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Abstract

Background: Understanding the relationship between the protein sequence and the 3D
structure is a major research area in bioinformatics. The prediction of complete protein tertiary
structure based only on sequence information is still an impractical work. This paper aims at
revealing the hidden knowledge of the sequence motifs and the local tertiary structure.

Results: In this paper, we propose a Super Granule Support Vector Machine (Super GSVM)
model to obtain the high quality protein sequence motifs and to predict local tertiary structure
information based on purely sequence information.

Conclusion: The proposed model overcomes the innate shortcoming of using the SVM on such a
large data set, which is the inherent computational complexity involved in training support vectors
for huge datasets including half million of samples. The satisfactory prediction results show the
Super GSVM model generates decent protein sequence clusters and has the ability to capture the
hidden sequence-to-structure information. This model also has a strong potential in the application
of SVMs on other research areas with huge datasets.

Background
Understanding the relationship between protein
sequence and 3D structure is one of the most important
research tasks in both biology and bioinformatics
researches. Based on many biochemical experiments, it
is believed that the sequence is the sole determinate in a
polypeptide’s structural conformation. This means all
the information that is necessary to specify protein
interaction sites is embedded into the polypeptide’s
amino acid sequence [1].

In order to discover the protein sequence-to-structure
relationship, Han and Baker used the K-means clustering
algorithm to produce high quality protein clusters from
protein sequence frequency profiles [2,3]. Subsequently,
they used the sequence clusters [4] combined with Hidden
Markov Model (HMM) [5] to predict local protein
structures. In their work, the clustering algorithm plays
the central role in relating protein sequences to local
structures. However, the conventional clustering algorithms
assume that the distance between data points can be
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calculated with exact precision. While the distance function
is not well characterized, this approach may not reveal the
sequence-to-structure relationship efficiently [6].

Support Vector Machines (SVM) [7] has proven their
value in various research domains. SVM apply the soft
margin idea to allow mislabelled examples for max-
imization the margin; therefore, SVM has the ability to
handle the non-linear classification by implicitly map-
ping input samples into a higher dimension for
maximum-margin hyperplane generation. Under this
point of view, SVM may be more efficient to discover the
non-linear sequence-to-structure relationship than the
K-means clustering algorithm [6]. Nevertheless, due to
the high computational cost of SVM, it is not favourable
for large datasets [8]. It is almost impossible to model a
SVM over half a million data segments, which are then
used to generate protein sequence recurring patterns.
As a result, SVMs combined with granular computing
might be a key step to uncover the secret behind the
sequence-to-structure relationship. By using the divide-
and-conquer principle, granular computing is able to
divide a complex data-mining problem into a series of
smaller and computationally simpler problems [9].

In this paper, we explain how to merge the power of SVM
and granule computing to uncover the hidden informa-
tion between the relationship of sequence and structure.
A detailed report on local protein structure prediction
results based on sequence information is also provided.

Results
Super Granule Support Vector Machines (Super GSVM)
To perform the true merit of the granular computing
combined with the power of the SVM, we propose a new
computational model, the Super Granule Support Vector
Machines (Super GSVM), in this paper. In the Super
GSVM, the large dataset is first softly separated into
several information granules by the Fuzzy C-means
clustering and then succeeded by the Greedy K-means
clustering for sequence cluster generation on each
information granule. After that, one Ranking-SVM is
built for each sequence cluster to learn the non-linear
sequence-to-structure relationship in each cluster. Each
Ranking-SVM serves two major purposes: 1. extracting
the sequence cluster to generate higher quality protein
recurring pattern information; 2. predicting the protein
local 3D structure. Figure 1 is the sketch of Super GSVM.

Protein local 3D structure prediction
In our previous work [11,12], by using the FGK model
(described in Method section), we obtained 343 out of
799 high quality sequence clusters using a window size
of nine from more than half million sequence segments

generated from protein sequence profiles. In this work,
we further extract these 799 sequence clusters and
improve the high quality cluster number from 343 to
543 by using the Super GSVM model (the improvement
results is shown in Table 1). Then we divide these 543
sequence clusters into three groups (excellent, good and
fair) based on their secondary structural similarity and
use these information with a trained Ranking-SVM
model to predict protein local 3D structure from the
primary structure (sequence) information. Since the
different distance thresholds and the different clustering
groups generate distinct prediction accuracy, Table 2
shows a detailed report to indicate the relation between
these two factors. Unsurprisingly, the excellent clustering
groups always have better prediction accuracy. When the
distance threshold is set to 550, the highest prediction
accuracy is achieved, which is almost 72%, based on the
criteria of the average difference on dmRMSD being less
than 1.5 Å. With more restrict (smaller) distance thresh-
old, the prediction usually performs better; however, the
prediction coverage (number of predicted segments
divided by total number of testing segments, which is
490,426) is getting lower. It is also the reason why we do
not show any prediction accuracy with the distance
threshold less than 550, no meaningful prediction
coverage can be provided. Experimental results show
that if we use excellent group of clusters, we are able to
predict around 4.5% (21818 out of 490426) sequence
segments with 70% accuracy when the distance thresh-
old is set to 850. The analysis between distance threshold
and prediction coverage is shown in Table 3. Under
smaller distance threshold, the difference of prediction
coverage between three clustering groups is not distinct.
But since Fair cluster group contains larger number of
clusters (287) than Good cluster group (156) and
Excellent cluster group (100), while the distance thresh-
old increases, the difference of prediction coverage
becomes more obvious.

Discussion
We try to discover the sequence-to-structure relation by
predicting protein 3D information, which is mainly
focus on dmRMSD, from purely sequence knowledge.
Some other tertiary structure knowledge such as torsion
angle [1] can also be adapted in our future work as an
additional source of 3D structural information. Besides,
since the Ranking-SVM also gives ranking information
on the target examples instead of simply a yes or no, it is
highly possible to develop a strong voting mechanism to
generate better prediction accuracy results.

Conclusion
In this work, we propose a Super GSVM model to discover
the hidden protein sequence-to-structure information. We
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cluster on sequence profiles to find the recurring sequence
patterns and evaluate the clusters by secondary structure
similarity. We then build a Ranking-SVM for each cluster to
improve the secondary structural similarity. Finally, based
on the sequence clusters and the corresponding Ranking-
SVMs, we predict the tertiary structure of the testing
sequences. If the sequence similarity between the testing
segment and the existing cluster is verified, we predict the
3D structure of the testing segment should be similar to the
representative 3D structure of the sequence cluster. No

tertiary structure information is involved in the training
process; it is how we carry out the merit of discovering the
relation between primary structure and tertiary structure.
Although the prediction accuracy is not yet perfect, we
open a new door to discovering protein sequence-to-
structure information and believe many future works can
be applied on our research methods to uncover this
mystery. The proposed Super GSVM model is also
favourable to many other scientific areas with huge
amount of datasets.

Figure 1
The sketch of the Super Granule Support Vector Machine (Super GSVM).
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Methods
Training dataset and independent testing dataset
The training dataset used in this work includes 2710
protein sequences obtained from the Protein Sequence
Culling Server (PISCES) [13]. No sequence in this database
shared more than a 25% sequence identity. Sliding
windows with nine successive residues are generated
from each protein sequence. Each window represents one
sequence segment of nine continuous positions. More than
560,000 segments are generated by this method and
clustered into 800 clusters. The frequency profile from the
HSSP [14] is constructed based on the alignment of each
protein sequence from the Protein Data Bank (PDB) where
all the sequences are considered homologous in the
sequence database. Based on the 3D space information
obtained from the PDB, we also calculate the distance
matrix between all nine a-carbons and append this
information to each data segment for prediction purposes.

The latest release of PISCES includes 4345 PDB files.
Compared with the dataset in our experiment, 2419 PDB
files are excluded. Therefore, we regard our 2710 protein
files as the training dataset and 2419 protein files as the
independent testing dataset, which contains 490,426
segments. Based on 3D space information obtained from
PDB, we also calculate the distance matrix between all
nine a-carbon and append this information to each data
segment for testing purpose.

Primary structure distance and tertiary
structure distance (dmRMSD)
For sequence distance, according to [2,15], the city block
metric is more suitable for this field of study since it will
consider every position of the frequency profile equally.
The following formula is used to calculate the distance
between two sequence segments [2]:

Distance = −
==
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Table 2: Prediction accuracy on three clustering groups. Since
different distance threshold and different clustering groups
generate distinct prediction accuracy, Table 2 shows a detailed
report

Distance Threshold Excellent Good Fair

550 71.98% 58.42% 52.89%
600 69.07% 57.16% 52.33%
650 69.08% 57.77% 51.49%
700 69.47% 57.08% 50.31%
750 69.40% 56.82% 49.98%
800 69.85% 56.30% 49.65%
850 70.02% 55.34% 49.37%
900 69.75% 54.78% 48.95%
950 69.53% 53.83% 48.51%
1000 68.88% 53.06% 48.15%
1050 68.26% 52.34% 47.78%
1100 67.63% 51.56% 47.46%
1150 67.09% 51.65% 47.14%
1200 66.54% 50.75% 46.92%
1250 66.11% 50.45% 46.69%
1300 65.73% 50.20% 46.48%

Table 1: The improvement of the number of high quality sequence clusters in each information granule

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 Total

Total number of clusters 151 76 95 72 70 133 143 5 48 6 799
Original FGK-250
60%~70% 36 24 24 28 32 31 35 2 15 4 231
70%~80% 21 3 12 4 4 24 20 0 0 0 88
>80% 7 0 7 0 0 4 6 0 0 0 24
Super GSVM
60%~70% 44 30 31 30 42 39 40 3 24 4 287
70%~80% 27 17 17 16 16 27 30 1 4 1 156
>80% 26 2 19 2 1 26 23 0 0 1 100

In this work, we use Super GSVM to generate and extract sequence clusters. We divided the whole training dataset into 10 information granules, the
second row shows the number of clusters in each information granule (detail of this information can be found in [11]). The table also show the
number of clusters belong to excellent (>80% 2nd structural similarity), good (70%~80% 2nd structural similarity), and fair (60%~70% 2nd structural
similarity) clusters before and after the Super GSVM extraction.

Table 3: Prediction coverage on three clustering groups. Table 3
shows the prediction coverage of three clustering groups under
different distance threshold

Distance Threshold Excellent Good Fair

550 0.14% 0.09% 0.20%
600 0.38% 0.27% 0.53%
650 0.78% 0.61% 1.09%
700 1.37% 1.16% 1.95%
750 2.21% 1.99% 3.26%
800 3.26% 3.15% 5.05%
850 4.45% 4.64% 7.46%
900 5.79% 6.51% 10.53%
950 7.19% 8.73% 14.35%
1000 8.61% 11.19% 18.83%
1050 10.05% 13.82% 23.80%
1100 11.46% 16.54% 29.08%
1150 12.77% 19.25% 34.45%
1200 13.95% 21.80% 39.58%
1250 14.99% 24.03% 44.12%
1300 15.83% 25.88% 47.73%
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Where L is the window size and N is 20 which represent
20 different amino acids. Fk (i, j) is the value of the
matrix at row i and column j used to represent the
sequence segment. Fc (i, j) is the value of the matrix at
row i and column j used to represent the centroid of a
given sequence cluster.

In order to describe the structure distance, we first
introduce Average Distance Matrix (ADM), which
records the average for the distance matrices of all the
sequence segments in one cluster, using the formula:

a
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i j
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Where a i j
k
→ is the distance between a-carbon atom I and

a-carbon atom j in the sequence segment k of the length L.
Since a-carbon indicates the most important location of
the protein, we use it to represent the protein center. N is
the total number of sequences in the cluster. To calcu-
late the structure distance between the real one and
the predicted one, we use dmRMSD [17,18] which is
described:
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where a i j
ADM
→ is used to represent the predicted sequence

cluster’s 3D structure and a i j
s
→
1 is the structure informa-

tion to be predicted. M is the number of distances in the
distance matrix. Since the window size we use is nine, M
= 36. In this work, we indicate an successful prediction of
local 3D structure if dmRMSD is less than 1.5 Å.

Secondary structure similarity measure
In the first part of the SUPER GSVM model, we discover
protein sequence recurring patters by using a granular
clustering approach based on primary sequence
structure distance. The quality of the sequence cluster
is evaluated by secondary structure similarity. Cluster’s
average structure is calculated using the following
formula:

max( , , , , , )pi H pi E pi C
i

ws

ws
=
∑

1
(4)

Where ws is the window size and pi, H shows the
frequency of occurrence of helix among the segments for

the cluster in position i. pi, E and pi, C are defined in a
similar way. In order to obtain the representative
secondary structure for each position, we use the max
function to identify the most frequent appeared second-
ary structure. For a simplified example: if a cluster with
the window size of three contains three members, where
their secondary structures are (HEH), (CHH), and
(HEH). The representative secondary structure for the
first position is H (66%), the representative secondary
structure for the second position is E (66%), and the
representative secondary structure for the third position
is H (100%). Therefore, the average secondary structure
similarity is (66%+66%+100%)/3.

Our original idea of using the sequence clusters to
predict the tertiary structure is based on the assumption
of (1) if the structural homology for a cluster exceeds
70%, the cluster can be considered structurally identical
[14], and (2) if the structural homology for the cluster
exceeds 60% and is below 70%, the cluster can be
considered weakly structurally homologous [15]. We
group our sequence clusters into excellent clusters, good
clusters, and fair clusters based on the criteria of
secondary structure similarity higher than 80%, between
80%~70%, and between 70%~60% respectively. Intui-
tively, higher quality sequence clusters have better 3D
structure prediction power. Therefore, the first step of
Super GSVM not only generates sequence clusters, but
also extract those clusters into higher quality ones.

Fuzzy Greedy K-means Model (FGK) Model
Granular computing represents information in the form
of aggregates, also called “information granules” [9,16].
For a huge and complicated problem, it uses the divide-
and-conquer concept to split the original task into
several smaller subtasks to save time and space complex-
ity. Also, in the process of splitting the original task, it
comprehends the problem without including mean-
ingless information. As opposed to traditional data-
oriented numeric computing, granular computing is
knowledgeoriented [9].

A granular computing based model called “Fuzzy-Greedy-
K-means model” (FGK model) is proposed in our previous
work [11]. This model works by building a set of
information granules by FCM and then applying the
greedy K-means clustering algorithm [11], which runs
the original K-means clustering five times and then collects
the good cluster’s centroids as the starting centroids for
the sixth round to generate the final information. Major
advantages of the FGK model include reduced time- and
space complexity, filtered outliers, and higher quality
granular information results. Figure 2 shows the sketch of
the FGK model. At the first stage, all of the data segments
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are clustered by Fuzzy C-Means into several “functional
granules” by a membership threshold cut. In each
functional granule, the new greedy initialization K-means
clustering is performed. At the final stage, we join the
information generated by all granules and obtain the final
sequence motif information.

Super Granule Support Vector Machine (Super GSVM)
Figure 1 shows the sketch of the proposed Super GSVM
model. The whole model can be divided into two
parts: 1. Granulating the training dataset and building
the Ranking-SVM for each cluster; (Top-down until
Collect all extracted clusters and Ranking-SVMs)
2. Local structure prediction produced by the sequence
clusters and the corresponding Ranking-SVM. (In the
lower part, from left to right)

The first part starts on softly dividing the huge training
dataset into several smaller information granules by the
Fuzzy C-means clustering algorithm. For each informa-
tion granule, we perform the Greedy K-means clustering
algorithm [11]. Since the cluster size is much smaller
than the initial training dataset, we train the Ranking-
SVM based on the secondary structure for each cluster
and obtain the rank of all members within the cluster.
According to our previous report [10], we filtered out
20% of the lower ranking members to generate the

clusters with the highest biological and biochemical
quality. In this paper, we also filtered out 20% of the
lower ranking members to yield higher quality clusters.
The improved results are showed in Table 1. Although
we cluster the training dataset into 799 clusters, training
the Ranking-SVM on all clusters still took us 3 months.
Finally, we collect all the sequence clusters and the
Ranking-SVM models for the second part: local structure
prediction.

The second part of the Super GSVM uses the clusters and
the Ranking-SVM generated from the first part to predict
the protein local 3D structure from purely sequence
information. Please notice that during the first part of the
Super GSVM, none of the 3D information is involved.
This is mainly because we want to discover the relation-
ship between primary sequence and tertiary structure. For
each independent testing sequence segment, we calculate
the primary sequence distance (by formula (1)) with all
sequence clusters. Within a given distance threshold, if we
can find a closest one, we temporarily assign the testing
segment to the closest cluster. And then we feed the
testing segment into the Ranking-SVM which is generated
from the closest cluster to get the rank of the testing
segment. If the rank of the testing segment is within the
upper 80%, it indicates the segment belongs to this
cluster, we then predict that the testing segment should
have a similar Average Distance Matrix (ADM) to the
cluster. If the rank of the testing segment is not within the
upper 80%, it indicates the segment does not belong to
this cluster, so we search for next closest cluster and repeat
the process. If the testing segment cannot find the closest
cluster within the given distance threshold, the testing
segment cannot be predicted. Since sequence clusters are
considered as the recurring patters or the sequencemotifs,
the sequence motifs only occur on a handful of locations
in the whole protein sequences. That is why we can only
emphasize on “Local” structure prediction. Different
distance thresholds generate different prediction results.
Table 2, 3 and the results section gives the detailed
analysis of different parameter set ups.
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Figure 2
The sketch of the Fuzzy Greedy K-means (FGK)
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BMC Bioinformatics 2009, 10(Suppl 11):S15 http://www.biomedcentral.com/1471-2105/10/S11/S15

Page 6 of 7
(page number not for citation purposes)



Acknowledgements
This article has been published as part of BMC Bioinformatics Volume 10
Supplement 11, 2009: Proceedings of the Sixth Annual MCBIOS
Conference. Transformational Bioinformatics: Delivering Value from
Genomes. The full contents of the supplement are available online at
http://www.biomedcentral.com/1471-2105/10?issue=S11.

References
1. Karp G: Cell and molecular biology (concepts and experi-

ments). John Wiley & Sons Inc; 32002, 52–65.
2. Han KF and Baker D: Recurring local sequence motifs in

proteins. Journal of Molecular Biology 1995, 251(1):176–187.
3. Han KF and Baker D: Global properties of the mapping

between local amino acid sequence and local structure in
proteins. Proceedings of the National Academy of Sciences of the United
States of America 1996, 93(12):5814–5818.

4. Bystroff C and Baker D: Prediction of local structure in
proteins using a library of sequence-structure motifs. Journal
of Molecular Biology 1998, 281:565–577.

5. Bystroff C, Thorsson V and Baker D: HMMSTR: a hidden Markov
model for local sequence-structure correlations in proteins.
Journal of Molecular Biology 2000, 301:173–190.

6. Zhong W, He J, Harrison R, Tai PC and Pan Y: Clustering Support
Vector Machines for Protein Local Structure Prediction.
Expert Systems With Applications 2007, 32(2):518–526.

7. Cortes C and Vapnik V: Support-Vector Networks. Machine
Learning 1995, 20(3):273–297.

8. Chang CC and Lin CJ: Training nu-support vector classifiers:
theory and algorithms. Neural Computations 2001, 13:2119–2147.

9. Yao YY: Perspectives of granular computing. Proceedings of
2005 IEEE International Conference on Granular Computing 1:85–90.

10. Chen B, Pellicer S, Tai PC, Harrison R and Pan Y: Efficient Super
Granular SVM Feature Elimination (Super GSVM-FE) Model
for Protein Sequence Motif Information Extraction. Interna-
tional Journal of Functional Informatics and Personalised Medicine 2008,
1(1):8–25.

11. Chen B, Tai PC, Harrison R and Pan Y: FGK model: An Efficient
Granular Computing Model for Protein Sequence Motifs
Information Discovery. IASTED CASB Dallas, proceeding 2006,
56–61.

12. Chen B, Tai PC, Harrison R and Pan Y: FIK model: A Novel
Efficient Granular Computing Model for Protein Sequence
Motifs and Structure Information Discovery. IEEE BIBE
Washington D.C., proceeding 2006, 20–26.

13. Wang G and Dunbrack RL Jr: PISCES: a protein sequence
culling server. Bioinformatics 2003, 19(12):1589–1591.

14. Sander C and Schneider R: Database of similarity derived
protein structures and the structure meaning of sequence
alignment. Proteins: Struct Funct Genet 1991, 9(1):56–68.

15. Zhong W, Altun G, Harrison R, Tai PC and Pan Y: Improved
Kmeans Clustering Algorithm for Exploring Local Protein
Sequence motifs Representing Common Structural Prop-
erty. IEEE transactions on Nanobioscience 2005, 4(3):255–265.

16. Lin TY: DatavMining and Machine Oriented Modeling: A
Granular Computing Approach. Journal of Applied Intelligence,
Kluwer 2002, 13(2):113–124.

17. Kolodny R and Linial N: Approximate protein structural
alignment in polynomial time. Proceedings of the National
Academy of Science of the United States of America 2004,
101:12201–12206.

18. Zagrovic B and Pande VS: How does averaging affect protein
structure comparison on the ensemble level? Biophysical
Journal 2004, 87:2240–2246. Publish with BioMed Central   and  every 

scientist can read your work free of charge
"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

BMC Bioinformatics 2009, 10(Suppl 11):S15 http://www.biomedcentral.com/1471-2105/10/S11/S15

Page 7 of 7
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/10?issue=S11
http://www.ncbi.nlm.nih.gov/pubmed/7643386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7643386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8650175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8650175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8650175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9698570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9698570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10926500?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10926500?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12912846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12912846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16220690?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16220690?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16220690?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16220690?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15454426?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15454426?dopt=Abstract
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Super Granule Support Vector Machines (Super GSVM)
	Protein local 3D structure prediction

	Discussion
	Conclusion
	Methods
	Training dataset and independent testing dataset
	Primary structure distance and tertiary structure distance (dmRMSD)
	Secondary structure similarity measure
	Fuzzy Greedy K-means Model (FGK) Model
	Super Granule Support Vector Machine (Super GSVM)

	Competing interests
	Authors’ contributions
	Acknowledgements
	References

