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Obesity cardiomyopathy increases the risk of heart failure and death. Obesity is curable,
leading to the restoration of the heart phenotype, but it is not clear if there are any after-
effects of obesity present after weight loss. We characterize the proteomic landscape of
obesity cardiomyopathy with an evaluation of whether the cardiac phenotype is still
shaped after weight loss. Cardiomyopathy was validated by cardiac hypertrophy, fibrosis,
oversized myocytes, and mTOR upregulation in a rat model of cafeteria diet-induced
developmental obesity. By global proteomic techniques (LC-MS/MS) a plethora of
molecular changes was observed in the heart and circulation of obese animals,
suggesting abnormal utilization of metabolic substrates. This was confirmed by
increased levels of cardiac ACSL-1, a key enzyme for fatty acid degradation and
decreased GLUT-1, a glucose transporter in obese rats. Calorie restriction and weight
loss led to the normalization of the heart’s size, but fibrosis was still excessive. The
proteomic compositions of cardiac tissue and plasma were different after weight loss as
compared to control. In addition to morphological consequences, obesity
cardiomyopathy involves many proteomic changes. Weight loss provides for a partial
repair of the heart’s architecture, but the trace of fibrotic deposition and proteomic
alterations may occur.

Keywords: cafeteria diet, caloric restriction, cardiac fibrosis, developmental obesity, heart proteomics, obesity
cardiomyopathy, plasma proteomics, weight loss
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INTRODUCTION

According to International Statistical Classification of Diseases and
Related Health Problems (10th revision), obesity is defined as a
disorder characterized by an abnormally high, unhealthy amount of
body fat and is listed as E66 subgroup of “endocrine, nutritional and
metabolic diseases.” This pandemic disease has many severe
consequences including an increased risk of death, morbidity, and
accelerated aging (1) due to the many associated systemic changes.
The disease is widespread globally across all age groups (2, 3). In the
United States, one in five children are obese and the scale of the
problem is well illustrated by reported cases of obesity among
children. Obesity symptoms are potentially curable by losing weight
due to reducing calorie intake and increasing energy expenditure.
Other methods that are effective for weight loss include medication
and surgery (4). Reversing obesity is essential for lifespan and
healthspan because it affects all the systems of the human body,
especially contributing to the development of cardiovascular
diseases (5). Obesity and the obesogenic diet are leading causes of
hypertension (6). A pressure overload leads to pathological cardiac
hypertrophy and overgrown myocytes enmeshed within an
abundant network of the extracellular matrix (ECM) is the
hallmark of obesity cardiomyopathy and left ventricle (LV)
remodeling (7). Although pressure overload is the predominant
inductor of LV hypertrophy (8), the hypertrophied heart develops
independently of hypertension during obesity (9), suggesting that
other mechanisms may also contribute to the cardiac overgrowth.
The hypertrophy of cardiomyocytes with cardiac fibrosis and
remodeling associated with the obesogenic diet and weight gain
may be a consequence of the intensification of intracellular anabolic
processes and sustention of a pro-inflammatory status (10, 11).
Normally cardiac fibroblasts make up about 15% of non-myocyte
cardiac cell type (12) and support cardiomyocytes by producing
ECM and by regulating the proliferation and migration of other
cardiac cells (13). Thus, fibroblasts play an important role in cardiac
repair. However, in certain circumstances the excessive proliferation
and differentiation of fibroblasts lead to the increased deposition of
fibrotic content (fibrosis) and consequently to heart failure (14).

Weight reduction and weight loss maintenance is capable of
reversing many of the alterations in cardiac performance and
morphology associated with obesity (15) and is essential in
avoiding heart failure related to obesity cardiomyopathy (16–
18). However, more detailed investigations are needed in order to
identify the potential changes that are persistent after weight loss
and to find treatment options.

This study uses animal models to demonstrate how
developmental obesity affects proteome in obesi ty
cardiomyopathy and identifies cardiac changes that are present
after weight normalization.
MATERIALS AND METHODS

Experimental Design
All animals were provided by the Animal House of the
Department for Experimental Medicine, Medical University of
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Silesia, Katowice, Poland and were treated in accordance to
Directive 2010/63/EU for animal experiments using the
protocols approved and monitored by the Local Ethics
Committee for Animal Experimentation in Katowice
(approved protocol number 22/2017). Animals were housed 4–
5 per cage in a climate-controlled room (22 ± 2°C, relative
humidity: 55 ± 10%) with a 12 h:12 h light/dark cycle starting at
07:00 a.m.

Young (postnatal day 28) Long Evans male rats were used in
two independent experiments. In Exp.1, animals were fed ad
libitum with standard chow (control to obese cohort, ContO,
n=16) or the same chow supplemented with cafeteria diet foods
(Obese group, n=16; refer to ‘Obesogenic rodent’s diet’ section
for more details) to gain weight. After 12 weeks the animals were
euthanized by decapitation to collect blood and heart samples.

In Exp. 2, animals from the AWL group (After Weight Loss,
n=16) were treated in the same manner as in Exp. 1 to develop
obesity within 12 weeks. After this period the obese rats were
subjected to calorie restriction (weight-loss-phase) for 6 weeks.
During this phase the rats from AWL group were subjected only
to standard rodent chow with an 80% calorie restriction (CR) for
the first two weeks, which was then reduced to 70% until the end
of this period. The 100% of caloric needs was established
empirically – the isocaloric serving was established when the
amount of a given chow ensured that rat’s body weight has been
stable (without gaining or losing weight) for 24 h. The control
animals to AWL group (ContA, n=16) were fed ad libitum by
standard chow and water during the weight-gaining-phase of
Exp. 2. During the weight-loss-phase ContA animals received
controlled portions of the food to stop subtle weight gain. The
amount of food was established empirically for every cage and
20 g (~70 kcal) of standard chow/rat/day determined the criteria.

After the weight loss the stabilization phase was introduced
during which the rats from AWL and ContA groups received an
isocaloric amount of food (20 g of standard chow/rat/day) for
four weeks to equalize the calorie intake among control and
experimental groups (please refer to discussion section for
detailed explanation). Drinking water was provided ad libitum
during all phases of Exp. 2.

Obesogenic Rodent’s Diet
The standard diet energy content (3.57 kcal/g) came from 67%
carbohydrates, 25% proteins and 8% fats. To mimic the human
obesogenic diet, the animals were fed with commercially
available human snack foods. The components of the cafeteria
diet were chosen to reflect the variety, palatability and energy
density of the human diet. The food was supplied daily. The
animals received one of two sets of snacks interchangeably. These
were given to the animals on alternate days as one diversified
diet. Set 1 contained: candy bar (Mars; Mars Inc.), crackers
(Lajkonik Snacks), and kabanos (dry sausage made of pork;
Tarczyński). Set 2 contained: candy bar (Bounty; Mars Inc.),
potato chips (Lays Salt; PepsiCo), and Tilsit cheese (Hochland).
The average caloric density of these two dietary sets was 4.84
kcal/g with the following caloric profile: carbohydrates 33.2%, fat
33.1%, and proteins 16.6%. The animals in this group received
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clean water and a sweet beverage – 10% sucrose solution in a
second container. By exposing rats to a variety of highly palatable
foods high in fat and sugar, the cafeteria diet protocol described
here was previously proved to provide a reliable and robust
model of the so-called “western diet” eaten by many people
(19–21).

Tissue Sampling
Six hours prior to insulin tolerance and glucose loading tests the
rats were fasted (tested animals from Exp.1 were fed by standard
chow and water for 24 h before fasting), than insulin (1 U/kg in
Exp.1; 0.75 U/kg in Exp.2; ActiRapid, Novo Nordisc) or glucose
(2 g/kg) were injected in i.p. injections. Blood was collected from
the tip of tail at the appropriate time intervals to measure glucose
levels (CardioCheck Professional). The rats used for insulin
tolerance and glucose loading tests (n=5 in each group of Exp.
1 and Exp. 2) did not undergo further evaluation in this study.

For the histological examination of the morphology of
cardiomyocytes, six hearts per group collected during Exp. 1
and Exp. 2 were gently squeezed to remove excess blood, then
weighed and immersed in a 10% formalin solution in PBS
(pH=7.2). For proteomic examination, fresh pieces of LV were
collected from another animals (n=5 per group in Exp. 1). In
Exp. 2, we increased the number of samples used for proteomics
by collecting additional pieces of LV form the hearts of animals
intended for histology (from three rats per group) since this kind
of analysis has not been done before in a weight loss model (n=8
per group).

After decapitation ~2 ml of trunk blood was collected for
serum and plasma samples. For the serum collection, the blood
was allowed to clot by leaving it for 30 min on ice in Eppendorf
tubes. The samples were then centrifuged (2,000× g for 15 min,
4C), and the serum was pipetted and stored at −80 °C. Serum
cholesterol and triglyceride levels were measured in the sera
using a Mindray BS-200 Chemistry Analyzer (Shenzhen
Mindray Bio-Medical Electronics Co.).

In order to obtain plasma (used for proteomic profiling), 1 ml
of blood was collected into 1.5 ml EDTA coated Eppendorf tubes
containing 10 ul of 0.5 M EDTA and immediately centrifuged
(1,300× g for 10 min, 4C). 99 ul of plasma was pipetted to fresh
tubes containing 1 ul of a protease inhibitor cocktail (#P8340,
Sigma Aldrich) (22).

Histological Examination of the Heart
The LV were dissected from formalin-fixed hearts. The tissues
were dehydrated with graded concentrations of alcohol and
embedded in paraffin. 5 mm paraffin slices from each tissue
sample were stained with (i) Hematoxylin and Eosin (H&E) or
(ii) Masson’s trichrome stain.

To calculate the cross-sectional area of the cardiomyocyte, the
sections stained with H&E were photographed (with 40x
objective) using a Nikon light microscope (Nikon ECLIPSE
E600) with an Olympus Camera (Olympus DP 26). The
individual cell surface area was measured by a blinded observer
using cellSens Entry Imaging Software (Olympus). Twenty five
cell surface areas were counted per each animal (n=3–4), and the
average value was used for analysis.
Frontiers in Endocrinology | www.frontiersin.org 3
Masson’s stain was used to investigate LV morphology and
perivascular/interstitial fibrotic changes. The sections were
photographed (with 40x objective) six times each for the
following: LV area without visible vessels (interstitial zone) and
area with visible vessels (perivascular zone) (23). The photos
were subjected to deconvolution in the NIH Fiji program (24),
than the areas of blue (connective tissue) or red (myocytes)
channels were automatically counted. The data is expressed as
the amount of connective tissue relative to the total area
(connective tissue+myocytes) and expressed as a %.

Proteomic Profiling
Protein Extraction
The isolated tissues were lysed in a buffer with 1 M
triethylammonium bicarbonate (TEAB) and 0.1% sodium
dodecyl sulfate (SDS) and automatically homogenized using a
Precellys 24 homogenizer (Bertin Technologies) in 0.5-ml tubes
pre-filled with ceramic (zirconium oxide) beads (Bertin
Technologies). Next, the material was subjected to a threefold
cycle of freezing and thawing. Then, the tissue in the buffer was
sonicated in a bath for three 1-min cycles on ice and
homogenized again using the Precellys 24 instrument. The
protein concentration was measured using Pierce BCA protein
assay kit (Thermo Fisher Scientific) in the isolated protein
fraction according to the manufacturer’s instructions.

In-Solution Digestion
Ten-microgram aliquots of the proteins were diluted with 15 µl
of 50 mM NH4HCO3 and reduced with 5.6 mM DTT for 5 min
at 95°C. The samples were then alkylated with 5 mM
iodoacetamide for 20 min in the dark at RT. The proteins were
digested with 0.2 µg of sequencing-grade trypsin (Promega)
overnight at 37°C.

Liquid Chromatography-Tandem Mass Spectrometry
(LC-MS/MS) Analysis of the Proteins
The analysis was performed with the use of the Dionex UltiMate
3000 RSLC nanoLC System connected to the Q Exactive
Orbitrap mass spectrometer (Thermo Fisher Scientific). The
peptides derived from the in-solution digestion were separated
on a reverse phase Acclaim PepMap RSLC nanoViper C18
column (75 µm × 25 cm, 2 µm granulation) using an
acetonitrile gradient (from 4% to 60%, in 0.1% formic acid) at
30°C and a flow rate of 300 nL/min (for 230 min). The
spectrometer was operated in data-dependent MS/MS mode
with survey scans acquired at a resolution of 70,000 at m/z 200
in MS mode, and 17,500 at m/z 200 in MS2 mode. The spectra
were recorded in the scanning range of 300–2,000 m/z in the
positive ion mode. Higher energy collisional dissociation (HCD)
ion fragmentation was performed with normalized collision
energies set to 27.

Protein Data Analysis
Protein identification was performed using the Swiss-Prot rat
database with a precision tolerance set to 10 ppm for peptide
masses and 0.08 Da for fragment ion masses. All raw data
February 2021 | Volume 12 | Article 568197
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obtained for each dataset was imported into MaxQuant 1.5.3.30
version for protein identification and quantification. Protein was
considered as positively identified if at least two peptides per
protein were found by the Andromeda search engine, and a
peptide score reached the significance threshold FDR=0.01.

The obtained data was exported to Perseus ver. 1.5.3.2
software (part of the MaxQuant package). The numeric data
was transformed to the logarithmic scale and each sample was
annotated with its group affiliation. Next, the data was filtered
based on valid values – proteins, which had valid values in 70% of
samples in at least one group were kept in the table. Student’s t-
test was performed on the analyzed sample data with
permutation-based FDR 0.05 used for truncation and the
resulting list of differentiating proteins was transformed using
a Z-score algorithm for the hierarchical clustering of data.

Immunoblotting
For immunoblotting, the samples were separated on 4%–15%
Stain-Free Gel (Bio-Rad) and transferred onto PVDF membranes.
The membranes were blocked for 1 h at room temperature in
Casein Blocking Buffer (Sigma-Aldrich) or 5% BCA, and incubated
overnight at 4°C (TBST+adequate blocking buffer) with primary
antibodies produced in rabbits: anti-phospho AMPKa (Thr172)
(Cell Signaling, #2535), anti-phospho mTOR (Thr2446 and
Ser2448) (#15-105, MERK Millipore), anti-GLUT-4 (#PA1-1065,
Invitrogen), anti-GLUT-1 (#ab652, Abcam), and anti-ACSL-1
(#PA5-17136, Invitrogen). After washing, the membranes were
incubated with secondary donkey anti-rabbit IgG antibody
(Abcam, ab205722). The immunoblots were visualized by means
of Clarity Western ECL Blotting Substrates (Bio-Rad) and detected
with the ChemiDoc™ Touch Imaging System (Bio-Rad). The
targeted proteins were quantified with ImageLab Software 6.0.1
(Bio-Rad). The results were normalized to the total protein content
in the gel (Stain-free technology, Bio-Rad).
Statistical Analysis
Statistical analysis was performed using GraphPad Prism 8.01
software (GraphPad Software Inc.). Depending on the data
distribution (as evaluated by the Shapiro-Wilk normality test),
either the two tailed Student’s t-test or U-Mann-Whitney test
were used for the estimation of significant differences between
the two subject groups. In the case of repeating measurements,
two-way ANOVA with Sidak’s multiple comparison test was
applied. In all tests, significance was considered when p<0.05.
Data on the graphs are presented as mean and data points
(sample size), unless otherwise stated.

Gene ontology (GO)-term enrichment analysis was performed
with the DAVID functional annotation tool (25, 26). The complete
list of Rattus norvegicus proteins detected in mass spectrometry-
based proteomics was used for the background and the GO term
subcategories “GOTERM_BP_DIRECT” “GOTERM_CC
_DIRECT” and “GOTERM_MF_DIRECT” “INTACT” were
selected for analysis EASE threshold 0.1). A modified Bonferroni
correction of p-value was applied to identify the statistically more
represented function annotations and GO-process was considered
as significant when p<0.05.
Frontiers in Endocrinology | www.frontiersin.org 4
RESULTS

The Obesity Phenotype Is Associated
With Heart Hypertrophy
In order to evaluate the influence of developmental obesity on
the heart proteomic profile, the rats were fed with a cafeteria diet
starting from postnatal day 28 for 12 weeks. Starting with the 3rd
week of feeding, these rats gained weight more excessively than
control (Figure 1). The obesity phenotype resulted in decreased
response to insulin measured by ITT (Figure 1). An analysis of
sera revealed higher triglycerides (p=0.0007) and LDL (p=0.03)
concentrations in obese rats (Figure 1). These rats also had
increased total-cholesterol-to-HDL ratio (p=0.0006, Figure 1),
which is recognized as a strong cardiovascular risk marker (27).
Ten weeks after introduction of diet-induced obesity protocol,
the hearts were collected from animals to perform morphometric
and proteomic analyses. The hearts of obese rats were about 35%
heavier than in control (p<0.0001; Figure 2). The morphometric
measurement performed in H&E-stained sections of LV revealed
increased area of cardiomyocytes in obese animals (p=0.0015)
(Figure 2). The microscopic evaluation of Masson-Trichrome
stained slides revealed a higher amount of connective tissue
immersed between the myocytes (Figure 2) or localized around
the vessels (Figure 2). Enhanced phosphorylation of mTOR on
Ser2448 was observed in the LV of obese rats (p=0.016) (Figure
2), suggesting the up-regulation of this anabolic pathway. On the
other hand, the phosphorylation of mTOR on Thr2446 did not
differ among groups (Figure 2). This mTOR region is
phosphorylated during AMPK activation resulting in mTOR
pathway inhibition (28). In line with this, we did not observe
significant changes in AMPK signaling (Figure 2).

The Proteomic Status of the Cardiac Cells
Exhibited a Stronger Shift Toward the
Utilization of Fatty Acids in Obese Animals
By means of global proteomic profiling the pool of 87 proteins
significantly changed in the LV of obese rats was identified
(Figure 3, heatmap), revealing that this phenotype strongly
determined the composition of the cardiac tissue (Figure 4).
Based on the GO database (GO: CC), the analysis of proteomic
data revealed that ~36% of significantly different proteins had
mitochondrial localization (mitochondrion GO:0005739,
p<0.001) and ~27% was cytoplasmic (cytosol GO:0005829,
p<0.001) (Tables S1 and S2, Supplemental Information). The
data showed that two biological processes (GO: BP) are
changed in the hearts of obese rats: the directed movement of
phospholipids out of a cell or organelle (phospholipid efflux
GO:0033700, p=0.024, Figure 4) and the chemical reactions
and pathways involving ATP (ATP metabolic process
GO:0046034, p=0.043, Figure 4). ~47% of the protein pool
interacted (INTACT database, Fisher correction) with two
proteins: solute carrier family 2, facilitated glucose
transporter member 4 (GLUT-4, 27 proteins interacted
significantly, p<0.001) and acyl-CoA synthetase long-chain
family member 1 (ACSL-1; four proteins interacted
significantly, p=0.0035). When the protein pool was analyzed
February 2021 | Volume 12 | Article 568197
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A B

C

FIGURE 1 | Characteristics of the obesity phenotype in rats fed with a cafeteria diet for 12 weeks. As a consequence of high-calorie feeding, the animals (n=16)
gained weight intensively (A) and developed insulin resistance (n=5) (B) with hyperlipidemia and hypercholesterolemia (n=6) (C). Two-way ANOVA with Sidak’s
multiple comparison test (A, B) and the Student’s t-test or Mann-Whitney test (cholesterol) were used for analyzing the data (*p<0.05, **p<0.01, ***p<0.001).
A B D

E F G

C

FIGURE 2 | Hallmarks of obesity cardiomyopathy in rats. The hearts of obese animals were heavier (n=9) (A) with enlarged myocytes (n=4) (B). The oversized hearts
contained higher levels of fibrotic tissue both in the non-vessel (C) and vessel containing (D) areas (n=6). The expression of phospho-mTOR on ser2448 (E) but not
on Thr2446 (F) was higher in the LV of obese rats, suggesting the up-regulation of this anabolic pathway (n=5). No significant differences were observed with regard
to of AMPK activity (G). The Student’s t-test was used for analyzing the data (*p<0.05, **p<0.01, ***p<0.001).
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separately depending on whether the proteins were
overexpressed or downregulated in the LV of obese rats, the
subset of 40 elevated cardiac proteins confirmed the significant
interaction with ACSL-1, whereas a subgroup of the remaining
proteins (decreased expression in obese animals) interacted
with GLUT-4. Thus we decided to perform the western blot to
assess the expression of these two molecules. The level of ACSL-
1 was significantly increased in the LV of obese rats (Figure 4,
p=0.045). In spite of the fact that cardiac GLUT-4 is
downregulated (29) during insulin resistance, we did not
Frontiers in Endocrinology | www.frontiersin.org 6
clearly demonstrate its decreased content in the heart of
obese rats (Figure 4). Rather than by transcriptional
mechanisms, the regulation of GLUT-4 depends on its
recruitment to the sarcolemma in response to glucose
delivery and prolonged hyperinsulinemia leads to the
internalization and inactivation of this glucose carrier. In
addition to GLUT-4, the most abundant glucose transporter
in the heart is solute carrier family 2, facilitated glucose
transporter member 1 (GLUT-1) (30), thus it was decided to
measure its expression. We have observed the decreased
FIGURE 3 | Global proteomic profile of the cardiac muscle of obese rats. The amount of 87 proteins differed in the left ventricle (LV) tissue of obese rats as
compared to homogenous samples from control (n=5). Protein expression data are presented as Z-score transformed.
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
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content of GLUT-1 (Figure 4, p=0.025), which is an insulin-
independent glucose transporter mainly responsible for the
basal needs of muscle cells (31). As it was shown that Acsl1
knockout mice upregulate GLUT-1 expression in skeletal (32)
and cardiac (33) muscles depending on glucose metabolism, it
is possible that that ACSL-1 and GLUT-1 expression depend on
each other.
Frontiers in Endocrinology | www.frontiersin.org 7
The Biological Processes Involved in the
Regulation of the Immune System and
Triglycerides Homeostasis Are Changed
in the Plasma of Obese Rats

Next, we performed global proteomic measurement in plasma,
identifying 41 molecules which differentiate between groups
A

B

D E F

C

FIGURE 4 | Molecular processes changed in the heart muscle of obese rats (n=5). A scaling plot of individual proteomes revealed the relatively homogenous
composition in the control group (ContO) and the more dispersed proteomic phenotype in experimental (obese) animals (A).Two biological processes: (B) the
directed movement of a phospholipid out of a cell or organelle (p=0.024), and (C) the chemical reactions and pathways involving ATP (p=0.043), were significantly
changed in the tissue (Bonferoni correction). By using the INTACT database we determined that the pool of all significantly changed proteins interacted with GLUT-4
(27 proteins, p<0.001, Fisher correction) and ACSL-1 (four proteins, p=0.0035, Fisher correction), suggesting that these proteins may be impacted by obesity. The
evaluation of the protein expression by means of WB showed that the cardiac expression of ACSL-1 (D) (p=0.045) but not GLUT-4 (E) was changed (increased) in
obese rats. GLUT-1 is the next glucose carrier in cardiomyocytes beyond GLUT-4, and its expression was downregulated in obese rats (F) (p=0.026). The Student’s
t-test was used for analyzing the data (*p<0.05, ***p<0.001). ACSL-1, long-chain-fatty-acid-CoA ligase 1; AK1, adenylate kinase isoenzyme 1; ATP5L, ATP synthase
subunit; GLUT-1, solute carrier family 2, facilitated glucose transporter member 1; GLUT-4, solute carrier family 2, facilitated glucose transporter member 4; HSP70-
1, heat shock 70 kDa protein 1A.
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(Figure 5, heatmap). Based on the results of DAVID analysis,
eight biological processes (GO: BP) were changed in the plasma
of obese rats, including i.e. the process that decreases the
frequency, rate, or extent of endopeptidase activity (negative
regulation of endopeptidase activity GO:0010951, p<0.001),
immunological responses (complement activation GO:0006956
and GO:0006958, p<0.001; acute-phase response GO:0006953,
p<0.001; inflammatory response GO:0006954, p<0.05), processes
that change the state or activity of a cell as a consequence of
triglyceride stimulus (response to triglyceride GO:0034014,
p<0.05) and process that reduce fibrinolysis (negative
regulation of fibrinolysis GO:0051918, p<0.05). Figure 5
Frontiers in Endocrinology | www.frontiersin.org 8
presents the protein involved in these biological processes
except for the negative regulation of endopeptidase activity and
negative regulation of fibrinolysis (Tables S3 and S4,
Supplemental Information). Due to the fact that various
molecules participate in different immunologic processes, the
proteins of acute and inflammatory responses have been
combined (Figure 6). Changes of four molecules detected in
the LV were also significant in the plasma of obese rats (Table 1).
Alpha-1-inhibitor III, apolipoprotein A4 (APOA4), and
apolipoprotein C3 (APOC3) were increased in both tissues.
Transthyretin (TTR; thyroid hormone-binding protein) was
elevated in the heart but decreased in the plasma of obese rats.
FIGURE 5 | Global proteomic profile of plasma of obese rats. The amount of 49 proteins differed in the plasma of obese rats as compared to homogenous samples
from control (n=8). Protein expression data are presented as Z-score transformed.
February 2021 | Volume 12 | Article 568197
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CR-Induced Weight Loss Partially
Restored the Heart’s Architecture, Leaving
Fibrotic Debris
Another cohort of young animals was subjected to a cafeteria diet
for 12 weeks to gain weight and then to a 6-week-long CR protocol
to reduce weight (AWL group; Figure 7). The group was
accompanied by control animals (ContA group) which were
maintained exclusively on a standard diet. This was followed by
four subsequent weeks of isocaloric feeding to normalize the
systemic parameters between AWL and ContA groups. Obesity
phenotype induced insulin insensitivity but applied CR should
reverse it, even resulting in higher insulin sensitivity (34).
Frontiers in Endocrinology | www.frontiersin.org 9
However, there were no significant differences in the response to
insulin (Figure 7) or glucose (Figure 7) in AWL group confirming
that insulin sensitivity after the weight loss process was not affected
by the bygone obesity and CR. Hyperlipidemia was also reversed
after weight loss (Table S7, Supplemental Information). We
observed that the weight of the collected hearts did not differ
among AWL and control animals (Figure 7) and the histologic
examination did not reveal any differences in the size of the
cardiomyocytes among groups (Figure 7). However, the amount
of interstitial (Figure 7) and perivascular (Figure 7) connective
tissue was elevated in the LV of AWL rats, suggesting persistent
cardiac fibrosis in animals which were obese in the past.
FIGURE 6 | Clustering of the plasma proteins significantly changed in obese rats. Based on the GO : BP (DAVID functional annotation results with Bonferroni
statistics) database, plasma proteins were assigned to their respective particular biological function (n=8). Most of the proteins (36%) were involved in the negative
regulation of endopeptidase activity (p<0.001, not shown; refer to Supplemental Data for details). 17% of the proteins were involved in immunological regulation
(GO:0006956~complement activation, GO:0006958~complement activation). In addition, 17% of molecules participated in the pro-inflammatory response
(GO:0006953~acute-phase response, p<0.001; GO:0045087~innate immune response, p<0.01; GO:0006954~inflammatory response, p<0.05). The next biological
process changed in the plasma of obese rats included the abnormal level of proteins involved in the regulation of any process that results in a systemic change as a
result of a triglyceride stimulus (GO:0034014~response to triglyceride, p<0.05). The pool of proteins (three molecules) involved in processes that stop, prevent, or
reduce the frequency, rate, or extent of fibrinolysis resulting in the removal of small blood clots was downregulated in the plasma of obese animals
(GO:0051918~negative regulation of fibrinolysis, p<0.05). Data are presented as mean of fold change of control. The Student’s t-test was used for analyzing the data
(*p<0.05, **p<0.01, ***p<0.001). APOA4: apolipoprotein A-IV; APOC3: apolipoprotein C-III; C1R: complement C1r subcomponent; C1S: complement C1s
subcomponent; C4BPA: C4b-binding protein alpha chain; C6: complement component C6; HPRG: histidine-rich glycoprotein; SERPINF2: serpin family F member 2.
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The Identification of Cardiac and Systemic
Proteomic Changes Present After Weight
Loss
Proteomic data revealed that the level of 14 identified proteins were
altered in the hearts of the rats after weight loss (Table 2). Two
proteins – adenylate kinase 1 (AK1) and complement C3 (C3) –
were changed in the hearts of both obese and AWL rats. AK1 was
decreased in both obese and AWL groups. However, complement
C3 was elevated in the hearts of obese rats but decreased in AWL
cohort (Tables S1 and S5, Supplemental Information). The analysis
of the plasma revealed that 14 identified proteins varied in the
plasma of AWL and control rats (Table 3). Antithrombin
(p=0.007), complement C5 (p=0.017), heparin cofactor 2
(p<0.001) and transthyretrin (p=0.004; TTR) were noted to be
changed in the plasma of obese and AWL rats (Tables S3 and S6,
Supplemental Information). These proteins are mostly involved in
the regulation of endopeptidase activity (GO:0010951,
eight proteins, p<0.001), complement activation (GO:0006957,
four proteins, p<0.001), and blood coagulation (GO:0007596,
three proteins, p<0.05). The extracellular protein TTR, responsible
for the transport of thyroxin and retinol binding protein complex to
Frontiers in Endocrinology | www.frontiersin.org 10
the various parts of the body, was decreased in the plasma of AWL
rats. In the plasma, TTR binds to adipokine known as retinol-
binding protein 4 (RBP4), which prevents glomerular filtration and
the subsequent catabolism of RBP4 in the kidney. However, despite
TTR depletion RBP4 levels were elevated (p=0.048). Several human
and animal studies have investigated the influence of high
circulating RBP4 levels in the pathogenesis of insulin resistance
associated with type 2 diabetes and obesity (35). The current data
suggest that the systemic balance between TTR and RBP4 may be
disturbed after weight loss, but this phenomenon warrants further
evaluation. TTR level was elevated in heart of obese animals but
decreased also after weight loss. TTR may be used as a biomarker of
stress disorders (36), oxidative stress (37), lean body mass, and
catabolic states (38). RBP4 was shown as a marker of insulin
resistance (39), but these results are inconclusive (35).
DISCUSSION

Here, we discriminate the proteomic and morphological
consequences of obesity in the hearts of rats and evaluate
A B

D E F G

C

FIGURE 7 | Characteristics of rats after weight loss. After 12 weeks of feeding with a cafeteria diet, rats (n=16) intensively gained weight (A), developing the obesity
phenotype. Obese animals were subjected to CR for 6 weeks to lose weight. For the next four weeks, animals from the experimental (After Weight Loss, AWL) and
control (ContA) groups received an isocaloric amount of calories (stabilization period) to ensure stable body weight. After weight loss, the rats did not show features
of insulin resistance which was confirmed by insulin (B) and glucose (C) tolerance tests (n=5). The mass of the heart (n=9) (D) and size of the cardiomyocytes (n=3-
4) (E) were restored after weight loss in rats which were previously obese. However, the interstitial (F) and perivascular (G) amount of connective tissue was elevated
in these animals (n=6). Two-way ANOVA with Sidak’s multiple comparison test (A–C) and Student’s t-test was used for analyzing the data (*p<0.05, **p<0.01).
TABLE 1 | List of the proteins significantly changed in both: in the left ventricle of heart and plasma of obese and control (Conto) rats.

Accesion number Protein name Obese vs ContO Function

Heart Plasma

P14046 alpha-1-inhibitor III (A1I3) ↑ ↑ Protease inhibitor with a wide spectrum of protein targets.
P02651 apolipoprotein A4 (APOA4) ↑ ↑ Major component of HDL and chylomicrons.
A0A0G2K8Q1 apolipoprotein C3 (APOC3) ↑ ↑ Inhibits lipoprotein lipase delaying the catabolism of

triglyceride-rich particles.
P02767 transthyretin (TTR) ↑ ↓ Transport protein that carries the thyroid

hormone thyroxine (T4) and retinol-binding protein bound
to retinol.
↓ indicates lower protein expression in the obese group when compared to control, while ↑ indicates higher expression in the obese group.
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TABLE 3 | Proteins significantly changed (Student’s T test, n=9) in the plasma of rats from AWL (After Weight Loss) group as compared to control individuals (ContA).

UNIPROT Name: protein (gene) AWL vs. ContA Function/biological process

Fold
change

p
value

A0A1K0FUB2 myoglobin (Mb) 31.13 <0.001 serves as a reserve supply of oxygen and facilitates the movement of oxygen within muscles;
E9PSU8 Ig-like domain-containing protein

(N/A)
1.94 0.009 involved in a variety of functions, including cell-cell recognition, cell-surface receptors, muscle

structure and the immune system;
B2RZC1 retinol binding protein 4 (Rbp4) 1.46 0.047 delivers retinol from the liver stores to the peripheral tissues;
D3ZBS2 inter-alpha trypsin inhibitor,

heavy chain 3 (Itih3)
0.9 0.01 a carrier of hyaluronan in serum;

Q5EBC0 inter-alpha-trypsin inhibitor heavy
chain family, member 4 (Itih4)

0.9 0.03 type II acute-phase protein (APP) involved in inflammatory responses to trauma;

Q5M7T5 antithrombin (Serpinc1) 0.87 0.007 inhibits thrombin as well as other activated serine proteases of the coagulation system, and it
regulates the blood coagulation cascade. Downregulated in the plasma of obese rats.

M0RBF1 complement C3 (C3) 0.86 0.001 plays a central role in the activation of the complement system;
P20059 hemopexin (Hpx) 0.86 0.01 binds heme and transports it to the liver for breakdown and iron recovery, after which the free

hemopexin returns to the circulation;
A0A096P6L9 complement C5 (C5) 0.85 0.017 derived from proteolytic degradation of complement C5, C5 anaphylatoxin is a mediator of local

inflammatory process. Downregulated in the plasma of obese rats.
Q5BKC4 complement C9 (C9) 0.84 0.012 component of the terminal complement complex C5b-9, which induces cleavage and activation

of caspase 3 and mediates induction of apoptosis;
Q6MG74 complement factor B (Cfb) 0.8 0.016 complement activation;
P31211 corticosteroid-binding globulin

(Serpina6)
0.79 0.005 major transport protein for glucocorticoids and progestins in the blood of almost all vertebrate

species;
A0A0G2K8K3 heparin cofactor 2 (Serpind1) 0.75 <0.001 thrombin inhibitor activated by the glycosaminoglycans, heparin or dermatan sulfate.

Downregulated in the plasma of obese rats.
P02767 transthyretin (Ttr) 0.65 0.004 thyroid hormone-binding protein. Probably transports thyroxine from the bloodstream to the

brain. Downregulated in the plasma of obese rats.
Frontiers in Endo
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Values of fold change <1 indicate lower protein expression in the AWL group when compared to ContA, while values>1 indicate higher expression in the AWL group. Proteins are ranked
from largest to smallest fold change. Bolded data – proteins changed in the plasma of both obese and AWL rats.
TABLE 2 | Proteins significantly changed (Students’s T test, n=8) in the cardiac muscle of rats from AWL (After Weight Loss) group as compared to control (ContA).

UNIPROT Name: protein (gene) AWL vs. ContA Function/biological process

Fold
change

p
value

Q7TMZ9 cardiac titin N2B isoform (N/A) 10.47 0.011 regulates the sarcomere length and muscle function
Q5M819 phosphoserine phosphatase (Psph) 3.73 0.0005 catalyzes the last step in the biosynthesis of serine from carbohydrates
Q5XIG4 OCIA domain containing 1 (Ociad1) 2.07 0.019 regulation of stem cell differentiation
B5DEF6 acyl-CoA dehydrogenase family,

member 10 (Acad10)
1.91 0.021 fatty acid beta-oxidation

P51886 lumican (Lum) 1.52 0.014 collagen fibril organization
Q75Q41 translocase of outer mitochondrial

membrane 22 (Tomm22)
1.44 0.0064 interacts with TOMM20 and TOMM40, and forms a complex with several other proteins

to import cytosolic preproteins into the mitochondrion
P45592 cofilin 1 (Cfl1) 0.78 0.023 controls reversibly actin polymerization and depolymerization in a pH-sensitive manner
P12007 isovaleryl-CoA dehydrogenase (Ivd) 0.76 0.013 mitochondrial matrix enzyme that catalyzes the third step in leucine catabolism
Q6P784 branched chain amino acid

transaminase 2 (Bcat2)
0.76 0.049 catalyzes the first reaction in the catabolism of the essential branched chain amino acids

leucine, isoleucine, and valine
Q6P9T8 tubulin, beta 4B class IVb (Tubb4b) 0.7 0.035 major constituent of microtubules
A0A0G2K7Q6 adenylate kinase 1 (Ak1) 0.67 0.019 catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP.

Downregulated in the heart of obese rats.
P01026 complement C3 (C3) 0.63 0.044 plays a central role in the activation of complement system (a part of the immune system).

Upregulated in the heart of obese rats.
Q75Q39 translocase of outer mitochondrial

membrane 70 (Tomm70)
0.59 0.039 receptor that accelerates the import of all mitochondrial precursor proteins

Q00981 ubiquitin C-terminal hydrolase L1
(Uchl1)

0.12 0.0022 ubiquitin-protein hydrolase involved both in the processing of ubiquitin precursors and of
ubiquitinated proteins
Values of fold-change <1 indicate lower protein expression in the AWL group when compared to ContA, while values>1 indicate higher expression in the AWL group. Proteins are ranked
from largest to smallest fold change. Bolded data – proteins changed in the hearts of both obese and AWL rats.
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whether the changes are reversed by CR-induced weight loss.
The altered LV proteomic status and connective tissue build-up
associated with weight gain were not completely reversed by
body weight normalization.

Morphological and Molecular
Characteristics of the Heart in Obesity
The phenotype of obesity cardiomyopathy includes heart
hypertrophy with an increased amount of interstitial and
perivascular connective tissue (40). The upregulation of the
mTOR pathway is predominantly involved in this cardiac
remodeling (41) as a consequence of overfeeding and insulin
resistance (42). Therefore, we observed enlarged cardiomyocytes
and increased mTOR phosphorylation suggesting the upregulation
of this anabolic process in the cardiac cells of obese rats. We
assumed that decreased AMPK signaling, as a possible
consequence of overfeeding, may be partially involved in the
mTOR control, but AMPK phosphorylation and its targeted site
on mTOR [Thr2446, leading to its inhibition when phosphorylated
(28)] seem to be unaffected, rejecting the assumption above. Further,
the observed cardiomyopathy was reflected in a plethora of
molecular changes. The proteomic machinery responsible for the
transport of triglycerides was boosted in obese animals both in the
plasma and the heart muscle. In order to metabolize long-chain
fatty acids, they must first be converted to acyl-CoA by ACSL
proteins (43). Among the five mammalian ACSL isoforms, ACSL-1
predominates in cardiac tissue (44). The hearts of obese rats
expressed more ACSL-1 but had reduced amounts of GLUT-1.
These findings suggest that in obesity cardiomyopathy the glucose
uptake may be decreased in favor of lipid metabolism. Whereas
energetic metabolism in the normal heart depends primarily on ß-
oxidation and less on glucose utilization, in the diabetic heart ATP
production becomes almost completely reliant on fatty acids
oxidation (45, 46), causing the inability to switch between
energetic substrates in case of trauma. The inability of efficient
ATP generation from glucose under specific pathological conditions
contributes to heart failure (47).

Our observations are mostly consistent with results of previous
studies applying non-targeted proteomic or transcriptomic methods
to screen cardiac tissue in animal models of diet induced obesity. A
map of the cardiac proteome in obese rats showed that the proteins
involved in regulation of metabolism were predominantly changed
(48). The proteomic machinery responsible for fatty acids uptake
and oxidation was upregulated in obese animals (48) and expression
of the proteins involved in mitochondrial metabolism was affected
(49–51). Although the substantial protein expression is changed in
obesity the cardiac proteome may be also affected in a different way,
by modifying pattern of acetylation (52). Obesity also results in
cardiac transcriptome modifications that can be associated with a
number of pathologies including the cardiac hypertrophy. Changes
of gene expression that occur during hypertrophic cardiac
remodeling arise as a consequence of mechanical overloading and
play a critical role in normal cardiac function and pathogenesis of
heart [well discussed in (53)]. Studies of global gene profiling in
rodents have identified differentially expressed transcripts in the
cardiac ventricle. The expression of genes of lipid and protein
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metabolism, fatty acid beta-oxidation, cell death, apoptosis,
peroxisome organization, and biogenesis were upregulated in
hearts of obese db/db mice (54). A more recent multi-omics
analysis revealed that cardiac lipid metabolism was changed in
type-2 diabetic db/db mice which was supported by metabolomics
and transcriptomics (55). In mice fed, an obesogenic diet global
gene expression analysis revealed obesity related changes in glucose
metabolism pathways (56). In line with such transcriptomic data,
the proteomic results presented here confirm that obese phenotype
propagates cardiac lipid utilization whilst simultaneously reducing
glucose metabolism homeostasis. Numerous reports have
demonstrated increased myocardial fatty acid utilization in obese
animal models and cardiac lipotoxicity has been recognized as an
important contributor to cardiovascular complications of obesity
(57). Costa and Franco provided a broad view on cardiac
transcriptome changes produced by obesity showing that
expression of genes involved in cellular architecture and lipid
metabolism was affected which supports our data (53). The
regulation of gene expression may be a consequence of the
plethora of epigenetic modification present in cardiometabolic
diseases and epigenetic therapies may represent a new frontier in
cardiovascular medicine (58).

The proteomic composition of the plasma in obese rats strongly
supports the notion that the systemic consequences of obesity and
the cafeteria diet are reflected in the cardiac muscle. Increased
angiotensinogen levels led to the suspicion that obese rats developed
hypertension with the involvement of the renin–angiotensin system
(59), and this could contribute to the overgrowth of cardiomyocytes
(60). APOA4 and APOC3 apolipoproteins were increased in the
plasma of obese rats and four apolipoproteins were elevated in the
heart (A1, APOA4, APOC3, and E), suggesting the high
vulnerability of cardiac tissue toward the lipidomic changes
accompanying diet-induced obesity. Decreased levels of gelsoline
indicates pathological conditions as this protein normally occurs in
high amounts and is extensively degraded when binding to
filamentous actin (released upon cell death or rupture) occurs
(61). This protein mitigates the detrimental effects of systemic
inflammation (62), thus gelsoline downregulation could potentiate
a greater impact of obesity-related inflammation on the system.
Protein clustering revealed that obese animals developed
contradictory inflammatory status. On the one hand, chronic
inflammation elevated pro-inflammatory molecules such as
fibronectin (63) and haptoglobin (64) in obese animals.
Inconsistently, a1-inhibitor-3 (65) and kininogens (66) known as
pro-inflammatory factors were decreased. This was associated with
the downregulation of anti-inflammatory a1-antitrypsin (67) and
transferrin, which is negatively regulated during the acute phase
(68). On the other hand, the defense response could be diminished,
which was recognized as the decreased expression of the
complement system proteins being a part of the immune system
launched during a pathogen attack (69).

Weight Loss Reverse Cardiac Overgrowth
But Not Fibrotic Deposition
Obesity evokes cardiac remodeling, which seems to be rescued
after weight loss (18, 40). However, a significant finding of our
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study was that after weight loss the heart is still abundantly
composed of connective tissue. We suspect that this could be a
residue of obesity as well as a consequence of CR applied for
weight reduction. Whereas intracellular compartments in the
cardiomyocytes are degraded via autophagy, allowing for tissue
rearrangement, the redundant ECM is proteolyzed and then
digested by the phagocytic cells of the complement immune
system (70). The proteins of the complement cascade (C3, C5,
C9, and factor B) were downregulated after weight loss,
suggesting that systemic inflammatory response and the
recruitment of phagocytic cells was rather repressed than
mobilized possibly diminishing the complete restoration of
tissues during weight loss. Due to the novelty of this thesis,
more research is required to support its authenticity. However,
there may be an additional reason for the observed elevation of
the heart’s connective tissue after weight reduction. CR impacts
cardiac morphology in an age-dependent manner by stimulating
the fibrotic deposition in young-adult mice (age-matched to our
rats), but not in older animals, emphasizing the possible fibrotic
residue of CR in the heart (71).

The different proteomic composition of the LV in AWL rats
may be a consequence of cardiac fibrosis and ECM excess, which
is illustrated by the lower amount of cardiac tubulin as this
protein is abundantly expressed in the myocytes but scarce in
ECM (72). Conversely, the pool of lumican, the main
components of cardiac ECM was elevated in the hearts of
AWL rats (73). Lumican expression is increased in hepatic
(74), pulmonary (75), and cardiac (73) fibrosis. On the one
hand, experimental and clinical findings revealed that the
overexpression of lumican in cardiac fibroblasts is evoked
during heart failure (73). This protein regulates cardiac
remodeling following LV pressure overload (76) and has been
shown to have a role in ECM remodeling and fibrosis in different
cardiovascular diseases (77–79). On the other hand, lumican is
required for cardiac remodeling by ensuring the structural
integrity of connective tissue and survival following pressure
overload (76). Possibly lumican may play a role in obesity-related
cardiac remodeling and we observed that its level is elevated after
weight loss , carrying the possible r isk of fibrosis-
related disturbances.

We examined dietary modification as a factor for weight loss
but it will be valuable to extend this investigation in the future by
adding physical activity as an important element of obesity
treatment. Weight loss through diet and exercise appears an
effective therapy to reduce cardiovascular risk associated with
obesity (80, 81); rodent studies indicate that both the
cardioprotective (82, 83) and gene expression (84) effects of
exercise are proportional to its intensity. Also in the skeletal
muscle the administration of high fat diet enhanced lipid
catabolism at the transcriptional level which was probably a
compensatory mechanism in response to lipid overload but after
acute exercise the pattern of gene expression changed
dramatically (85). The beneficial remodeling and metabolic
effects of exercise training in cardiac and skeletal muscle of
obese mice depend on autophagy (86). Further research is
needed to validate the long term outcomes of dietary and/or
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exercise induced weight loss on restoration of homeostasis
affected by obesity.

Possible Biomarkers to Predict Cardiac
Recovery After Weight Loss
We measured proteins in the heart and plasma in obese rats and
animals subjected to weight loss. This approach gave us an
opportunity to propose tissue specific and blood protein
signatures of obesity cardiomyopathy as predictors of disease and
response to therapy. Particularly we propose that markers of lipid
storage and metabolism may warrant consideration for monitoring
therapeutic progress of weight loss because cardiac lipotoxicity is
associated with structural remodeling and functional changes that
are the features of obesity-related cardiomyopathy (87). APOC3 and
APOA4 are two potential protein candidates of obesity
cardiomyopathy signatures which levels were elevated in cardiac
muscle and plasma but rescued after weight loss. Increased levels of
both proteins are associated with the risk of cardiovascular events
(88, 89). The critical role of lipotoxicity in cardiomyopathy is
supported by the observation that ACSL-1 was upregulated in the
heart of obese animals suggesting propagation of cardiac lipid
accumulation. Acsl-1 gene modulation may be a potential
therapeutic strategy in obesity-related cardiomyopathy and Acsl-1
haploinsufficiency resulted in normalization of cardiac lipid storage
in db/db mice (90). ACSL-1 level can be monitored in peripheral
blood leukocytes and it was shown that it may be a molecular
marker when determining the risk of acute myocardial infarction in
humans (91). It may be also monitored by assessing its epigenetic
marks because Acsl-1 is regulated by methylation, and
hypometylation was observed in obese humans (whole-blood
DNA) (92) and mice (adipose tissue) (93). Future research could
consider a pharmacological obesity co-treatment by triacsin C with
evaluation of its cardioprotective effects because this fungal
metabolite has been recognized as ACSL-1 inhibitor (94). ACSL-1
may be regulated by dietary fat consumption (95) raising the
importance of adequate nutritional strategy in obesity treatment.
Cardiac level of C3 was elevated in obese rats but downregulated
after weight loss. Inflammation is involved in cardiac remodeling
and activation of complement cascade accompanies cardiovascular
disturbances both in humans and rodents (96, 97). C3 level has been
shown to be elevated in serum of patients with left ventricular
hypertrophy (98), in hypertensive patients (99) and more recently
was recognized as a marker of hypertrophic cardiomyopathy (100).
However we could not point at the immune proteins as biomarkers
for monitoring the cardiac recovery because we observed
upregulation of complement cascade proteins in cardiac muscle
but not in the plasma. Intriguingly we found that the level of cardiac
AK1 - downregulated in obese animals - was still low despite the
weight normalization. This enzyme catalyze the nucleotide
phosphoryl exchange reaction 2ADP ↔ ATP + AMP being a
critical player in metabolic monitoring and systemic integration of
different signaling pathways. The protein plays an important role in
cardiomyocytes and the evidence is mounting regarding the direct
relationship between defects in AK1 and AMP metabolic signaling
in human diseases, such as heart failure, hypertrophic
cardiomyopathy, diabetes and obesity (101). Reduction in total
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AK1 protein expression was observed in failing hearts, whereas AK1
mRNA levels and enzyme activity remained unchanged (102).
Persistent downregulation of AK1 may point to increased cardiac
risk despite weight loss, emphasizing the need for recognizing the
cardiac outcomes of previous obesity.
Limitations of the Study and Transferal
of the Results
In the study we have shown proteomic and structural changes of
the heart in obese rats and after weight loss. The rat model of diet-
induced obesity was introduced to reflect developmental obesity.
Thus the animals were young (postnatal day 28) at the time the
obesogenic diet was introduced, reflecting ~8 months of human
age (103) when infants begin receiving solid food (104). The
overconsumption of protein and sugars especially induce
developmental obesity (105), and the global intake of the latter
range from 1.9% to 13.4% in humans before 2 years of age (106)
underlies the high dietary risk factors for the development of
obesity in infants. Comprehensive proteomic evaluation was
performed in the plasma and cardiac tissue of obese and CR-
cured rats (with adequate, age-matched controls). In the second
group, the tissue material was collected after four weeks of
isocaloric intake, where AWL rats and control companions
received the same amount of calories, allowing for weight
maintenance without significant weight gain or reduction. This
approach seemed to be the most reasonable andmade it somewhat
possible to eliminate the systemic effects of CR (107). The animals
could not be fed by standard chow in an ad libitum manner
because from our experience, AWL rats regain weight more
extensively than control. Thus, during the “stabilization state”
both groups received ~100% of calorie needs. We did not find any
justification to compare the effects observed in obese animals with
AWL rats and adequate controls (by comparing the four groups in
parallel), especially considering the different age of the animals. In
such a comparison, we would not estimate the impact of body
weight only, but also the age factor, thereby falsifying the
conclusion. A limitation of the current study is the lack of
functional data that directly corresponds with our structural and
proteomic results. However it is well established that rats fed with
cafeteria diet develop functional consequences such as elevated
blood pressure, high heart rate, affected hyperpolarization and
autonomic dysfunctions (108). Moreover, robust alteration in the
myocardial proteome of diet-induced obese rats can be detected
even before the severe functional impairment occurs (48). We
believe that our model reflects well the cardiac perturbations of the
heart in obesity. Future work should demonstrate areas of overlap
between proteomic correlates and functional activation correlates
in the same experimental design.

The prevalence of obesity actually increased with hordes of
young people predisposed to weight-loss therapies. If adequate
approaches will be applied to reduce body weight, these patients
could be rescued from obesity within a few years (109). The
restoration of a lean phenotype masks the obesity experience,
possibly shaping future diagnosis in adulthood or the elderly.
However, the persistent effects of obesity are not well explored.
We suggest that clinicians consider the possibility of persisting
Frontiers in Endocrinology | www.frontiersin.org 14
cardiac consequences of prior obesity in lean patients
during diagnosis.
CONCLUSION

Global proteomic profiling with morphological evaluation was
performed in the hearts of obese rats and after weight loss. We
conclude that obesity cardiomyopathy is highly complex,
integrating anabolic, metabolic, and immunogenic complications
in the cells. The systemic status of overfeeding, hyperlipidemia, and
insulin resistance may contribute to the cardiac adjustment
developed during weight gain. After losing weight, the heart’s
phenotype can be ostensibly restored to normal. However, some
abnormalities still occur at the morphological (fibrosis) and
proteomic levels.
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110. Liśkiewicz A, Marczak Ł, Bogus K, Liś kiewicz D, Przybyła M, Lewin-Kowalik
J. Proteomic and structural heart changes in obese rats are incompletely
restored after weight loss. Res Square [Preprint] (2020). doi: 10.21203/rs.3.rs-
19734/v1

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.
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