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Abstract: Cholestasis is a common clinical event in which bile formation and excretion are blocked, leading to retention of bile acids 
or bile salts; whether it occurs intra- or extrahepatically, primary or secondary, its pathogenesis is still unclear and is influenced by 
a combination of factors. In a variety of inflammatory and immune cells such as neutrophils, macrophages (intrahepatic macrophages 
are also known as Kupffer cells), mast cells, NK cells, and even T cells in humoral immunity and B cells in cellular immunity, 
inflammation can be a “second strike” against cholestatic liver injury. These cells, stimulated by a variety of factors such as bile acids, 
inflammatory chemokines, and complement, can be activated and accumulate in the cholestatic liver, and with the involvement of 
inflammatory mediators and modulation by cytokines, can lead to destruction of hepatocytes and bile duct epithelial cells and 
exacerbate (and occasionally retard) the progression of cholestatic liver disease. In this paper, we summarized the new research 
advances proposed so far regarding the relationship between inflammation and cholestasis, aiming to provide reference for researchers 
and clinicians in the field of cholestatic liver injury research. 
Keywords: inflammation, immune cells, cholestasis, cholestatic liver injury

Introduction
Cholestasis is a pathological condition in which the formation, secretion, and excretion of bile flow are inhibited by 
various factors, resulting in the inability of bile to drain smoothly into the duodenum and thus return to the blood.1 In the 
early stage, there is no specific clinical manifestation, only an increase in serum alkaline phosphatase (ALP) and gamma- 
glutamyl transferase (GGT) levels; some patients may experience weakness, nausea, poor appetite, and epigastric 
discomfort. After gradual progression, jaundice, skin itching, fatigue, steatorrhea, yellow tumor, hepatic osteodystrophy, 
and fat-soluble vitamin deficiency may occur. In severe cases, it may even lead to liver failure and death.2 Hepatobiliary 
disorders characterized by cholestasis are called cholestatic liver diseases, including primary biliary cholangitis (PBC), 
primary sclerosing cholangitis (PSC), intrahepatic cholestasis in pregnancy syndrome (ICP), IgG4-related sclerosing 
cholangitis, and progressive familial intrahepatic cholestasis (PFIC). Cholestasis can also occur in alcoholic liver disease, 
viral hepatitis, drug-induced liver injury, and non-alcoholic fatty liver disease.3

The occurrence of cholestasis is associated with abnormal bile duct cell proliferation, peribiliary fibrosis, myofibro-
blast activation, toxic bile acid accumulation, and bile duct reactions, all of which can drive disease progression.4 The 
processes of cholestasis and cholestatic liver injury are extremely complex, and the etiology of cholestatic liver injury 
varies greatly. The invasion of inflammatory cells, which facilitates bile duct cell death, results in blockage of bile ducts 
and abnormal bile acid excretion in PBC and PSC, etc. And the accumulating bile acids might act as a second hit, causing 
inflammation and fibrosis.5 In In cholestatic liver diseases such as ICP and PFIC, which are due to abnormalities of the 
bile salt transporter pump, the first strike is bile acid accumulation due to inadequate bile acid excretion, which causes 
a second hit of immunological imbalance, inflammation, and fibrosis, leading to aggravation of cholestatic liver injury.6,7 

Inflammation might be the initial cause of cholestasis and the following hit to the liver. As a result, many scientists regard 
regulation of the inflammatory response as a viable therapeutic target for cholestasis and its accompanying liver harm.8

Therefore, this article provides a review of the mechanisms of inflammation and cholestasis from the aspects of 
inflammatory cells, humoral immunity, inflammatory factors, and Inflammatory vesicles, etc.
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Discussion
Inflammatory Cells in Cholestasis
Neutrophils
Neutrophils are usually the first responders to the inflammatory response. During bacterial infections, neutrophils are able 
to transform from a resting state to an activated state stimulated by C5a, lipopolysaccharides (LPS), and cytokines, and 
thus have a direct role in clearing pathogens.9 Usually, neutrophils execute their cytotoxicity through the production of 
reactive oxygen species (ROS) and hypochlorous acid, both of which have strong toxic effects on liver cells.10 In 
addition, neutrophils can produce a substance called serine protease, which not only has a direct cytotoxic effect but also 
participates in the activation of inflammatory cytokines, and thus exacerbate liver damage.11

Neutrophil recruitment in the hepatic microvascular system can be found in bile duct ligation (BDL) or bile-fed mice 
and has been demonstrated in several previous studies.12,13 This recruitment process begins 6 hours after BDL14 and the 
level of neutrophils will peak after two to three days, becoming the main inflammatory cell in the cholestasis model.15 

This was also found in the livers of ICP patients, accompanied by the decrease in serum neutrophil counts.16 After 
recruitment, neutrophils exocytose into the surrounding parenchymal tissue and portal bundles in an intercellular 
adhesion molecule-1 (ICAM-1)-dependent manner on the endothelium, at which point the Na(+)/H(+) exchange factor 
1 (NHERF-1) and the cytoskeletal protein ezrin-radixin-moesin (ERM) act as scaffolding proteins for the neutrophils. 
The process involves a variety of inflammatory mediators, which are involved in the migration of neutrophils across the 
endothelial and epithelial cells.17,18 The process is mediated by a variety of inflammatory mediators, which are involved 
in the migration of neutrophils across the endothelial and epithelial cells. In addition, in a mouse model of obstructive 
cholestasis, the bone bridge protein (OPN) released from the bile duct cells acted as a pro-inflammatory mediator in 
initiating the early neutrophil-mediated phase of injury after cleavage to a pro-inflammatory form by the matrix 
metalloproteinases (MMP).19 We are, therefore, expected to reduce liver damage by exploring multiple receptor blockers 
of inflammatory mediators and blocking neutrophil chemotaxis.20

Earlier studies have found that neutrophils’ bactericidal ability, phagocytosis and intracellular killing ability are signifi-
cantly reduced in the early and advanced stages of PBC.21 In the rat model of obstructive cholestasis, the decrease in 
phagocytic function of polymorphonuclear leukocytes can also be found.22 On the contrary, it was found that in the rat model 
of common bile duct obstruction, neutrophils have enhanced phagocytosis, and can produce superoxide.23 Therefore, we 
speculate that in the early stages of cholestasis, neutrophils will recruit locally to promote the occurrence and progression of 
inflammation, and subsequently its function will be weakened, resulting in a series of complications, such as the occurrence of 
bacterial peritonitis. Therefore, neutrophils may have a contradictory role in the development of cholestatic liver diseases. On 
the one hand, they may produce an inflammatory protective response, on the other hand, also can promote disease progression.

Macrophages
The liver possesses the largest population of macrophages in the body, including two main cell subpopulations, Kupffer cells 
(KCs) and infiltrating macrophages (ie monocyte-derived macrophages, MoMFs). KCs express danger recognition receptors 
and clearance of receptors, and they are the main natural immune cells that eliminate a large number of bacteria, fungi and 
viruses.24,25 The use of gadolinium chloride (an inhibitor of KCs) attenuated liver injury and fibrosis in a BDL model, 
suggesting that KCs can promote BDL-induced liver injury.26 Studies have confirmed that KCs can be activated after BDL, 
leading to the release of reactive oxygen species (ROS)27 and the production of pro-inflammatory cytokines induced by LPS; 
this further activates the signaling pathways, such as nuclear factor kappa B (NF-kB) and mitogen-activated protein kinase 
(MAPK) in the hepatocytes and bile duct cells, affecting the function of the bile acid transport proteins and causing bile acid 
accumulation.28,29 In recent years, it has been found in mouse models of PBC that hepatic macrophages not only secrete 
cytokines, but also regulate natural killer (NK) cells to jointly participate in the inflammatory process through a signaling 
pathway mediated by natural killer group 2, member D (NKG2D) and its ligand RAE-1.30 Interestingly, KCs can also reduce 
cholestatic liver injury by expressing TGR5 (a bile acid-activated G protein-coupled receptor), inhibiting NF-kB and c-Jun 
N-terminal kinase (JNK) signaling pathways, and inhibiting NLRP3 inflammatory vesicle activation so they may play 
different roles in the different stages of BDL-induced liver injury.31,32 However, further studies are needed to elucidate 
whether inhibiting TGR5 activation in Kupffer cells is beneficial for the progression of cholestatic diseases.
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In patients with PSC, not only macrophage activation was found, but also bile acids were found to prompt macrophages to 
produce more histamine through paracrine.33 In patients with biliary atresia and Alagille syndrome, Taylor et al defined three 
types of macrophages through single-cell RNA sequencing analysis and immunofluorescence isolation: lipid-associated 
macrophages, monocytoid macrophages and adaptive macrophages, all of which were pathogenic, and can express immuno-
modulatory gene RORA and TREM2, which may serve as a new therapeutic target for alleviating inflammatory damage in 
cholestatic liver disease.34 Tian et al also proposed a new potential therapeutic strategy: selectively depletion of long chain 
non-coding RNA-H19 (lncRNA-H19) of macrophages, which involved in the proliferation of cholangiocytes in cholestatic 
livers and promotes hepatic fibrosis, helps to inhibit cholestatic liver damage and fibrosis.35 However, macrophages in 
cholestasis models do not always have significant pathogenicity, such as the reduction in macrophage clearance found in 
infants with biliary atresia,36 which may contribute to the accumulation of autoimmune complexes in the liver, and indirectly 
leads to liver damage.

Mast Cells
Mast cells (MC) are immune cells of the bone marrow spectrum with pro/anti-inflammatory, pro-fibrotic, and immuno-
modulatory effects,37,38 which were found to be increased in PBC, PSC, bile duct obstruction, hepatitis, fatty liver, liver 
fibrosis, hepatocellular carcinoma, cholangiocarcinoma, and liver failure.39 Mast cells infiltrating the liver can secrete 
a large number of pro-inflammatory mediators, such as histamine, heparin, trypsin, chymotrypsin, carboxypeptidase A3, 
granzyme B, and cytokines including TNF-α, IL-1β and IL-3, etc. Among them, histamine (which has vasodilatory and 
bi-directional inflammatory effects) has been shown to promote cholangiocytes proliferation and hepatic fibrosis through 
specific pathways such as Notch/Jagged, thereby exacerbating the degree of cholestasis.40–42 It has recently been shown 
that mast cells can also secrete autologous sorting proteins (ATX), which contribute to itching in the model of bile duct 
ligation.43 Meanwhile, it has been shown that MC can regulate the enterohepatic circulation of TBA through regulating 
FXR/FGF15 expression in the biliary and intestinal tracts via MC-FXR.44,45

Patients with PBC and PSC have higher amounts of MC accumulated in the biliary tree and gallbladder, especially on 
the cholangiocyte membrane, suggesting that senescent cholangiocytes may promote MC activation and proliferation. 
And histamine levels were also found to be elevated, suggesting increased secretory capacity of MC.46 The reduction of 
MC in the cholestasis models can reduce liver inflammation47 and the development of liver fibrosis.48,49 Therefore, 
reducing the degree of inflammation in cholestatic liver by decreasing MC levels may be an effective therapeutic target. 
This is similar to the drug UDCA, which is commonly used clinically to reduce inflammatory damage by interfering with 
the degranulation process of MC while decreasing macrophage infiltration and reducing oxidative stress.50

Lymphocytes
T-lymphocytes
T-lymphocytes are major players in specific cellular immunity, killing target cells directly and also releasing lymphokines 
and regulating the immune process.51 Monoclonal expansion of the CD4+ and CD8+ T cells can be found in the liver of 
patients with PBC as well as biliary atresia. The CD4+ T cells play a major role in the development of PBC, causing 
systemic inflammation through the production of pro-inflammatory cytokines, while the CD8+ T cells mainly mediate the 
process of bile duct injury.52,53 The recruitment of CD8+ T cells has been shown to affect BA metabolism, by reducing 
the expression of the basolateral bile acid uptake transporters NTCP and OATP, and increasing the expression of the 
transporter BSEP involved in bile acid excretion, so as to reduce the persistent toxic damage of BA to the liver, thereby 
playing a positive role in regulating cholestasis.54

Regulatory T cells (Tregs) are T cells capable of negatively regulating the body’s immune response. Earlier studies 
have suggested that Tregs expression levels are significantly reduced in patients with PBC and BA, suggesting that 
defects in the Tregs can also promote the development of inflammation in cholestatic liver damage.55,56 It was found that 
using a combination of immunosuppressive drug vitamin D3 and dexamethasone induced the differentiation of naive 
CD4+ T cells into Tregs that produce IL-10 in vitro, thus acting to reduce inflammation.57
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B-Lymphocytes
B-lymphocytes, including memory B cells, plasma blasts and plasma cells are also involved in specific immune processes, 
which further produce various immunoglobulins (Ig) and their isoforms, including IgM, IgD, IgG (types 1–4), IgA, and IgE.58 

B cells play an immune role by neutralizing antibodies, producing cytokines, participating in complement cascade reactions, 
and communicating with immune cells, such as macrophages and T cells.59 Overexpression of serum B-cell activating factor 
(BAFF) is suggestive of autoimmune hyperactivity, it was found to be highly expressed in patients with PBC and positively 
correlated with aspartate aminotransferase (AST) and total bilirubin levels, suggesting a possible association with persistent 
necrotizing inflammation of hepatocytes.60 In PBC patients, CD20 and CD19 were also found in lymphoid follicle-like 
aggregates at some distance from the portal bundle, and CD19 levels were positively correlated with ALP levels, further 
suggesting the presence of B-cell activation in patients with PBC.61,62 Increased infiltration of B cells is also found in the liver 
of patients with biliary atresia, with IgM and IgG deposition in the epithelial basement membrane of the bile ducts.63 Further 
studies have shown that B cells can directly produce pro-inflammatory factors such as IL-6, IL-19 and TNF-α, triggering the 
activation of CD4+ and CD8+ T cells, as well as inducing apoptosis of Treg cells, and decreases the expression of the anti- 
inflammatory cytokines IL-10 and TGF-β. And CD38 plasma cells produced by B cells can be directly involved in the bile 
duct injury process.64,65 However, therapeutic approaches to ameliorate inflammatory damage by depleting B cells are not 
necessarily effective, and an earlier experimental study showed that anti-CD20/CD79-treated mice had more CD4 and CD8+ 
T cell infiltration in the portal region and more severe bile duct inflammation, suggesting that simply depleting a kind of 
inflammatory cell may cannot achieve the desired anti-inflammatory effect.66

Natural Killer (NK) Cells
NK cells are natural lymphocytes that play an important immunomodulatory role in multiple liver diseases, such as PBC, 
chronic hepatitis B, chronic hepatitis C, alcoholic liver disease, and hepatocellular carcinoma (HCC).67,68 In patients with 
cholestatic liver injury, the NK cells in the portal region and around the hepatic bile ducts usually show stronger 
expression activity than the controls, and its recruitment from the blood to the liver is associated with the stimulation of 
a large number of chemokines, such as CCL3, CCL5, CCL7, CCL8, CXCL11-3, and CX1CL30.69,70 In contrast, a study 
in bile duct-ligated mice with combined MCMV infection found reduced recruitment of NK cells to the liver, 
a phenomenon that may be related to cholestasis impairing the expression of pathogen-induced chemokines in the 
liver.71 After the recruitment process is completed, NK cells are able to rigger non-specific cytotoxicity in the cellular 
epithelial lining, destroy normal hepatic duct cells and bile duct cells (through perforin/granzyme B-dependent and 
TRAIL-dependent mechanisms),72,73 and stimulate inflammation by producing both IFN-γ and TNF and granulocyte- 
macrophage colony-stimulating factors (GM-CSF)74 and bind to Toll-like receptors to induce lysis of biliary epithelial 
cells, thus aggravating liver damage.75 While, NK cells can also play a negative regulatory role in liver inflammation in 
PBC, a process that may be achieved by inhibiting the proliferation of the CD4+ T cells.76,77

Humoral Immunity
Immunoglobulin
IgM 
IgM is the first immunoglobulin expressed during B-cell development and plays a role in the direct encapsulation and 
destruction of antigens and immobilization of the complement cells.78 Most cases of autoimmune hepatitis are dominated by 
elevated IgG levels. Elevated IgM levels are predominant in the serum of PBC patients; however, the mechanism for this 
elevation is unclear and may be related to methylation of CD40L, the promoter of CD4 + T cells, which affects immunoglo-
bulin class switching.79 High levels of autophagy in the B cells of patients with PBC play an important factor in the 
synthesis.80 Patients with biliary atresia develop IgM deposits around the basement membrane of the hepatobiliary epithelium 
and novel IgM autoantibodies against cholangiocyte-associated proteins (CHI3L1, DLL-4, and SFTPD) have been identified, 
which are involved in the formation of antigen-antibody complexes, complement activation, and cholangiocyte injury, and are 
positively correlated with serum bilirubin levels and the incidence of liver transplantation.81,82 Thus, IgM may play a major 
driving role in cholestatic liver injury and its autoantibodies may be a potential target for future therapeutic interventions.
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IgG 
IgG activates a cascade of complement reactions and has antibody-dependent cytotoxicity (ADCC) and complement- 
dependent cytotoxicity (CDC). Elevated levels of IgG has been found in various cholestatic liver injury.83 In patients with 
PBC, elevated levels of the IgG subclasses (IgG3 and IgG5) can be found, and the IgG3 subtype of anti-mitochondrial 
antibodies in PBC-specific autoantibodies may be associated with the severity of PBC.84 IgG deposit can also be found 
on the biliary epithelial basement membrane in patients with biliary obstruction, with a positivity rate of up to 56.5%,85 

and the biliary epithelial target protein that has been shown to react strongly with IgG is human alpha enolase (αENOL), 
which is also one of the antigenic targets of the anti-neutrophil cytoplasmic antibodies present in autoimmune liver 
disease.86 The formation of an immune complex with IgG by αENOL induces endothelial damage via the complement 
classical pathway and cell death via the apoptotic process, thus suggesting higher liver failure-related mortality in 
patients with PBC.87 A recent study suggests that IgG can also contribute to the development of inflammation in PBC by 
binding to FcγRIIB (a negative regulatory receptor for lymphocytes, but which may have a different role in B cells) and 
thus in turn modulating B cell function, but the exact mechanism of this regulatory role needs to be further explored.88

IgA 
Cholangiocytes can actively secrete secretory IgA in the biliary tree and participate in the process of mucosal immunity. 
At the same time, IgA is actively deposited in the hepatobiliary epithelium of patients with PBC and may enter the cells 
via recombinant pyruvate dehydrogenase complex (PDC-E2)-specific IgA binding to the human polymeric immunoglo-
bulin receptor (pIgR) to activate cysteine asparaginase (Caspase), which induces hepatocyte apoptosis and biliary tract 
injury.89,90 Deposition of circulating immune complexes of IgA is found in bile duct ligated mice, which may be 
associated with reduced hepatic clearance of IgA and increased renal secretory IgA production.91

IgE 
IgE is a key effector in the type I allergic immune response, and its activation by B cells leads to the differentiation of 
IgE-secreting cells.92 Elevated IgE levels were found in approximately 40% of patients with PSC, but there is no 
relationship between the prognosis of cholangiocarcinoma, liver transplantation, or death.93 Whereas earlier studies have 
suggested that this is more likely to be related to the presence of hypereosinophilic syndromes and anaphylactic reactions 
during the pathogenesis of PSC, the question of whether IgE acts as a positive or a negative regulator of the progression 
of cholestasis needs to be explored further.94 We know that the mast cells play an important role in cholestasis and that 
the IgE receptor FcεRI is present on the surface of the mast cells; hence, IgE may be involved in the process of 
cholestatic liver damage by inducing an immune response in the mast cells.95 Furthermore, the liver X receptor (LXR) is 
a member of the nuclear receptor superfamily in bile acid metabolism, and activation of LXR was found to reduce the 
levels of IgE secreted by the B cells and activated by the CD68 and IL-11, suggesting that activation of LXR can inhibit 
IgE and the inflammatory and allergic responses.96

Cytokines
Pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6 and IL-8, produced by the inflammatory cells, such as KCs 
and bile duct cells stimulated by LPS, can contribute to the development of cholestasis by inducing a sustained decrease 
in the levels of bile acid transport proteins.97–99 In the early stages of inflammation, TNF-α and IL-1β are involved in the 
downregulation of NTCP, while in the later stages of inflammation, they are regulated by IL-6.100,101 Higher levels of IL- 
8 may be associated with the development of PBC and reflect the progression of the disease towards cirrhosis.102 

Elevated levels of TNF-α are often thought to reflect a more severe disease in patients with PBC,103 while IL-12 and 
IFN-γ have also been found to be associated with the severity of PBC, contributing to inflammation by inducing a Th1 
immune response during the initial stages of the disease.104 Also, the inflammatory cytokines can slow bile flow by 
inhibiting chloride and bicarbonate ion transport via the bile duct cells.105

KCs secrete the cytokines with anti-inflammatory functions, such as IL-10, IL-4, and IL-13.106,107 Decreased levels of 
IL-10 can be found in patients with PBC, which inhibits the production of the pro-inflammatory factors, IFN-γ and TNF- 
α, by the NK cells and inhibits the proliferation of the Th1 cells, reducing the degree of liver inflammation by blocking 
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the process of antigen presentation.108,109 Recently, a large case-control study found that some of the immune-related 
genes of IL-10 were associated with Biliary Atresia, further emphasizing its protective role.110 Meanwhile, IL-6 has been 
found to act as an anti-inflammatory cytokine in ICP patients, inhibiting TNF-α and IL-1 while activating IL-10.111 Thus, 
in models of cholestatic liver damage, cytokine networks may drive disease progression and may also be protective 
against inflammation. More cytokines need to be tapped as well as further explored, and there is a need to further define 
which cytokines play a major role in cholestatic liver disease and how we will slow disease progression by intervening in 
the cytokine network.

Chemokines
Inflammatory chemokines are able to act specifically on the inflammatory cells during the adaptive immune response and have 
the ability to induce cell migration. In senescent BEC from PBC patients, upregulated expression of various chemokines and 
chemotactic activity, including CCL2 and CXCL1, CXCR3, and increased expression of chemokine receptors, such as 
CX3CR1, can be found,112,113 and the levels of chemokines increase with disease progression.114 CCL11, CCL24, CCL26, 
and other eosinophils CCL11, CCL24, and CCL26 are also found in PBC as potent chemokines for acidophilic granulocytes, 
with CCL11 and CCL26 being shown to be associated with fibrosis progression in PBC.115 As mentioned earlier, these 
chemokines help to activate the innate immune system around the damaged bile ducts and mediate the migration of various 
inflammatory cells, which in turn leads to persistent inflammation and further exacerbates bile duct injury. However, the role 
of chemokines and their receptors is not limited to inducing inflammation. In recent years, CXCR2 has been found to be 
capable of directly damaging hepatocytes in bile duct ligated livers, Thus chemokines may play an important role in 
inflammatory cell recruitment and subsequent immune-mediated hepatocyte damage.116

Complement
Complement is synthesized predominantly in the liver and mediates immune complex formation, clearance of apoptotic 
cells and tissue regeneration, and is activated predominantly via the classical, alternative and lectin pathways.117 

Activation of the complement system triggers a cascade reaction that leads to the rupture of C3, the core molecule of 
the complement system, which in turn leads to the rupture of C5 downstream, resulting in the production of the products 
C3a, C5a.118,119 Complement activation results in the production of membrane attack complexes (MACs), which lead to 
hepatocyte lysis and induce cellular release of inflammatory cytokines.120 C3 and C4 levels were significantly higher in 
the congenital biliary atresia model than in the healthy population, and there was a significant positive correlation with 
GGT levels.121 Deficiency of complement C3 attenuates cholestatic liver injury in mice and reduces neutrophil and 
macrophage infiltration and activation in the liver by regulating the expression of adhesion factors, further confirming the 
role of elevated complement levels in driving the progression of cholestatic liver disease.122 In contrast, cholestasis 
directly induces complement activation, and FXR has been shown to directly encode the C3 gene, increasing C3 mRNA 
and protein levels and thereby exacerbating liver inflammation.123

Inflammatory Vesicles
Inflammatory vesicles are polymorphic complexes of proteins, including NLR family members NLRP1, NLRP3, 
NLRC4, as well as AIM2 and pyrin. Activation of inflammatory vesicles can induce or promote inflammation through 
further activation of the shear cysteine asparaginase-1 that cleaves pro-interleukin-1β (pro-IL-1β) to IL-1β, which then 
triggers activation of NF-κB signaling via receptors IL-1R and IL-18R.124 This process is seen in a variety of liver 
diseases: PBC, alcoholic hepatitis, ischemia-reperfusion injury.125–127 Activation of NLRP3 inflammatory vesicles in the 
cholestatic model can be activated by the production of galactoglucan-3 by macrophages,128,129 whereas bile acids inhibit 
the activation of NLRP3 inflammatory vesicles via the TGR3-cAMP-PKA axis, thus controlling inflammation and 
metabolic disturbances. This may therefore contribute to the different roles of NLRP3 in acute and chronic cholestatic 
liver injury, with a lack of NLRP3 leading to reduced inflammation in chronic cholestatic liver injury, whereas hepatic 
inflammation is exacerbated in acute patients.130
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Bile Acids and Inflammation
Bile acids are closely associated with the inflammatory response and biliary stasis that leads to the accumulation of toxic 
bile acids, which directly activate inflammatory and pro-fibroblastic cells and stimulate the release of pro-inflammatory 
and pro-fibrotic mediators from the hepatocytes and bile duct cells. This, in turn, leads to persistent biliary stasis and 
promotes the development of liver fibrosis. For example, bile acids are known to trigger a neutrophil-mediated 
inflammatory response and can act synergistically with LPS to promote inflammatory vesicle activation.131,132 In 
addition, bile acids activate various isoforms of early growth response protein 1 (Egr-1), protein kinase C family, p38, 
c-Jun N-terminal kinase, and pregnane X receptor, stimulating the upregulation of pro-inflammatory genes by activating 
one or more of these pathways.133–135 Recently, it has been found that goose deoxycholic acid (CDCA) can trigger the 
excessive accumulation of mitochondrial reactive oxygen species and promote the activation of inflammatory vesicles by 
targeting heme oxygenase-1 (HO-1), which in turn promotes the development of inflammation in hepatocellular 
carcinoma.135 But bile acids also have anti-inflammatory effects and have been shown to inhibit lymphocyte prolifera-
tion, immunoglobulin production, and cytokine secretion,136,137 and reduce phagocytosis of KCs.138 Therefore, the 
mechanisms by which bile acids determine the development of inflammation and their specific role in the injury process 
still need to be further explored.

Sepsis and Cholestasis
Sepsis-associated cholestasis is very common in hospitalized patients with jaundice, most especially infants and 
immunocompromised populations.139 Patients with cirrhosis are more likely to develop bacterial infections, possibly 
related to translocation of intestinal bacteria.140 In biliary stasis, pathogenic bacteria travel retrograde through the bile 
ducts to the liver and interact with receptors (especially Toll-like receptors or TLRs) on the immune cells stored in the 
liver to induce inflammation.141 At the same time, bacterial toxins and bacterial metabolites cause direct damage to 
hepatocytes, and several studies have found that LPS and LPS-induced cytokines are associated with cholestasis.142,143 

LPS stimulates the activation of KCs and neutrophils during cholestasis, leading to the production of large amounts of 
pro-inflammatory cytokines, thus promoting the development of liver inflammation.144 Notably, this process often occurs 
in the chronic rather than the acute phase of cholestasis.145

In patients who have developed sepsis, abnormalities in the biochemical parameters of liver function can be detected, 
suggesting “hypoxic hepatitis” and “cholestatic liver dysfunction”.146 At this time, the enlargement in cell size from 
Kupffer cells in combination with infiltrating polymorphonuclear cells, eosinocytes, and platelets induces the formation 
of aggregates, which leads to sinus cavity obstruction. At the same time, the loss of actin and myosin microfilament 
activity due to inflammation and infection during septicemia directly induces apoptosis and necrosis of hepatocytes, 
leading to paralysis and dilatation of the bile ducts as well as impaired bile secretion.147,148 However, the liver can 
rapidly reduce bile formation by adjusting the expression of key molecular components involved in bile flow in response 
to the infection and inflammatory process, thus elevated biochemical markers of cholestasis do not necessarily persist 
throughout the course of the disease.149,150

Bile Duct Cell Senescence and Inflammation
Cellular senescence is increasingly recognized as a pathological feature of various inflammatory liver diseases. Bile duct cells 
in cholestatic liver damage exhibit a senescence-associated secretory phenotype (SASP) and resistance to apoptosis, which 
contribute to the onset and exacerbation of inflammation by initiating paracrine signaling pathways that enhance the secretion 
of cytokines (IL-1 and IL-6), chemokines (IL-8, CCR2, MCP-1), growth factors, and pro-fibrotic factors.151–153 This in turn 
recruits and/or activates immune cells such as macrophages, NK (NK) cells, and T lymphocytes, to promote the removal of 
senescent cells. A recent study found that senescent liver cells inhibit autophagy by producing BMP9, a subfamily of TGF-β, 
which downregulate the expression of the ATG3 and ATG7 genes. When autophagic flux is inhibited, macrophages acquire 
a proinflammatory phenotype and promote tissue damage.154 Hence, bile duct cell senescence plays an important pro- 
inflammatory role in the late stages of cholestasis.
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Conclusions
In summary, the causes of cholestasis are complex, and its pathogenesis remains unclear. Numerous studies have suggested 
that inflammation plays an important role in cholestasis, including cellular immunity, humoral immunity, and pattern 
recognition receptors. A large number of inflammatory and immune cells such as neutrophils, macrophages, mast cells, 
T and B lymphocytes, NK cells, as well as cytokines, inflammatory vesicles, and complement are involved and interact with 
each other, which not only directly lead to biliary epithelial cell damage, but also regulate disease progression by exacerbating/ 
attenuating biliary inflammation and thereby modulating cholestatic liver damage (see Figure 1). Components of this process 
with anti-inflammatory effects deserve further exploration to unearth potential therapeutic targets. Cholestasis itself can also 
have an effect on hepatocyte inflammation; for example, bile acids can act directly as pro-inflammatory agents, inducing 
inflammatory cells and inflammatory factors causing inflammatory damage. In different models of cholestatic liver damage, 
cholestasis and inflammation are inextricably linked, and therefore, both should be taken into account in the treatment process; 
however, the possibility of reducing inflammation to improve the outcome of cholestatic liver damage and delay its 
progression to liver fibrosis, cirrhosis, or even liver failure remains to be explored.
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Figure 1 Inflammation is inextricably linked to cholestasis. (By Figdraw). 
Notes: As shown in the figure above, on the surface of senescent bile duct epithelial cells, neutrophils, macrophages, mast cells, T cells, B cells and other inflammatory cells 
aggregate under the action of chemokines, and release a large number of inflammatory mediators and cytokines, which jointly promote the progression of inflammation in 
cholestatic liver damage.
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