common core). The
P3D and M2D approaches were performed using the
Hierarchical Clustering feature in Canvas [39].

For the P3D method, 31 clusters were created using the
Kelly criterion [40]. After merging the singleton and doubleton
subsets into a special class, 28 clusters containing 8-497
compounds were obtained.

The same approach, applied to MOLPRINT 2D fingerprints,
left one cluster considerably larger than the rest, and its
recurrent splitting (applied four times) resulted in a total of 36
collections consisting of 6 to 744 compounds each.

The manual clustering generally followed the classification of
5-HT,4R ligands described in the literature (9 basic classes)
[41-43]. However, more subgroups were then created, e.g. for
arylpiperazines [44] (Figure 3). In the case of the alkylamines
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(714 compounds), indole derivatives were first extracted and,
with the exception of the tetrahydropyridoindoles, were divided
depending on the distance between two crucial pharmacophore
features: an aromatic system and a basic nitrogen atom. The
entire procedure developed 28 clusters, each containing 17 to
605 compounds (Figure 3).

Pharmacophore model development

Cluster representatives, in number proportional to the
cluster's size (Figure 1), were selected using the diversity-
based selection tool in Canvas (similarity metric — Soergel
distance; compounds selection algorithm — sphere exclusion;
sphere size — 0.5; initialization — random with random seed).
The selected representatives were further used as a basis for
the development of a pharmacophore model using Phase [45]
under default settings (conformers generated during search, 10
conformers per rotatable bond; not more than 100 conformers
per structure; relative energy window between conformations —
10 kcal/mol; RMSD tolerance for match — 2 A). The best
hypothesis for each ligand class must have mapped at least
half of the input compounds. Among these hypotheses, the one
with the maximum number of features, the highest matching
rate and the best selectivity score was selected for further
research. For some of the clusters, none of the hypotheses met
all the requirements (13 for P3D, 5 for M2D and 4 for manual

grouping).

Test sets

All obtained models were first tested on three pairs of 400-
compound sets that were composed of an equal number of
active and inactive compounds (Figure 1). Of the 5-HT,,
ligands not used in the development of the models, the sets of
active ligands were selected (i) randomly (marked in green in
Figures 1, 4-6 and Figures S1-S6), (ii) to be the most diverse
(blue), or (iii) in a way reflecting the abundance of different
scaffolds according to manual clustering (red). Out of the 438
compounds from the ChEMBL database with K, (5-HT,,) >
1000 nM, the 200 most diverse compounds (diversity-based
selection tool in Canvas) constituted the set of decoys for the
above-mentioned ligand groups (Figure 1). Similarly, the active
ligands were complemented with compounds with assumed
inactivity from the DrugBank database (low potential for binding
to 5-HT,, receptor was confirmed by SEA search tool [46]). The
most diverse molecules with polarizable nitrogen and no data
regarding activity toward the 5-HT,, receptor were selected. All
statistical parameters were calculated as an average of the
values obtained for the pair of sets that was composed of the
same actives (Figure 1).

A validation set was created out of the novel 5-HT,,R ligands
that appeared in the ChEMBL database version 10 (May 2011).
The inactive compounds from this set were a challenge for the
method because they were very similar to active compounds.
Similarity search using MOLPRINT 2D fingerprint and
Tanimoto metric revealed that 24.8% of inactives compounds
had similarity coefficient with actives of 0.9 or higher.
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Figure 1. The development of an optimal combination of pharmacophore models. The development of an optimal
combination of pharmacophore models. Transparent boxes show the logical steps of the workflow; cylinders represent data
sources; colored boxes reflect the compound character: gray — inactives, orange — actives or the active’s selection method (blue,
red or green), which is consequently used in subsequent figures. The population of the compound set is given in brackets. Thick
arrows indicate the use of data sets.

doi: 10.1371/journal.pone.0084510.g001
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Figure 2. Affinity distribution of 3616 5-HT,,R ligands retrieved from the ChEMBL database version 5. Affinity distribution of
3616 5-HT,4R ligands retrieved from the ChEMBL database version 5.

doi: 10.1371/journal.pone.0084510.g002

Search for the best linear combination of models

The process of selecting the optimal linear combination was
conducted using an in-house script (see Figure S7) because
the amount of data and number of combinations (hypotheses
from three clustering methods, two hit modes and three
different actives sets) rendered manual evaluation nearly
impossible. The tool recursively generated all possible
combinations of a given length and selected a top-scored
combination in terms of the optimized parameter, namely, the
Mathews Correlation Coefficient (MCC), accuracy or recall
which was obtained using the average of the values received
for the pairs of actives vs. the assumed inactives and the
actives vs. the decoys.

TP-TN-FP-FN

Mece= N(TP+FP)(TP+FN)(TN+FP)(TN+FN)

A TP+TN
CCUracy ="TpyFP+TN+FN

TP

Recall= TP-I-—FN

Where TP stands for the number of true positives (actives
labeled as actives), TN — true negatives, FP — false positives
(inactives labeled as actives) and FN — false negatives.

MCC takes values from -1 to +1, where +1 represents
perfect prediction, 0 represents random prediction and —1
represents an inverse prediction, whereas the accuracy and
recall ranged from 0 to 1.
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Two modes of compound filtering were evaluated. The “hit-
once” mode classified the ligand as active if it was recognized
by at least one of the models in the combination and in the “hit-
twice” mode if at least two of the hypotheses flagged the ligand
as active.

Results

Because the method is designed for VS, various factors
influencing filtering performance were investigated. Starting
from the active compounds clustered using three different
methods, a series of pharmacophore hypotheses were
developed (one model per cluster, see sample hypothesis in
Figure 7). From the pool of singular models, linear
combinations of various lengths were formed (the hypotheses
retrieved for different clustering methods were not mixed) and
evaluated using diverse test sets. Three coefficients were
optimized at two restriction levels (hits must have been
recognized by at least one or two models): MCC, accuracy and
recall, as the standard measures of screening performance.

Development of the optimal linear combination

The analysis of the approximation to the optimal ensemble of
models showed that adding subsequent hypotheses allows for
the saturation of the chemical space of the 5-HT,,R ligands
until the maximum value of the optimized parameter is reached
(Figure 8).

The maximization of the MCC parameter led to 6—11 models
long combinations for the hit-once and 10-13 of those for the
hit-twice mode, depending on the test set/clustering scheme,
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Figure 3. A dendrogram obtained using the manual clustering procedure. A dendrogram obtained using the manual
clustering procedure. The number of compounds comprising each cluster is given in brackets. The last column presents a feature
composition of the pharmacophore model created for a given cluster. The feature abbreviations used are: hydrogen bond acceptor —
A, hydrogen bond donor — D, hydrophobic group — H, positively charged group — P, aromatic ring — R.

doi: 10.1371/journal.pone.0084510.g003
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and the range of the maximum MCC values was from 0.427 to
0.686 (Figure 4). Figure 9 shows details of the MCC-optimized
linear combination of 7 models developed on manual
clustering, random test set and hit-once mode. The MCC at the
highest level indicates misclassifications of only 12% of the
active ligands and of one third of the inactive ligands. The
experiments proved that the “hit-once” method was slightly
better than the “hit-twice” method, and the difference between
the best respective combinations was 0.069. In terms of
clustering methods, the M2D and manual methods outmatched
the approach based on 3D pharmacophore fingerprints.

The analysis of the top-scored combinations revealed
frequent occurrences of short hypotheses (formed from four or
five features), yet the size of the cluster, the feature count of
the pharmacophore model and the pharmacophore efficiency
could not be correlated with the performance of the
combination. For example, the benzylpiperidines cluster
(consisting of only 55 compounds) produced a short, four-
feature hypothesis occurring in 17 of 18 optimized
combinations. However, the hypothesis representing the
largest cluster (other arylpiperazines) was not part of any
combination. The results may also suggest that the hypotheses
with high feature counts (e.g. ergolines with a seven-element
hypothesis) are too strict to participate in optimal combinations;
however, there is no statistically significant evidence to support
this statement (Figures 5, S5, S6 and S8).

Regarding accuracy optimization, the process established
the length of the combination on 6—-11 hypotheses for the hit-
once and 11-16 for the hit-twice approach. Again, the M2D
fingerprint-based clustering method led to the best results (an
accuracy of 0.840 for the random actives test set). The hit-once
method of optimization was better than the hit-twice; however,
this difference did not exceed 0.049. The details of the
experiments can be found in Figure S1 ..

The optimization of the recall returned compositions of 9 to
21 pharmacophore models for the hit-once method and 12 to
25 for the hit-twice method, and the values of the recall ranged
from 0.445 to 0.920 (Figure S2 ). In that case, the combination
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curve reached a plateau after climbing to the maximum value.
This effect was caused by a lack of FP count in the parameter
definition; thus, the misclassifications were ignored. The results
for the hit-once method were significantly better than those for
the hit-twice selection. In addition, the combination for the hit-
twice selection was longer (the greatest difference in length
was for the manual/diverse scheme (13 hypotheses)). In this
experiment, the hypotheses based on manual clustering
dominated because they provided the best combination of the
populated actives set and the random actives, as well as the
best overall linear combination in terms of recall.

Validation results

An ensemble of top combinations in terms of MCC for each
construction scheme was tested using the validation set
(Figure 6), again showing the superiority of M2D clustering-
based models and the hit-once search approach. The best
MCC coefficient was 0.294, which was a low but acceptable
value (MCC is normalized in the range of —1 to 1) for such a
demanding test set. A validation set consisted of an
imbalanced amount of active compounds (1423) in relation to
decoys (286).

The validation of the best accuracy-optimizing combinations
confirmed the advantage of the M2D clustering method.
Manual clustering showed better results than the P3D method
but was unable to compete with the M2D method. The highest
accuracy obtained for a validation set was 0.710 for the M2D/
populated/hit-once scheme (Figure S3).

Combinations reaching the highest recall values achieved up
to 0.743 for the validation set for the M2D/diverse/hit-once
scheme (Figure S4). Again, in this case, the M2D clustering-
based models performed better than the other models. The
P3D clustering method also showed the worst results in that
system.

Random combination

The aim of this benchmark was to determine whether the
performance of the combination of hypotheses was not

December 2013 | Volume 8 | Issue 12 | e84510



A Linear Combination of Pharmacophore Hypotheses

Hit-once Hit-twice

MCC Accuracy Recall MCC  Accuracy Recall

Cluster name HiEolesE ® BE 3 E 8 B3E BBE 2BE B E
composition 2 § 8 2§ S8 2 & S S 6 P K56 9 R o

O 58T 0o 5T 0o 35 T = T o 5 T o =5 T

Zg_czg_c.zg_c g_c.zg_czg_c

oo osrgogRoge

Suffona(i)mides A+PRR I T W L |

Imides AHPRR
Terminal amides AHPRR
Classical amides DPRR

Other amides ADPRR
Other arylpiperazines AHPRR
Benzylpiperazines APPRR
Ergolines AADDPRR
Spiropiperidines ADPRR
Arylpiperidines AHPRR
Benzylpiperidines APRR

3-aminochromanes

Methylaminochromanes HPRR
Aminotetralines HHPR
Benzodioxanes AAAHPR

Aporphines DPRR
Benzoazephanes HHPR
Serotonin-like indolylalkylamines DPRR
Four carbon linker indolylalkylamines ADPRRR
Three carbon linker indolylalkylamines ADHPRRR
Tetrahydropyridinoindoles DPRR
One carbon linker arylamines HPRR
Three carbon linker arylamines APRR
Four carbon linker arylamines APRR

Number of hypotheses in optimal combination

AAHHPR |

9

... . Diverse
=

10 11 10 12 13 10 14 14 11

-
[
97 118 23 13 15

1 9

Figure 5. A composition of each top-ranked linear combination obtained using the manual clustering procedure. A
composition of each top-ranked linear combination obtained using the manual clustering procedure. Each filled square denotes
presence of a hypothesis developed on a particular cluster in the optimal combination for appropriate conditions. Colors code the
type of the test set: blue — diverse, red — populated, and green — random. The last row contains the total number of hypotheses
forming a respective top-ranked combination. The values of the optimized statistical parameters for manual clustering are shown in
Figure 4, and those for accuracy and recall are shown in Figures S1 and S2, respectively. The exemplary linear combination

(manual/random/hit-once; 7 hypotheses long) is shown in Figure 9.

doi: 10.1371/journal.pone.0084510.g005

influenced by size alone. For the three schemes that generated
the best combinations for the respective statistic parameter
(M2D/random/hit-once for MCC and accuracy and M2D/
populated/hit-once for recall), ten random collections of
hypotheses containing the same number of elements as the
optimized hypotheses (10 for MCC and recall and 8 for
accuracy) were prepared, and the respective statistics were
calculated and averaged. The results (Table 1) clearly showed
the superiority of the optimized combination over the random
hypotheses ensemble, especially in the case of MCC.

PLOS ONE | www.plosone.org

Single hypothesis benchmark

The benchmark against the single pharmacophore
hypothesis was essential in comparing its performance with the
proposed approach. To cover the full chemical space of the 5-
HT,AR ligands, a representative from each cluster was selected
(either a centroid or a random pick) to develop a single
(universal) hypothesis that was then tested on the validation
sets.

The results (Table 2) showed that the single hypothesis
performed similarly to the P3D-based combination of
hypotheses in terms of MCC. However, for all other parameters
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Figure 7. Exemplary pharmacophore hypothesis selected for arylpiperazines with classical amide fragment. Exemplary
pharmacophore hypothesis selected for arylpiperazines with classical amide fragment mapping 6 out of 10 cluster representatives.
The model fit 462 of the 533 compounds (87%) in the cluster. The feature abbreviations are: hydrogen-bond donor — D, positively

charged group — P, aromatic ring — R.
doi: 10.1371/journal.pone.0084510.g007

and combination schemes,
significantly outmatched.

the single hypothesis was

Discussion

Because the method was designed for VS purposes, the
high efficiency of such an experiment was the primary concern.
The results showed an increased performance in the linear
combination of pharmacophore models in VS compared with
the single hypothesis, as measured using the standard
parameters of MCC, accuracy and recall. The screening
evaluation of the method, however, precipitated observations
that require further discussion.

The process of finding the optimal linear combination of
pharmacophore models is resource- and time-consuming. The
combination of twelve element sets out of twenty-four
hypotheses led to nearly three million possible combinations. A

PLOS ONE | www.plosone.org

subsequent evaluation of all of these combinations required a
significant amount of resources and thus was a challenging
task even for a powerful workstation. However, once the
optimal combination is selected, the screening process is
conducted in an amount of time comparable to that required by
a single hypothesis approach.

The ensemble of pharmacophore models shows a
reasonable performance in declining the compounds assumed
to be decoys (up to 198 out of 200 properly classified), yet the
more challenging true decoy set remains an issue. None of the
proposed combinations found all of the active compounds from
the test sets. The reason for this is the presence of clusters
that did not produce a pharmacophore hypothesis that was
suitable for screening and thus did not support the coverage for
the chemical subspace of the active compounds. Thus, the
importance of the choice of the clustering method (being the
fundament of single hypothesis development) and algorithm
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doi: 10.1371/journal.pone.0084510.g008

used should be adjusted to the goals of the screening. The
P3D method provided the best filter for decoy structures, but its
performance in finding active compounds was significantly
weaker, thus lowering the measured VS parameters. However,
M2D showed an increased rate of locating active compounds
at the cost of decoy recognition. M2D is the best method given
all optimized parameters. The performance of manual
clustering appeared to be a balance between the
aforementioned algorithms (the ratios of TP and TN were
acceptable), and the parameter-measured performance of
manual clustering was not drastically lower than that for M2D.
The manual division of compounds can to some extent
compete with automatic approaches; however, the time
consumption and human factor impacting the final outcome
provide disincentives to the wide use of manual clustering.
Nevertheless, this spliting method provided structural
information unavailable from different approaches, and
moreover, reported the classification of entire chemical space
of the 5-HT,4R ligands stored in ChEMBL.

The approach requiring the selection of one ligand using at
least two hypotheses appeared to be too strict. The results

PLOS ONE | www.plosone.org

proved that different hypotheses primarily do not overlap each
other, leading to an increased number of false negatives in the
VS experiments and thus significantly reduced screening
parameter values.

Conclusions

The results showed improved performance of the proposed
method in virtual screening experiments. All investigated VS
parameters outmatched both single hypothesis and random
linear combination approaches. The experiments also proved
that the automatic method of hierarchical clustering (based on
the MOLPRINT 2D fingerprint) is a good option for screening.
The computational cost of optimization increased, but the
outcome compensated for that increase. Given the proposed
method’s success, it will be incorporated into our screening
workflow [9] and applied for the next extended set of targets.
Further improvement of the script interface will be undertaken,
thus making it usable for other research groups.
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Arylpiperazines with sulfona(i)mide fragment AHPRR

H P | R1 | R2
A |14.52| 6.86 [12.25| 3.94
H 7.92|3.28 |13.84
P 5.50 | 6.63
R1 11.95
H P | R1 | R2
A 19.1714.43|3.57|9.07
H 5.35]11.79| 3.13
P 6.62 | 5.28
R1 11.75
P | R1 | R2
A 19.92|15.04] 2.80
P 6.45|7.71
R1 13.38
P | R1 | R2
H |8.60|12.32| 3.16
P 3.74 | 7.37
R1 10.85
H2 | P R
H1 [6.94]|4.19|3.18
H2 3.87 |1 8.30
P 5.19
P | R1 | R2
D [7.49]2.17|8.70
P 543 |7.78
R1 7.20
H P R
A |8.2714.90|2.80
H 4.01]9.21
P 6.07

Figure 9. The best linear combination of pharmacophore models obtained for manual clustering and MCC
optimization. The best linear combination of pharmacophore models obtained for manual clustering and MCC optimization
(manual/random/hit-once; see also Figures 4 and 6). For each hypothesis the best fitting compound is presented, along with a
matrix of distances (in angstroms) between features and a name of cluster it was developed on. The feature abbreviations used are:
hydrogen bond acceptor — A, hydrogen bond donor — D, hydrophobic group — H, positively charged group — P, aromatic ring — R.

doi: 10.1371/journal.pone.0084510.g009
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Table 1. A comparison between the optimized parameter values and those obtained for randomly selected combinations
consisting of the same number of single hypotheses as optimized combinations.

Parameter Optimized Random SD Gain®

mMcc 0.686 0.504 0.086 36.10%
Accuracy 0.840 0.726 0.044 15.66%
Recall 0.920 0.773 0.047 19.02%

@ Percent increase of the value of the optimized statistical parameters compared with random combinations
The random values from ten different random linear combinations are averaged.
doi: 10.1371/journal.pone.0084510.t001

Table 2. A comparison between a single hypothesis and a linear combination of pharmacophore models.

Clustering approach  Selection method Hypothesis composition  Actives Decoys MCC Accuracy Recall
TP FN TN FP universal optimized universal optimized universal optimized
P3D centroid APRR 459 964 250 36 0.162 0.158 0.415 0.474 0.323 0.424
random AAPR 456 967 241 45 0.134 0.158 0.408 0.474 0.32 0.424
M2D centroid AHPR 639 784 227 59 0.184 0.294 0.507 0.71 0.449 0.743
random APRR 442 981 248 38 0.148 0.294 0.404 0.71 0.311 0.743
manual centroid APRR 399 1024 251 35 0.136 0.227 0.38 0.548 0.28 0.665
random APRR 390 1033 252 34 0.134 0.227 0.376 0.548 0.274 0.665

doi: 10.1371/journal.pone.0084510.t002
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Supporting Information

Figure S1. The optimized values of accuracy for each
possible scheme. Length of combination is shown on top of
the bars.

(TIF)

Figure S2. The optimized values of recall for each
possible scheme. Length of combination is shown on top of
the bars.

(TIF)

Figure S3. The accuracy results of the validation of top
linear combinations. Length of combination is shown on top
of the bars.

(TIF)

Figure S4. The recall results of the validation of top linear
combinations. Length of combination is shown on top of the
bars.
(TIF)

Figure S5. A composition of each top ranked linear
combination, obtained for P3D clustering procedure. The
length row contains the total number of hypotheses forming a
respective top ranked combination. Values of optimized
statistical parameters for manual clustering are shown in 4 and
for accuracy and recall in Figures S1 and S2, respectively.
(TIF)

Figure S6. A composition of each top ranked linear
combination, obtained for M2D clustering procedure. The
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