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Abstract: Automated segmentation of tuberculosis (TB)-consistent lesions in chest X-rays (CXRs)
using deep learning (DL) methods can help reduce radiologist effort, supplement clinical decision-
making, and potentially result in improved patient treatment. The majority of works in the literature
discuss training automatic segmentation models using coarse bounding box annotations. However,
the granularity of the bounding box annotation could result in the inclusion of a considerable
fraction of false positives and negatives at the pixel level that may adversely impact overall semantic
segmentation performance. This study evaluates the benefits of using fine-grained annotations of
TB-consistent lesions toward training the variants of U-Net models and constructing their ensembles
for semantically segmenting TB-consistent lesions in both original and bone-suppressed frontal CXRs.
The segmentation performance is evaluated using several ensemble methods such as bitwise- AND,
bitwise-OR, bitwise-MAX, and stacking. Extensive empirical evaluations showcased that the stacking
ensemble demonstrated superior segmentation performance (Dice score: 0.5743, 95% confidence
interval: (0.4055, 0.7431)) compared to the individual constituent models and other ensemble methods.
To the best of our knowledge, this is the first study to apply ensemble learning to improve fine-grained
TB-consistent lesion segmentation performance.
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1. Introduction

Tuberculosis (TB) continues to remain the primary cause of ill-health and mortality
across the world according to the recent 2021 global reports on TB from the World Health
Organization (WHO) [1]. Pulmonary infection from the Mycobacterium is reported to affect
all age groups and sexes. Early screening and diagnosis would therefore prove to be critical
to improving chances of survival and patient care.

While CT imaging is the preferred diagnostic imaging technique because of its sensi-
tivity in detecting TB, it has several limitations such as reduced access in low and medium-
resourced regions, high cost, high radiation dose, lack of portability, and increased need
for frequent sanitation, among others [2]. Therefore, CXR imaging continues to be the
most widely used examination for pulmonary TB-related disease screening [3], particularly
in developing countries with limited technical and human resources. However, factors
including lack of human expertise in interpreting CXR images and reallocation of services
from dealing with TB to responding to evolving pulmonary infections like COVID-19,
among others, have necessitated developing automated methods for TB screening and
diagnosis. Under these circumstances, artificial intelligence (Al)-based semantic segmenta-
tion methods using machine learning (ML)/deep learning (DL) algorithms [4,5] could help
segment TB-consistent manifestations and thereby supplement clinical decision-making.

Semantic segmentation methods associate each image pixel with a class label. Au-
tomatic DL-based algorithms are shown to deliver superior performance in delineating
and identifying disease-specific manifestations in CXRs, particularly TB [6,7]. They can
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help supplement human expertise for clinical decision-making thereby facilitating prompt
referrals and subsequently improving patient care. However, the performance of DL mod-
els is observed to scale with the availability and characteristics of data and computational
resources. Unlike natural images, it is rather difficult to obtain medical images and the
associated disease-specific annotations due to various factors including varying image ac-
quisition methods, varying disease pathogenicity across the world, inter- and intra-observer
variability in annotating the disease-specific regions of interest (ROIs), the granularity of
annotations, and the availability of data and annotations for research due to patient privacy
and other ethical concerns.

1.1. Related Literature

A major limitation of current DL algorithms is that they use coarse bounding-box
annotations of TB-consistent lesions for training and validating the models [8]. This might
result in including a considerable fraction of false-positive and false-negative pixels in the
annotations since the TB infection-specific ROIs are relatively small and there is variability
in the granularity of expert annotations used to train the models. To the best of our
knowledge, until the time of writing this manuscript, no CXR dataset accompanied by
fine-grained annotations of TB-consistent lesions is publicly available to train and evaluate
DL models.

DL models learn through stochastic backpropagation [9]. Due to the varying architec-
ture and hyperparameters of the model and the stochastic nature of learning, these models
may converge to different local optima. Ensemble learning is an established ML paradigm
that seeks to improve robustness and accuracy by combining the predictions of several
models [10]. Several methods of ensemble learning (e.g., averaging, bagging, boosting, and
stacking) are shown to deliver superior performance in medical image segmentation tasks
using CXRs, particularly for lung segmentation. The authors of [11] performed an aver-
aging ensemble of the predictions of the U-Net [12] and DeepLabV3+ models to segment
lungs in CXRs. Their proposed method achieved a segmentation accuracy of 98.6% using
the Japanese Radiological Scientific Technology (JRST) [13] and Shenzhen CXR [14] datasets.
In another study [15], the authors proposed an ensemble DeepLabV3+ based architecture
to segment lungs in the Shenzhen CXR collection and achieved an Intersection-Over-Union
(IoU) score of 0.97. Ensemble methods were applied to segment pneumothorax-consistent
regions [16] in CXRs. The authors used various ImageNet-pretrained encoder backbones
in the U-Net model and performed a weighted averaging ensemble of their predictions
to segment pneumothorax-consistent regions with a dice score of 0.906. However, until
the time of writing this manuscript, no literature exists in evaluating the gains achieved
through ensemble learning, particularly applied to segmenting TB-consistent ROIs in CXRs.

1.2. Contributions of the Study
The contributions of this study are summarized as follows:

1. This study proposes to use fine-grained annotations of TB-consistent lesions to train
and evaluate the performance of variants of U-Net-based segmentation models.

2. The gains achieved through constructing an ensemble of the trained models were
evaluated to demonstrate further improvement in the robustness and performance of
the segmentation algorithms.

A block diagram that summarizes our study is shown in Figure 1. In the first step, the
feature pyramid network (FPN)-based model with the EfficientNet-B0 encoder backbone
proposed in our previous study [17] was to suppress bones in the Shenzhen TB CXR
collection. Then, U-Net models with varying ImageNet-pretrained encoder backbones,
viz., ResNet-34 [18], Inception-V3 [19], DenseNet-121 [20], EfficientNet-B0 [21], and SE-
ResNext-50 [22] were trained and evaluated on the original and bone-suppressed CXRs for
segmenting TB-consistent lesions. The predictions of the top-K (K = 3, 4, 5) models were
used to construct ensemble predictions using several bitwise operations, viz., bitwise-AND,
bitwise-OR, and bitwise-MAX. A stacking ensemble was constructed by concatenating
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the features extracted from the penultimate layer of the top-K models and training a fully-
convolutional meta-learner to optimally combine these features and improve segmentation
performance.

(b) (c) (d)

Figure 1. Block diagram of the proposal. (a) Process pipeline in training individual U-Net models

and constructing ensembles to arrive at the final prediction; (b—d) show a sample CXR, its bone-
suppressed counterpart, and the ground truth TB-consistent lesion mask, respectively.

The datasets used, their characteristics, model architecture, loss functions, and evalu-
ation metrics are discussed in Section 2, related results and discussions are elaborated in
Section 3, and the conclusion and scope for future research are discussed in Section 4.

2. Materials and Methods
2.1. Datasets

The Shenzhen TB CXR [14] dataset, which contains 662 de-identified CXRs including
336 TB cases and 326 normal cases was used in this study. The number of CXRs in the
train, validation and test sets are shown in Table 1. TB cases were either microbiologically
confirmed, or with clinical symptoms and imaging appearance consistent with TB, and
positive response to anti-TB medication while excluding other causes. The CXRs were
collected from patients at the Shenzhen No.3 hospital in Shenzhen, China. The use of these
CXRs is exempted from IRB review (OHSRP#5357) by the National Institutes of Health
(NIH) and is made publicly available. CXRs manifesting TB-consistent abnormalities were
annotated by two radiologists from the Chinese University of Hong Kong using the Firefly
annotation tool (https://cell. missouri.edu/software/firefly/, accessed on 3 December
2021). The labeling was initially conducted by a junior radiologist, then the labels were all
checked by a senior radiologist, with a consensus reached for all cases. Of the 336 CXRs that
carry TB labels, the radiological signs consistent with TB were observed only in 330 CXRs.
The annotations were prepared in JavaScript object notation syntax (JSON) format. They
were also prepared as separate grayscale mask images showing abnormal ROls.

Table 1. Dataset and its respective patient-level train/validation/test splits.

Dataset Train Validation Test
Shenzhen TB CXR 2231 66 33
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The CXRs and their associated masks were resized to 256 x 256 spatial dimensions
to reduce computational complexity. The resized CXRs and masks were split into 70% for
training (n = 231), 20% for validation (n = 66), and 10% for testing (n = 33). The CXRs used
for training were further augmented offline using the Augmentor tool [23] using affine
transformations including mirroring, rotation in the range [5,10], and zooming in the range
[0.8, 1.4] to create 2000 additional CXRs and their associated masks. Therefore, there were
2231 CXR images in the training set after augmentation.

2.2. Model Architecture
2.2.1. Bone Suppression

The bones in the Shenzhen TB CXR collection were suppressed using an FPN-based
model [24] with an EfficientNet-BO encoder backbone, which was used in our previous
study [17]. The bottom-up pathway extracts image features at multiple scales. The spatial
resolution decreases with increasing depth and the semantic value of the layers increases
while detecting high-level structures. The top-down pathway constructs high-resolution
layers from the semantically rich layers at each scale in the bottom-up pathway. The final
layer of the models consists of a convolutional layer with Sigmoidal activation to predict
bone-suppressed CXRs. The original CXRs and their bone-suppressed counterparts were
trained on the augmented NIH-CC-DES-Set 2 dataset and tested with the CXR image
pairs in the NIH-CC-DES-Set 1 dataset [17]. The learning rate was reduced whenever
no improvement in the validation performance was observed for the subsequent five
epochs. Callbacks were used to store model checkpoints and stopped training when the
performance on the validation set began to degrade. The models were trained on an Ubuntu
Linux system with NVIDIA GeForce GTX 1080 Ti graphics card using the Keras framework
with Tensorflow backend and CUDA dependencies for accelerating the GPUs.

2.2.2. Segmentation of TB-Consistent Lesions

The U-Net variants with ImageNet-pretrained encoder backbones, viz., ResNet-34,
Inception-V3, DenseNet-121, EfficientNet-BO, and SE-ResNext-50 were trained to seg-
ment the TB-consistent lesions in the CXRs. U-Net has a U-shaped architecture with
an encoder followed by a decoder network. The various ImageNet-pretrained models,
aforementioned, used in the encoder/contracting path encode the input CXRs into feature
representations at multiple scales. The number of feature channels gets doubled with
each down-sampling step. The decoder/expanding path up-samples the feature maps to
project the low-resolution features into the high-resolution pixel space. The skip connec-
tions/concatenations ensure that the low-level information was shared between the input
and output, thereby adding information that might be lost because of the down-sampling
on the encoder side of the network. The final convolutional layer in the decoder network
with Sigmoidal activation predicts the masks. The U-Net models were trained on the
augmented Shenzhen TB CXRs and their corresponding TB-consistent lesion masks (from
Table 1) using an Adam optimizer with an initial learning rate of 1 x 10~*. Callbacks were
used to store model checkpoints. The learning rate was reduced whenever the validation
performance ceased to improve. The best-performing checkpoint with the validation data
was used to predict the test data and generate masks.

2.2.3. Ensemble Learning

The predictions of the top-K (K = 3, 4, 5) models were combined using the following
ensemble methods: (i) bitwise-AND, (ii) bitwise-OR, (iii) bitwise-MAX, and (iv) Stacking,
as illustrated in Figure 2. For bitwise operations, a pixel-wise comparison of the predicted
masks by the constituent models was performed to construct the final prediction. For a
bitwise-AND ensemble, the pixel in the final prediction was turned on only if the corre-
sponding pixels in the predictions from the top-K models were greater than 0. As for a
bitwise-OR ensemble, the pixel in the final prediction was turned on if even one of the
corresponding pixels in the predictions from the top-K models was greater than 0. The
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bitwise-MAX was computed across the masks predicted by the top-K models to turn on the
corresponding pixel in the final ensemble prediction, otherwise, the pixels were set to 0.

PREDICTIONS

SNAPSHOTS

STACKING

META-LEARNER ' .
—

(a

r ’ M,
PRED

M,
: ’ ’—’ CONCAT —» '
My
r ’ META-LEARNER

(b)
Figure 2. Ensemble strategies using the predictions of top-K (K = 3, 4, 5) models. (a) shows the

method flowchart showing bitwise-OR, bitwise-AND, bitwise-MAX, and stacking ensemble outputs
and (b) shows the method flowchart detailing the stacking process.

A stacking ensemble, as illustrated in Figure 2b, was further constructed using the
top-K (K = 3, 4, 5) models as follows: (i) Each of the top-K models was initialized with
their trained weights. (ii) The features from the penultimate layer of the top-K models were
extracted and concatenated. (iii) A fully-convolutional meta-learner performed second-
level learning on these concatenated features. (iv) The trainable weights of the top-K
models were frozen and only the fully-convolutional meta-leaner was trained on the
concatenated features. (v) The fully convolutional, second-level meta-learner consisted
of five convolutional layers. The number of filters in the 1st, 2nd, 3rd, 4th, and 5th
convolutional layers were 256, 128, 64, 32, and 1, respectively. (vi) All convolutional filters
except for those in the final convolutional layer were 3 x 3 dimensions and they used ReLU
activation. (vii) The final convolutional layer with sigmoidal activation and one filter of
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dimension 1 x 1 predicted the masks. (viii) The predicted masks were compared to the
ground-truth (GT) masks to evaluate segmentation performance.

The stacking ensemble was trained with an Adam optimizer with a learning rate of
1 x 1073 to minimize the proposed loss function discussed in Equation (9). Callbacks were
used to store model checkpoints whenever the validation loss decreased. The learning rate
was reduced whenever the validation loss ceased to improve. The training was stopped
when this loss plateaued. The stacking ensemble model weights that delivered the best
validation performance were further used to predict the test set and the performance was
recorded in terms of dice, Intersection over Union (loU), and area under the precision
(P)-recall (R) curve (AUPRC) metrics discussed in Section 2.2.4.

2.2.4. Loss Functions and Evaluation Metrics

An Adam optimizer with an initial learning rate of 1 x 10~ was used to reduce a
mixed loss function given by Equation (1) to train the bone suppression model. Here,
MS-SSIM denotes the multi-scale structural similarity index measure and MAE denotes
the mean absolute error. The value of & = 0.84 and = 0.16 was empirically determined to
deliver superior performance.

Mixed — loss = a x MS — SSIM + B x MAE 1

The U-Net-based segmentation models were evaluated in terms of IoU /Jaccard score,
dice/F1 score, and area under the precision (P)-recall (R) curve. The IoU metric is widely
used in evaluating semantic segmentation tasks. It is given by Equations (2) and (3).

IoU = TP/(TP + FP + FN) @)

ToUyss = 1 — IoU 3)

Here, TP, FP, and FN denote the true positives, false positives, and false negatives,
respectively, in segmenting the TB-consistent lesions for a given IoU threshold. The dice
score is another widely used segmentation evaluation metric, given by Equations (4) and (5).
Higher values of the IoU and dice score denote improved similarity between the predicted
and GT masks.

Dice score =2 x TP/(2 x TP + FP + FN) 4)

Dicej,ss = 1 — Dice score (5)

The mean average precision (mAP) is measured as the area under an 11-point inter-
polated PR curve, given by Equations (6)-(8). Here, Precision (P) measures the accuracy
of predictions, and Recall (R) measures how well the model identifies all the TPs. The R
values were segmented evenly into 11 parts, i.e., {0,0.1,0.2,0.3, ..., 0.9, 1.0} and the mAP
is calculated by measuring the AUPRC. The IoU threshold was fixed as 0.5.

o TP
Precision(P) = TP+ FP ©
TP
Recall (R) = ———— 7
ecall (R) (TP +FN) ”
1 .
mAP = 11 ZRecalli PT’@CZSlon(Recalli) ®)

For segmenting the TB-consistent lesions and to enforce all models to have a high
recall, the boundary uncertainty (BU) evaluation [25] was included while minimizing the
Focal Tversky (FT) loss function [26], given by Equation (9). The FT loss is parameterized
by 7 to balance between the majority background and minority TB-consistent lesion (ROI)
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pixels. The value TI, given by Equation (10), denotes the Tversky index (T1) function [26]
which generalizes the dice score. Here, c denotes the minority TB-consistent ROL.

FTloss (P/ PI)C = Zc (1 - TI?) (9)

/ pr’
THP) = G =i + G- Mp ) 1o
Here, A€ [0, 1]. When A = 0.5, the equation simplifies to the regular dice score. Higher
values of A will penalize the FNs more than the FPs. That is, with higher values of A, the
FNs will be kept low with increasing recall since we were concerned with how well the
model identifies all the TPs. The value of A = 0.7 and 'y = 0.75 was fixed after extensive
empirical evaluations.
In a binary segmentation problem, each pixel ¢ in the GT mask, at location x, is assigned
a hard class label as shown in Equation (11).

t=1,ifxefF

tx:{tzo,ifxeéF an

Here, ¥ denotes the target. While evaluating BU, the hard labels 0 and 1 are converted
into soft labels to represent probabilistic scores.

Jt<Ll,ifxe¥F
x'{tzo,ifng (12)
tx%F < thF (13)

Equations (12) and (13) explain that the values closer to 1 and 0 denote higher confi-
dence in classifying the pixels as belonging to the TB disease-consistent ROI or background
respectively. The soft labels are restricted only to the ROI boundaries to approximate the
uncertainty in segmentation using morphological operators such as dilation (A) and erosion
(A) [25]. Let X denote the input image of dimension a x b. The BU function performs
dilation and erosion operations on the ROI boundaries at all positions by querying with a
structural element Y of 3 x 3 spatial dimensions as shown in Equations (14) and (15). Proba-
bilities are then assigned for the pixels on the ROI boundaries as shown in Equation (16).

(XAY)(x,y) = maxicsijes2 (X(x —i,y —j) + Y(i,)) (14)

(XAY)(x,y) = minjcsijesy (X(x+1i,y+j) —Y(i, ) (15)
ft=Cift € (XAY),—X)

txeF'{t:Q, ift e (X—(XAY)) (16)

Here, n = 1 represents the iterations for which the morphological operators are applied.
The hyperparameters ¢ and () denote the values for the soft labels that are exterior and
interior to the ROI boundaries, respectively. When ¢ = 1 and () = 0, the soft labels would
converge to the original hard labels. After empirical evaluations, the value of { = 0.9 and
) = 0.1 was fixed. This BU component was incorporated with the FT loss function to train
the U-Net variants toward segmenting TB-consistent lesions.

2.2.5. Statistical Analysis

The statistical significance was reported for the dice score with the hold-out test data.
The 95% confidence intervals (Cls) were reported as the binomial Clopper-Pearson interval
for the dice scores. The guidelines in [27] were followed to measure the p-values from
the ClIs.
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3. Results and Discussion

Recall that the U-Net models were trained on the original and bone-suppressed CXRs.
Table 2 shows their TB-consistent ROI segmentation performance. Figure 3 shows the
receiver-operating-characteristic (ROC) curves, PR curves, and confusion matrices achieved
by the top-performing models trained on original and bone-suppressed CXRs, respectively.
It was observed from Table 2 and Figure 3 that the U-Net models trained on the original
CXRs outperformed those trained on bone-suppressed CXRs in terms of Iol, dice score,
AUPRC, and area under the receiver-operating characteristic (AUROC) curve.

1.0
8 08
T
o
(]
>
-‘: 06
0
o
o
GJ 04
2
E
o
n_ 0.2
|_
—— AUROC (U-Net-Inception-V3) - Original CXR - (AUC = 0.8347)
00 —— AUROC (U-Net-EfficientNet-BO) - Bone-suppressed CXR - (AUC = 0.7596)
00 02 0 o 0 10
FPR (False Positive Rate)
(@)
10
0.8
g 0.6
o
9]
(]
jud
n_ 0.4
0.2
—— AUPRC (U-Net-Inception-V3) - Original CXR - (AUPRC = 0.5867)
wl ™ AUPRC (U-Net-EfficientNet-B0) - Bone-suppressed CXR - (AUPRC = 0.5141)
0.0 02 04 0.6 0.8 10
Recall
(b)
TB Background 8B Background
TB 2047696 50379 8 2059984 38091
Background 19808 44805 Background 29889 34724

(c} (d)

Figure 3. Performance of the top-performing U-Net with Inception-V3 encoder backbone trained on
original CXRs and EfficientNet-B0O encoder backbone trained using bone-suppressed CXRs. (a) ROC
curves; (b) PR curves; (c¢) Confusion matrix achieved with original CXRs, and (d) Confusion matrix
achieved with bone-suppressed CXRs.
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Table 2. TB-consistent lesion segmentation performance using original (O) and bone-suppressed (BS)
CXRs. Values in parentheses denote the 95% ClIs for the dice score. Bold numerical values denote
superior performance.

Models 10U Dice
ResNet-34 (O) 0.3599 0.5293 (0.3589, 0.6997)
ResNet-34 (BS) 0.3280 0.4640 (0.2938, 0.6342)

Inception-V3 (O) 0.3896 0.5608 (0.3914, 0.7302)
Inception-V3 (BS) 0.2525 0.4032 (0.2358, 0.5706)
DenseNet-121 (O) 0.2996 0.4611 (0.2910, 0.6312)
DenseNet-121 (BS) 0.2892 0.4486 (0.2789, 0.6183)
EfficientNet-B0 (O) 0.3453 0.5134 (0.3428, 0.6840)
EfficientNet-B0 (BS) 0.3381 0.5053 (0.3347, 0.6759)
SE-ResNext-50 (O) 0.3201 0.4850 (0.3144, 0.6556)
SE-ResNext-50 (BS) 0.2962 0.4570 (0.2870, 0.6270)

This difference in performance was surprising and counter-intuitive since bone sup-
pression would improve soft-tissue visibility in the image. However, we believe that it
can be attributed to the following: (i) The FPN model with the EfficientNet-B0O-based en-
coder was trained and evaluated on a different, sparse, bone-suppressed CXR collection
from [17]. The model was trained in-house and not widely tested with cross-institutional
datasets. This could have impacted the model’s generalization to other datasets due to
the heterogeneities in X-ray acquisition and imaging protocols, variability in the overlying
cardiopulmonary structures, and bone individualities such as previous fractures and other
support devices in the CXR collections. The lack of generalization might have resulted in
uneven suppression, brightness, and contrast changes, and irrelevant suppression of the
soft tissues, which adversely impacted the detection of apical, central, and basal lesions, and
subsequent disease-specific segmentation performance as with TB. With the increased avail-
ability of dual-energy subtraction (DES) CXRs, bone-suppressed images from the device
could be used in the training process which could introduce sufficient data diversity, and
therefore help train deeper model architectures to generalize to real-world data. Studies in
the literature report that the soft tissue projections obtained with DES systems are superior
in quality compared to those generated by DL-based bone suppression methods [28]. Auto-
mated bone suppression methods are also shown to be lacking in preserving the frequency
details in the original images, therefore small lesions may fade out and go unnoticed upon
removing the overlying bony structures in the CXRs [28]. Such phenomena can be noticed
in Figure 4. Here, unlike the top-performing U-Net with Inception-V3 encoder backbone
trained on original CXRs, the top-performing U-Net model with EfficientNet-B0 encoder
backbone trained using bone-suppressed CXRs failed to segment the TB-consistent lesion.
These factors might have contributed to the reduction in segmentation performance using
the bone-suppressed CXRs. Therefore, we used the models trained on original CXRs to
construct ensemble predictions to further improve segmentation performance.

The TB-consistent lesion segmentation performance achieved by various ensemble
methods was compared to the best-performing U-Net model with the Inception-V3 encoder
backbone (baseline) as shown in Table 3. Figure 5 shows the ROC curves, PR curves, and
confusion matrices obtained using the U-Net with Inception-V3 encoder backbone and
the stacking ensemble constructed using the top-3 performing models trained on original
CXRs. The predicted masks using these models for a sample CXR are shown in Figure 6.

The ensemble predictions were generated using the top-K (K = 3, 4, 5) models. It was
observed that the stacking ensemble using the top three performing models, viz. the U-Net
model with Inception-V3, ResNet-34, and EfficientNet-B0 encoder backbones, respectively,
demonstrated superior segmentation performance in terms of IoU, dice score, and AUPRC,
compared to the best-performing U-Net model with the Inception-V3 encoder backbone
and other ensemble methods. It significantly outperformed (p < 0.05) the bitwise-OR
and bitwise-MAX ensembles constructed using the top-K (K = 3, 4, 5) models in terms
of the dice score. The TPs obtained with the stacking ensemble, i.e., the number of TB-
consistent lesion pixels segmented correctly was higher than that achieved using the
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individual top-performing U-Net model with the Inception-V3 encoder backbone model.
The improvement in performance using a stacking ensemble could be attributed to the
fact that it used a second-level meta-learner that learned to optimally combine the features
learned by the heterogeneous base learners, having different architectures, and learned
diversified regions in the feature space to converge to their local optima, to output the
final prediction.

oy
B

Figure 4. TB-consistent lesion segmentation performance using the U-Net with Inception-V3 encoder

backbone trained on original CXRs and EfficientNet-B0 encoder backbone trained using bone-suppressed
CXRs. (a) Sample original CXR image with TB-consistent lesion annotated in red; (b) Corresponding
bone-suppressed CXR image with TB-consistent lesion annotated in red; (¢) GT TB-consistent lesion
mask; (d) Predicted mask using the Inception-V3 encoder backbone trained on original CXRs with
overlapping GT annotations in red, and (e) Predicted mask using the EfficientNet-BO encoder backbone
trained using bone-suppressed CXRs with overlapping GT annotations in red.

Table 3. TB-consistent lesion segmentation performance using various ensemble methods. The
ensemble performance was compared to the top-performing U-Net model with the Inception-V3
encoder backbone (baseline). Values in parentheses denote the 95% Cls for the dice score. Bold
numerical values denote superior performance.

Models 10U Dice
Inception-V3 (O) 0.3896 0.5608 (0.3914, 0.7302)
Top-3 ensemble
Stacking 0.4028 0.5743 (0.4055, 0.7431)
Bitwise-AND 0.3829 0.5538 (0.3841, 0.7235)
Bitwise-OR 0.3558 0.5249 (0.3545, 0.6953)
Bitwise-MAX 0.3343 0.5011 (0.3305, 0.6717)
Top-4 ensemble
Stacking 0.3962 0.5675 (0.3984, 0.7366)
Bitwise-AND 0.3534 0.5222 (0.3517, 0.6927)
Bitwise-OR 0.3088 0.4718 (0.3014, 0.6422)
Bitwise-MAX 0.2971 0.4581 (0.2881, 0.6281)
Top-5 ensemble
Stacking 0.3974 0.5687 (0.3997, 0.7377)
Bitwise-AND 0.3534 0.5222 (0.3517, 0.6927)
Bitwise-OR 0.3088 0.4718 (0.3014, 0.6422)
Bitwise-MAX 0.2744 0.4306 (0.2616, 0.5996)
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Figure 5. Performance of the U-Net with Inception-V3 encoder backbone and the stacking ensemble
constructed using the top three performing models trained on original CXRs. (a) ROC curves; (b) PR
curves; (c) Confusion matrix achieved with Inception-V3 encoder backbone, and (d) Confusion matrix
achieved with the stacking ensemble.
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W

Figure 6. TB-consistent lesion segmentation performance using the U-Net with Inception-V3 encoder
backbone and the stacking ensemble of the top-3 performing models. (a) Sample original CXR image
with TB-consistent lesion annotated in red; (b) GT TB-consistent lesion mask; (c) Predicted mask
using the Inception-V3 encoder backbone with overlapping GT annotations in red, and (d) Predicted
mask using the stacking ensemble with overlapping GT annotations in red.

4. Conclusions and Future Work

This study utilized fine-grained TB-consistent lesion annotations and demonstrated
the efficacy of various ensemble methods for segmenting TB-consistent lesions in both
original and bone-suppressed CXRs. However, the current proposal suffers from the
following limitations: (i) CXRs with TB-consistent lesions that were used to train and
evaluate the segmentation models were limited. Additional diversity in the training
process could be introduced by using CXR data and annotations from multiple institutions.
(if) We used affine transformations to augment the data used for model training. Selecting
an appropriate data augmentation technique is a challenging task and it depends on
the characteristics of the data under study. Further, data augmentation could introduce
more bias into model training if the original dataset contains the same. Therefore, it is
critical to empirically identify an appropriate data augmentation strategy such that it
creates data variability that can improve the ability of the models to optimally fit the
training data while also generalizing it to real-world data. Future research could explore
other advanced data augmentation methods including adversarial training, neural style
transfer, and reinforcement learning, among others. (iii) We used the widely adopted U-Net
architecture to segment TB-consistent lesions. Other advanced architectures including FPN,
Link-Net, PSP-Net, Bi-SegNet [29], and Trilateral Attention Net [30], among others, and
their ensembles could be trained for potential improvements in segmentation performance.
With the advent of high-performance computing and storage solutions, ensemble models
could be trained and deployed in the cloud to be used for real-time applications. The
methods discussed in this study could be extended to a variety of natural and medical
image recognition tasks [31-34].
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