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A B S T R A C T

The present work focuses on preparation of hydroxyapatite from pomegranate peels by precipi
tation method. The hydroxyapatite derived from pomegranate fruit peels (HA-PP) was charac
terized by XRD, FT-IR, SEM-EDS and BET techniques. The HA-PP has mesoporous in structure and 
had an area of 99.021 m2/g. Further HA-PP was used as adsorbent for the removal of Cr (VI) ion 
particles from K2Cr2O7. The adsorption trials were executed and found the optimized solution 
using response surface methodology (RSM). The experiments included parameters like pH 2, 
initial chromium concentration 200 mg/L, adsorbent loading 0.8 g, and contact time 60 min, 
respectively. Cr (VI) removal was 89.4 % at the optimum combination of these process param
eters. A mathematical and statistical optimizing technique response surface methodology (RSM) 
was applied to verify the interactive effects of various parameters on the adsorption capacity. The 
analysis of variance (ANOVA) was used to predict the adequacy of the model (F 82.16) shows 
developed model is valid with R2 value 0.987, and p-value (>0.1). In this the Langmuir 
adsorption isotherm and the pseudo-second-order kinetic model are well explained for Cr (VI) 
adsorption onto HA-PP. This reaction is spontaneous and endothermic, as indicated by the 
negative change in the standard free energy (ΔG0 = − 0.1732) and ΔH0 (+4.71) value at the 
selected temperature. The ΔS0 (+15.89) further confirms that the randomness increased at the 
solid-solution interface during adsorption.

1. Introduction

Pomegranate is the ancient eatable fruit having extraordinary nutritional value. The universal cultivation of pomegranate is 
growing till today; thus, the quantity of fruit peel waste produced is also high [1,2]. In 2017, the global production of this fruit reached 
almost 3.8 million metric tons (MMT), of which around 1.9 MMT of peels were taken out [3,4]. Punica granatum fruit peels (PFP) 
containing antioxidant of polyphenolic class which has tannins and flavonoids [5]. Because of this it has been suggested to take part in 
various pharmacological activities such as anti-aging, anti-inflammatory and anti-atherosclerotic activities [6]. The skin and bark of 
the pomegranate tree are used as a traditional medication against diarrhea, dysentery and intestinal parasites. Antioxidants contents 
were as follows: peel > flower > leaf > seed [6]. The PFP shown in Fig. 1.
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Plenty of research work has confirmed the biological properties exist in PFP extracts, signifying their preventive and remedial role 
in medical pitch [7–9]. Hence, till today in both the developing and developed worlds recommend PFP to treat common health 
problems [10]. Since huge quantity of waste created, so worthful efforts have been made for the valorisation of PFP [11]; however, a 
big amount of this waste is still discarded as it is to the environment and it leads to glitches [3]. Hence, in this paper researcher 
synthesized hydroxyapatite from HA-PP. This hydroxyapatite is a naturally occurring mineral form of calcium apatite with 
Ca10(PO4)6(OH)2 [12]. In the literature plenty of techniques are available for hydroxyapatite (HA) synthesis, those are viz, thermal 
method or acid treatment [13,14] hydrothermal [15], solid-state reaction [16], chemical precipitation [17], radio frequency thermal 
plasma [18], and polymer-assisted synthesis method [19]. Among these methods in the present work precipitation method was used 
for the preparation of hydroxyapatite.

Heavy metal pollution is one of the most important concerns for the environment. Heavy metals such as lead (II) and Ni (II) [20], 
cadmium (II) [20] arsenic [21] and chromium are continuously discharged into the environment, and these metals are stable and can 
survive for long time periods in the environment. Among these the Cr (VI) compounds are used in an industrial application such as 
leather tanning, dyeing, printing, and wood preserving, electroplating, etc. [22–25]. Waste contaminated or polluted water is one of 
the major issues in the present ecological problems and this waste releases to the environmental [26] and creates various health and 
ecological problems [27–29]. The most important issues of this pollutant are consisting of bioavailability in the liver, generation of 
kidney syndromes and death at concentrations higher than 0.1 mg L− 1 [30,31].The amount of chromium (VI) ions in different sewage 
is from 5 to 220 mg L− 1, which is much higher than the permitted amount of it in drinking water (0.05 mg L− 1) and surface water (0.1 
mg L− 1) [31,32].

Heavy metals are not biodegradable and can accumulate in living organisms and cause various diseases and disorders in human 
beings [33,34]. The chromium ions especially Cr(VI) have high toxicity to living organisms. This metal can cause various diseases in 
human body, such as diarrhea, kidney damage, liver damage, skin cancer [35], respiratory diseases, skin ulcer, nasal congestion, lung 
cancer [36] and hepatic and stomach injures. In addition, this metal can pass through cell membranes and attack DNA, protein and 
membrane lipids and damage cell performances and integrity [37].

A number of procedures have been presented for effective treatment for Cr (VI) like adsorption (AP), chemical oxidation, pre
cipitation, lime coagulation, ion exchange, electrodialysis, electrocoagulation [38–42]. Amongst all these methods, AP is one of the 
most affordable techniques for the removal of Cr (VI) because of its little energy condition, longer effectiveness, ecological and cost 
requirement is less [43,44]. A wide variety of adsorbents (AB) derived from farming waste [45], bagasse [46], fruit peels [47], 
vegetable waste [48], straws [49], and some other type of AB like α-Fe2O3 coated hydroxy magnesium silicate (HMS) [50], Artemisia 
monosperma (AM) powder modified by trimethyloctadecylammonium bromide (TOAB) [51], are found to be highly efficient in Cr (VI) 
removal. Few AB are alos mentioned for other pollutants viz, CdS@ polysulfone membrane [52] used for wastewater remediating 
system. , Titanosilicate (TS-SH, TS-SO3H) used for remediation of 1, 4 dioxane from aqueous medium [53], magnetite nanoparticle 
decorated graphene oxide (MGO) is modified with triethylenetetramine (TETA), which is supported by maleated chitosan (MACS), 
named MGO@TETA@MACS used for removal of methylene blue dye [54]. Among these, fruit peels have extraordinary consideration 
because of their profusion, affluence in bioactive compounds, and cost-effective [55].

The novelty of this study is to prepare HA from PFP and evaluate Cr (VI) from synthetic wastewater then optimization study using 
HA-PP. The XRD proves the formation of HA phase. Several parameters like the effect of, pH, agitation speed (AS), adsorbent loading 
(AL), contact time (CT), temperature (T), and coexisting ions were considered. From data obtained, isotherms, kinetic models were also 
evaluated. This study suggests the viability of using PFP as an economical, natural, bio-waste for Cr (VI) sorption, auxiliary the idea of 
environmental sustainability.

2. Materials and methods

2.1. Hydroxyapatite preparation using pomegranate peel

The HA particles were prepared from PFP. The peels were manually cleaned and washed with water 3–4 times and then cooked in 

Fig. 1. Pomegranate waste fruit peel.
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water for known period (20 min) and filtered. This filtrate was added to 0.4 M Ca-nitrate tetra hydrate solution and 1:2, 25 % liquor 
NH3: H2O, mixed and incubated for 1d at atmospheric temperature. The obtained liquid was added to 370 mL of 0.156 M (NH4)2HPO4 
and 30 mL of 1:1, 25 % ammonia: H2O, mixed and matured for 10–12 days [56]. The precipitate will formed as product i.e HA and this 
will be washed 4–5 times with deionized H2O then kept in oven at 80 ◦C for 24 h [57]. Fig. 2 represents the procedure for the 
preparation of HA from PFP.

2.2. Batch experiments

The batch experiments were performed using IS 3025 standards [58]. A 1000 mg/L stock solution of Cr (VI) was prepared by 
dissolving the appropriate amount of potassium dichromate in distilled water. This stock solution was diluted to obtain Cr (VI) so
lutions of selected concentrations. The pH of the solution was adjusted to required value either by the addition of 0.6 N H2SO4. The 
batch adsorption experiments were carried out using 250-cm3 Erlenmeyer flasks containing 100 cm3 of Cr (VI) solution of known 
concentration to which a known mass of adsorbent is added. The flasks were agitated at 120 rpm on an orbital shaker for a known 
period of time at 30 ◦C. The solution was filtered using 0.45-μm syringe filter. The filtered solution was make up to 50 mL with distilled 
water and adjusted to pH 1.0 using 0.2 N H2SO4. A 2 cm3 of 1,5-Diphenylcarbazide (DPC) was added to the filtered solution which 
developed a purple colour which is then centrifuged for 20 min at 10,000 rev. min− 1. The absorbance of the supernatant is measured at 
a wavelength of 540 nm using a UV–visible spectrophotometer (Shimadzu UV – 1800) at 540 nm [59]. The batch process for AP study 
was depicted in Fig. 3. The percentage removal of Cr (VI) was calculated using Eq (1). 

% Removal=
C0 − Cf

C0
× 100 (1) 

Where, C0 and Cf (mg/L) are the initial and final concentration of Cr (VI). The amount of Cr (VI) ions adsorbed was determined from 
Eq. (2). 

qe =

(
Ci − Cf

)

Ci
×

V
m

(2) 

2.3. Desorption studies

The adsorbents were loaded with toxic heavy metals which generate environmentally hazardous solid spent waste. Therefore, the 
regeneration of spent materials can make the process cost-effective. A desorption study was conducted using NaOH, HCl and H2O. Here 
Cr (VI) contaminated AB treated with selected desorption solutions with a known concentration and kept in orbital shaker for around 
30 min with known RPM. After this process it is analysed by standard method IS 3052. Desorption efficiency was estimated from the 
following standard equation [60]. The process explained as depicted in Fig. 4 [61]. 

% Desorption=
Cd
Ca

× 100 (3) 

3. Results and discussion

3.1. Characterization of the adsorbent

3.1.1. XRD
The HA-PP was subjected to XRD analysis. The schematic diagram displayed in Fig. 5. The peak 112 and main peaks related to (HA- 

PP) were observed at 2θ values of 25◦, 29◦, 32◦, 40◦, and 50◦. The Miller indices coordinated well with those of pure HA (JCPDS no. 
09–0432), the same are shown in plot.

Miller indices of the major peaks identified for HA-PP, are (002), (112), (202), (222), (213), (310), (411), and (102). These values 

Fig. 2. Procedure for preparation of HA - PP.
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compared very well with the standard XRD data of pure hydroxyapatite (JCPDS No. 09–0432) which confirmed the formation of 
hydroxyapatite from pomegranate peel. Hence, which confirmed the formation of HA-PP. Equivalent outcomes have been reported by 
Nayar [56].

3.1.2. FTIR analysis of HA-PP
In Fig. 6 the peaks at 417.8 cm− 1, 647.2 cm− 1, 723.6 cm− 1, and 1147.9 cm− 1 are due to the distinctive tetrahedral PO4

3− group. 
These results have been corroborated by Fu et al. and Li et al. [62,63]. The band at 1453.6 cm− 1 recommended the CO3

2− in the 
material. The peaks at 1453.6 cm− 1 and 732.6 cm− 1 represent the interaction of CO2 with the HA – PP. Analogous observations were 
made by Manoj et al. [64,65]. The peaks at 3647.64 cm− 1 and 3085.77 cm− 1 are due to the stretching and bending vibrational modes 
of the OH− groups of the HA. The change in peaks from 417.8 cm− 1 to 383.4 cm− 1, 647.2 cm− 1 to 723.6 cm− 1, 1147.9 cm− 1 to 1182.3 
cm− 1, 1453.6 cm− 1 to 1335.2 cm− 1, and 1633.3 cm− 1 to 1650.53 cm− 1 may be due to the Cr (VI) AP on HA-PP.

Fig. 3. The process of batch adsorption study of Cr (VI) removal.

Fig. 4. Process flow sheet of desorption study of HA-PP.

Fig. 5. XRD pattern of HA-PP.
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3.1.3. SEM and EDS
Fig. 7 shows presence of Ca and P in the adsorbent. The morphology of HA-PP shows flat luffa like structure [66]. But later Cr (VI) 

treatment, HA-PP shows crumbling like structure and Cr ions attached to the surface of AB as presented in Fig. 7b and alike results were 
detected by Dharmawan et al. [67]. Thus, after AP material showed few particles of asymmetrical patches like structure onto the 
surface HA-PP but it is not in Fig. 7a. The HA-PP was analysed by EDS and is illustrated in Fig. 8.

This study revels presence of Ca (37.46 %) and P (17.01 %), in HA-PP, whereas after contact with Cr (VI), the Ca (34.85 %), P (1.38 
%), and Cr (3.15 %) where observed (Fig. 8b). Therefore, the Ca and P after AP the mass lessens because of the contact with the Cr (VI) 
ion during the AP process. This can be considered as a sign of the interchange of Ca and P with Cr ions onto the HA-PP.

3.1.4. Brunauer-Emmett-Teller (BET) analysis
The BET surface analysis determined the specific surface area, volume, and pore diameter of the HA-PP. The results show the 

average pore diameter as 24.608 nm which indicates pores are mesoporous having a vast surface area of (99.021 m2 g− 1) [68–70]. 
However, it is noteworthy that the mesopores play a significant role as the primary pores in the samples [71–73]. A larger specific 
surface area can provide more active sites [74]. The increase in specific surface area can be attributed to several factors, including the 
opening of previously inaccessible pores, widening of existing pores, creation of new pores, and integration of existing pores in the 
structures of the HA-PP similar results reported by Refs. [73,75].

3.2. Batch study

3.2.1. Effect of pH
In this study, trials were planned in the range of 2–8 pH and modifications were done by the addition of 6 M H2SO4. The plot for the 

same is depicted in Fig. 9a. This graph reflects that greater removal of Cr (VI) at (pH 2.0) beneath acidic conditions may be attributed to 
the charge density (ρ). At pH after 3 and 4, Cr (VI) has a high negative charge due to the presence of oxyanions such as HCrO4 

− , Cr2O7 
2− and CrO4 

2− in the solution. These ionic forms attach to the surface of material because of H+ ions on the Ha-PP surface. Hence, 
there is an electrostatic desirability between the (+) charged surfaces of HA-PP and the oxyanions of Cr (VI) [45,46]. As an outcome, 
the oppositely charged metal ions and the adsorbent’s surface declines, and the elimination of Cr (VI) gets reduced radically after pH 2 
[76–78].

3.2.2. Effect of agitation speed
Definitely, stirring rate is an influencing parameter in the adsorption mechanism since it is the physical driving force of the process. 

The maximum removal rate was 90.4 % at 120 rpm. The adsorption capacity of HA-PP constant after RPM increased from 120 to 180 
(Fig. 9b). This constant data is due to the saturation of the adsorbent and may be turbulence and did not have enough time to meet the 
adsorbent surface at higher speeds [79].

3.2.3. Adsorbent loading
The AL was varied from 0.05 to 0.8 g. The results indicated that the removal of Cr (VI) enhances with the improvement in the 

loading of the adsorbent (AB). Obtained data explains that AL 0.8 g removed 89.8 % of Cr (VI) at 60 min (Fig. 9c). The reason may be 
due to the fact that a bulky quantity of AL will display additional surface area, which in turn fixes more metal ions, as abundant new 
binding positions are available for the adsorption, so favouring a high rate of AP [26,78].

Fig. 6. FTIR plot of HA - PP: (− ) before and (− ) after Cr (VI) adsorption.
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3.2.4. Effect of temperature
In this section it was evident that the elimination of Cr (VI) enhances with the rise in temperature (T) from 10 to 50 ◦C. At 30 ◦C, the 

Cr (VI) removal was detected to be 89.91 %, while at 40 ◦C, 92.8 % removal was noticed (Fig. 9d). At lower T, the kinetic energy of Cr 
(VI) ruins low; therefore, it becomes hard for Cr (VI) ions to reach the dynamic sites of the AB, whereas, at higher T, the mobility of the 
metal ions enhances, hence elimination rate was high [80,81].

3.2.5. Effect of contact time
The experimental data indicate that Cr (VI) ion AP increased with increasing CT. This is due to prolonged contact between the 

sorbent surface and the Cr (VI) ion. The Cr (VI) ions enhance as the CT increased from 5 to 60 min. However, no substantial rise in Cr 
(VI) removal was observed after 30 min (Fig. 9e). The early stage of rate of Cr (VI) AP was found higher due to huge number of 
energetic obligatory sites present at the exterior surface of the HA-PP and a high concentration gradient [82,83]. After the active sites 
of the adsorbent gets exhausted, when equilibrium is attained, the rate of uptake is controlled by the rate at which the adsorbate is 
transported from the exterior to the interior sites of the HA-PP particles.

3.2.6. Effect of initial concentration
The IC of the chromium ion plays an important role in determining the removal efficiency of the adsorbent. The adsorption in

creases initially by increasing the concentration, and reaches to maximum at 200 mg/L (Fig. 9f). The process shows elimination ef
ficiency of Cr (VI) was found to be 89.8 %, at 200 mg/L depicted in (Fig. 9f), while at the lowest concentration, i.e., 50 mg/L, the 
removal was found to be 43.0 %. The equilibrium was established at 200 mg/L, and there was no further increase in the AP of ions by 
further increasing Cr (VI) concentration. The ratio of number of moles of Cr (VI) ions to the surface area of AB is large at (200 mg/L), so 
AP takes place without any interruption. The AB surface area saturates at higher concentration and the ions diffusion from the solution 
bulk to the adsorbent surface decreases [84,85]. This effect can be ascribed to the enhanced driving force of the mass transport of Cr 
(VI) molecules towards the active pores within the inner depth of HA-PP at higher initial Cr (VI) concentration [86]. Same results 
corroborated by Ref. [83].

3.2.7. Effect of ionic strength
For the experiment the selected ionic strengths (IS) are (0.1, 0.3, 0.5, 0.7, 10 mol/L). As showed in Fig. 9g, the removal efficiency 

(57.2 %) was detected at 0.1 M (IS). Enhance in IS, the removal efficacy decline, to 20.9 % represented in (Fig. 9g). The differences in IS 
of the solution might lead to functional groups available on the AB surface, which probably inhibits with the adsorption process 
prominent to lesser elimination efficacy [87,88].

Fig. 7. SEM images of HA - PP.

Fig. 8. EDS analysis images of HA - PP (a) before, and (b) after adsorption.
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3.2.8. Reusability study
The reusability study elaborates, a four consecutive sorption– desorption cycles were performed and the sorption capacity of the 

material decreased for the certain period. Y. Ren et al., hypothesized that the sorption–desorption process involved complexation, 

Fig. 9. Effect of a) pH b) agitation speed c) adsorbent dosage d) temperature) contact time f) Initial concentration g) ionic strength and h) 
Reusability on HA-PP.
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physisorption and ion exchange reactions [89]. In this study the initial 2 cycles, the AB exhibited more adsorption, i.e., 89.6 % and 
84.16 %, but eventually, it slowed down (Fig. 9h), to 75.19 % and 68 % in the III and IV cycle. Here AP followed a declining trend, i.e. 
(>65 %) for the last two cycles. Finally, material can be reused successfully for Cr (VI) AP up to 5 cycles.

4. Optimization study

RSM was selected for the optimization of the selected parameters for the AP of Cr (VI) by HA-PP. The Design software ® (Stat-Ease 
Inc., Version 9.0.3.1, Minneapolis, MN) was employed for this purpose. The arrays of the parameters selected were: pH: 2 to 6; AL: 
0.05–0.8 g/100 mL, CT: 5–60 min, and IC: 50–200 mg/L. Table, 1 explains the experimental protocol (see Table 1).

Based on percentage AP values analysis will be carried out using analysis of variance ANOVA. The archetypal and lack of fit were 
tested for importance of the model. The (ANOVA) for the response were shown in Table 2. To check the applicability of the regression 
model, coefficient of variation (CV%), standard deviation (SD), appropriate precision (AP), and desirability function (DF) were used. It 
should be noted that the value of DF varies between 0 and 1, and if the value of DF is equal to 1, the answer is favourable, and if the 
value of DF is equal to 0, the situation is undesirable or has minimal usage.

To confirm the ANOVA results, the normal probability plot of the residual versus the histogram of the residual was used. The 
obtained data were in line with one line, which shows that the data is normal and the results of ANOVA are valid [90]. The Cox-Box 
diagram is a tool that is analysed in the regression analysis of RSM-CCD data and how well the experimental data match the equation. 
This technique helps to stabilize variance and can improve the accuracy of any subsequent statistical tests or models.

This plot is used to determine the most appropriate transfer function to apply to the specified responses. Based on the Cox-Box 
diagram, the best lambda value for HA-PP was determined to be 1 (Fig. 10). The results showed that the experimental data for the 
Cr (VI) treatment process do not need to be transferred to promote the model and have sufficient accuracy. Similar results shown by 
Refs. [90,91].

The F value of 82.16 suggests the model is significant. There is only a 0.01 % chance that an F-value this high could occur due to 
noise. The p (prob > F < 0.05) indicates model terms are significant. In this case, A, B, C, D, AB, and A2 are significant and p-value 
(>0.1) shows model terms are not significant. The predicted R2 value of 0.9311 is in reasonable agreement with the adjusted (R2 - 
0.9751): i.e., the difference is (< than 0.044). Adequate precision measures the range of the predicted value at the design points to the 
average prediction error. A signal to noise ratio (>4.0) hence model is adequate [92]. Fig. 10 shows the 3-D response surface plots of Cr 
(VI) adsorption on HA-PP.

The superlative conditions for the AP of Cr (VI) onto HA-PP adsorbent determined using the CCD are pH: 2, AD: 0.8 g/100 mL, IC: 
200 mg/L, and CT: 60 min for a maximum Cr (VI) removal of 89.4 %.

Table 1 
Optimization study plan generated by Design-Expert ® software for HA-PP.

A: pH B: AD (g/100 mL) C: CT D: IC % AP

4 0.05 32.5 125 73.33
4 0.425 32.5 125 75.6
6 0.8 5 50 55.27
4 0.425 32.5 125 76.2
2 0.8 60 200 89.4
4 0.425 32.5 200 84.21
2 0.05 5 50 57.3
4 0.425 5 125 70.1
2 0.8 5 50 64.3
4 0.425 32.5 125 77.9
6 0.8 60 200 82.4
6 0.8 5 200 79.9
6 0.05 60 200 80.4
4 0.425 32.5 125 76.92
4 0.425 60 125 78.9
2 0.8 60 50 67.2
2 0.05 60 50 64.4
2 0.05 60 200 82.92
4 0.425 32.5 125 75.9
6 0.05 5 200 73.6
2 0.05 5 200 78
4 0.8 32.5 125 77.05
6 0.05 60 50 62.4
6 0.05 5 50 55.89
4 0.425 32.5 50 67.8
6 0.425 32.5 125 71.1
6 0.8 60 50 61.6
4 0.425 32.5 125 74.92
2 0.425 32.5 125 77.1
2 0.8 5 200 83.24
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5. Adsorption isotherm

The results elaborate R2 (0.973) of the Langmuir AP isotherm for HA-PP were found to be grater then the other isotherms (Fig. 11).
The Ka and qm were obtained from the slope and the intercept of a linear plot of 1/qe versus 1/Ce displayed in (Table 3). The good fit 

of the Langmuir isotherm indicates the development of a Cr layer on the outer face of the AB [93]. In this case, the RL lies between 0 and 
1 revels that the process is favourable [94]. Langmuir isotherm model postulates the equivalence of energy for the adsorbent sites all 
over the adsorbent surface. This surface homogeneity enables adsorbate to be adsorbed within monolayer behavior [95,96]. Therefore, 
more sorption are prohibited at these sites. For more justification of Cr(VI) adsorption, sorption results were further fitted using 
Freundlich equation. At equilibrium, Freundlich isotherm assumes the occurring of adsorption on adsorbent’s surface of non-uniform 
heterogeneity. From the slope and intercept evaluated from the linear plotting of log qe against log Ce, the parameters of Freundlich 
equation are estimated and illustrated in Table 3. The values of ’’n = 0.02″ that reflects some surface heterogeneity and adsorption 
favorability with condition 0 < n < 1 [97,98]. Additionally, the R2 of average value (0.9545) for the linearity of Freundlich equation 
shows a good fitting. A value near to 0 indicates a heterogeneous surface. A value < 1 shows chemisorption [97].

For the D-R isotherm, the slope (S) of a plot of ln qe versus ε2 gives β (mol2/kJ2) and the intercept (I) yields the AP capacity, qm 
(mol/g). The D-R constants are tabulated in Table 3. The Temkin constants AT and BT were found from the slope and intercept of a plot 
of qe against ln Ce. More adsorption at the expense of less energy was evident from the qm (0.66) mg. g− 1and Ka (0.0085) L.mg− 1 [99]. 
In addition, the value of the BT parameter was quantified to be < 1 kJ/mol, which emphasizes that physical adsorption has occurred 
and the interaction between adsorbers and Cr (VI) is controlled by electrostatic force [100,101].

6. Adsorption kinetics

In order to design and model the sorption process, the kinetic parameters were determined. Also, they were used for selecting the 
most advantageous working conditions for a full-scale batch process. It is well known that the sorption mechanism may involve three 
processes or their combination: surface adsorption, chemical interaction and diffusion. The slowest of these processes determines the 
rate limiting step. In order to identify the kinetic order and the rate limiting step, the experimental data was processed using 4 of the 
most widely used adsorption kinetic models. The kinetic parameters related to each model, calculated from the intercepts and slopes of 
the corresponding linear plots. The fitting of each model to the experimental data was estimated using the regression correlation 
coefficient, R2 value.

A straight line of 1/qt versus 1/t suggests the applicability of the first-order kinetic model (Fig. 12a). q1 and k1 were determined 
from the intercept and slope of the plot and the values are presented in Table 4.

The plot of t/qe versus time (t) (Fig. 12b) yielded a straight line which suggests the applicability of the pseudo-2nd-order model 
(PSOM). The constants q2 and k2 were determined from the intercept and slope of the plot. From the data, the calculated and 
experimental qe values are seen to be in good agreement with each other. The maximum Cr (VI) adsorption capacity was found to be 
8.98 mg g− 1. The PSOM gave the highest R2 value for HA-PP. Thus, it concludes that the AP process obeys the PSOM [102]. The 
assumption of PSOM is the rate-limiting phase may be chemical AP connecting valence forces through distribution or interchange of 
electrons among the AB and the adsorbate [99].

Table 2 
ANOVA response for HA-PP.

Source Sum of squares Degree of freedom (df) Mean square F-value p-value (prob > F) Significance (S)

Model 2238.73 14 159.91 82.16 <0.0001 S
A – pH 94.76 1 94.76 48.69 <0.0001
B - AD 57.32 57.32 29.45 <0.0001
C - CT 150.34 150.34 77.24 <0.0001
D - IC 1758.44 1758.44 903.45 <0.0001
AB 13.40 13.40 6.88 0.0192
AC 0.070 0.070 0.036 0.8519
AD 0.038 0.038 0.020 0.8907
BC 3.46 3.46 1.78 0.2024
BD 8.47 8.47 4.35 0.0545
CD 0.38 0.38 0.19 0.6656
A2 11.67 11.67 5.99 0.0271
B2 2.76 2.76 1.42 0.2522
C2 7.68 7.68 3.95 0.0655
D2 0.12 0.12 0.063 0.8056
Residual 29.20 15 1.95 ​ ​ ​
Lack of Fit 23.71 10 2.37 2.16 0.2045 Not significant
Pure Error 5.49 5 1.10 ​ ​ ​
Corrected 

Total
2267.93 29 R-Squared 0.9871 ​

Std. Deviation 1.40 ​ Adj R2 0.9751 ​
Mean 73.17 ​ Pred R2 0.9311 ​
C.V % 1.91 ​ Adeq Precision 34.167 ​

S. Pawar and T. Theodore                                                                                                                                                                                           Heliyon 10 (2024) e37540 

9 



Fig. 10. 3-D response surface plots and Box-Cox plot of HA-PP adsorbent.

S. Pawar and T. Theodore                                                                                                                                                                                           Heliyon 10 (2024) e37540 

10 



In the present study, for the intraparticle diffusion model, the adsorbents showed R2 values for HA-PP (R2 = 0.930) and the lines do 
not pass through the origin which is an indication that the model appropriate to explain HA-PP adsorption kinetics.

Elovich model, a plot of qe v/s ln (t) Fig 12 (d) must give a straight line of slope, 1/β and intercept, 1/β ln (αβ) [103] presented in 
Table 4. The high values of R2 > 0.9 reveal good fitting for the Elovich equation with great possibility for mass transfer when describing 
the chemisorption on heterogeneous adsorbent [104]. According to the obtained results of adsorption kinetics, the Cr(VI) adsorption 
on HA-PP surface best rendered to pseudo second-order kinetics in addition to the Elovich kinetic model within the frame of chem
isorption mechanism. Similar results reported by Ref. [51]. The constant were presented in Table 4.

7. Temperature study

To explore the feasibility of Cr (VI) uptake by the HA-PP, the thermodynamic variables ΔG0 (Eq. (4), ΔH0 (), and ΔS0 (Eq. (5)) were 
determined. 

ΔG= − RTlnK (4) 

Fig. 11. (a) Freundlich, (b) Langmuir, (c) D-R, and (d) Temkin isotherms of HA - PP.

Table 3 
Summary of the isotherm constants.

Freundlich: Temkin:

S: 1/n 44.59 S: B (J.mol− 1) 1945.17
I: ln Kf 207.74 I: B ln AT − 9166.71
n 0.02 BT 1.29
Kf 6.01 × 10− 91 AT 0.0089
R2 0.954 R2 0.924
Langmuir: D-R:
S: 1/qmKa 177.29 S: Kad − 0.045
I: 1/qm 1.51 I: lnqs 25.74
qm (mg.g− 1) 0.66 qs (mg.g− 1) 6.9 × 1069

Ka (L.(mg)− 1) 0.0085 E (KJ/mol2) 0.150
RL 0.65 R2 0.949
R2 0.973 ​ ​
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Fig. 12. (a) First-order, (b) pseudo-2nd-order, (c) intraparticle diffusion, and (d) Elovich models for HA - PP.

Table 4 
Adsorption kinetic parameters for HA-PP.

First-order Pseudo-second-order

k1 (l.min− 1) 0.036 k2 (g/mg.min) 0.21
q1 (mg.g− 1) 0.11 q2 (mg.g− 1) 8.98
R2 0.853 R2 1.0

Intraparticle diffusion Elovich
kid (mg/g.min1/2) 0.087 α (mg/g.min) 0.25
C 8.29 β (g/mg) 4.86
R2 0.930 R2 0.971

Fig. 13. Plot of ln Kd vs. 1/T for the estimation of the thermodynamic parameters for the adsorption of Cr (VI) on the HA-PP.
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ln Kc =
− ΔH
RT

+
ΔS
R

(5) 

Where, Kc is the thermodynamic constant, which is equal to qe/Ce. The ΔH0 and ΔS0 of the removal process were estimated from the 
intercept and slope of the plot of ln Kc against 1/T (Fig. 13). As the adsorption temperature increased, the values of kd increased as 
well, indicating that the Cr (VI) adsorption capacity increased with the rise of temperature and this suggested that the adsorption 
process was an endothermic in nature. The negative ΔG◦ values advocated that the adsorption process was spontaneous and more 
favourable at low temperature [105,106]. The positive value of ΔH◦ (4.71 kJ/mol) confirmed the endothermic nature of the 
adsorption process and the positive ΔS◦ (15.89 J/mol K) value revealed the increase in the randomness at solid–solution interface.

There is unequal release of energy during the adsorption process and the magnitude of ΔH◦ value offers information about the 
forces that governed the adsorption process. In this work, the ΔH◦ value was found to be 4.71 kJ/mol, this confirming that it is physical 
forces were involved in the adsorption of Cr (VI) onto HA-PP. Similar results corroborated by Refs. [86,107,108].

8. Mechanism of adsorption

The heavy metal AP from wastewaters by AB involves a variety of mechanisms such as electrostatic interactions between metal and 
the functional surface of the material, cation exchange between metals and alkaline metals on the material surface, metal precipitation, 
and metal reduction followed by sorption, and metal complexation of the HA-PP. This process of separation, implies the transfer of 
adsorbate (i.e., pollutant) from the fluid (i.e., synthetic solution) to the surface of a solid matrix (i.e., adsorbent) that should have a 
tailored surface chemistry and porosity to reach an effective separation. It also offers the possibility to recover the adsorbate (s) loaded 
on the AB surface via desorption thus facilitating the AB recycling. The effectiveness of AP of Cr (VI) ions is affected by several 
operating variables like CT, AL, temperature, IC, and pH. Also, textural parameters and surface functionalities of the material used as 
an adsorbent are paramount to achieve a successful removal of Cr (VI). The exploration of the adsorption mechanisms of Cr6+ through 
adsorption thermodynamics and adsorption kinetics has become the primary focus of research. The mechanisms of adsorption by the 
adsorbents were all consistent with the PSO kinetic model, indicating the adsorption of Cr6+ by these materials occurs by chemi
sorption. Some isotherm types conform to the Langmuir equation, and some conform to the Freundlich equation, depending on the 
heterogeneity of the adsorbent surface. Therefore, it is important to characterize, assess, and model the performance of low-cost 
materials as adsorbents for the removal of Cr (VI) ions at different operating conditions with the aim of identifying the best alter
natives for real-life and industrial applications [109].

9. Conclusion

The adsorptions of Cr (VI) onto the HA-PP were inveterate by the characterization of the material by XRD, FT-IR, SEM-EDS and BET. 
The optimized parameters for HA-PP: pH 2, AL 0.8g, IC 200 mg. L− 1, CT 60 min, AS, and IS studied and removal found to be 89.4 %. In 
CCD of RSM the models F-value specify that the models are significant. Values of P > F < 0.0001 terms revels model are significant. The 
predicted R2 is in reasonable agreement with the adjusted R2. The 3D plots elucidate the collective effects of all the parameters on the 
AP. ANOVA study showed that the models were significant to fit the data. The statistics fitted well with the Langmuir isotherm and 
pseudo-2nd-order kinetic models. The reusability experiments indicated that the HA-PP could be reused effectively up to 4 cycles. 
Thus, it can be concluded that HA-PP are good and eco-friendly adsorbent.
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