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Abstract

Emerging studies corroborate the importance of neuroimaging biomarkers and

machine learning to improve diagnostic classification of amyotrophic lateral sclerosis

(ALS). While most studies focus on structural data, recent studies assessing functional

connectivity between brain regions by linear methods highlight the role of brain func-

tion. These studies have yet to be combined with brain structure and nonlinear func-

tional features. We investigate the role of linear and nonlinear functional brain

features, and the benefit of combining brain structure and function for ALS classifica-

tion. ALS patients (N = 97) and healthy controls (N = 59) underwent structural and

functional resting state magnetic resonance imaging. Based on key hubs of resting

state networks, we defined three feature sets comprising brain volume, resting state

functional connectivity (rsFC), as well as (nonlinear) resting state dynamics assessed via

recurrent neural networks. Unimodal and multimodal random forest classifiers were

built to classify ALS. Out-of-sample prediction errors were assessed via five-fold cross-

validation. Unimodal classifiers achieved a classification accuracy of 56.35–61.66%.

Multimodal classifiers outperformed unimodal classifiers achieving accuracies of

62.85–66.82%. Evaluating the ranking of individual features' importance scores across

all classifiers revealed that rsFC features were most dominant in classification. While

univariate analyses revealed reduced rsFC in ALS patients, functional features more

generally indicated deficits in information integration across resting state brain net-

works in ALS. The present work undermines that combining brain structure and func-

tion provides an additional benefit to diagnostic classification, as indicated by

multimodal classifiers, while emphasizing the importance of capturing both linear and

nonlinear functional brain properties to identify discriminative biomarkers of ALS.
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1 | INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative dis-

ease that is predominantly characterized by the progressive loss of

motor neuron function (see also Kiernan, Vucic, & Cheah, 2011).

Nowadays, ALS is considered a progressive multisystemic neurological

disease, affecting multiple domains of the central nervous system

beyond classical motor areas (Menke et al., 2014; Pradat & El

Mendili, 2014). On average, patients die three years after symptom

onset despite continuous efforts to develop curative therapies (see

also Hardimann, 2010; Kiernan et al., 2011). The only globally

approved therapy, Riluzole, was discovered over two decades ago

(Miller, Mitchell, Lyon, & Moore, 2012; Petrov, Mansfield, Moussy, &

Hermine, 2017). Both research in ALS and therapeutic management

are challenged by the substantial heterogeneity in the patients' dis-

ease courses, resulting in different progressivity and survival time

(Simon et al., 2014; Westeneng et al., 2018). Therefore, biomarkers

that reliably reflect disease-specific characteristics are urgently

needed, aiding early diagnosis and yielding outcome parameters for

clinical trials to improve therapies (Goyal et al., 2020; Pradat & El

Mendili, 2014).

The potential of neuroimaging as a noninvasive biomarker

method has been accepted in the wider ALS research community

(Chio et al., 2014; Pradat & El Mendili, 2014). Former studies have

focused mainly on classifying ALS patients versus healthy controls

based on gray and white matter brain volume assessed for instance

via structural magnetic resonance imaging (MRI) and/or diffusion

tensor imaging (DTI) (Ferraro et al., 2017; Sarica et al., 2017; Schuster,

Hardiman, & Bede, 2016). Combining these modalities, these

studies report classification accuracies between 62.5% and 80.0%

(mean = 77.12%; Ferraro et al., 2017; Sarica et al., 2017; Schuster

et al., 2016). More recently, there have been efforts to also apply fea-

tures relating to brain connectivity derived from resting state func-

tional MRI (rsfMRI) for classification, reporting accuracies of 65.0%

and 71.50% (Fratello et al., 2017; Welsh, Jelsone-Swain, &

Foerster, 2013). Although classification performance seems slightly

lower here, there are generally large variations in reported accuracy

which more likely reflect the large range of validation procedures,

classifiers, and potential biases in prediction error assessment, such as

increased misclassification of a minority class in case of unbalanced

sample sizes for instance (Cearns, Hahn, & Baune, 2019; He &

Garcia, 2009; Koppe, Meyer-Lindenberg, & Durstewitz, 2020; L�opez,

Fernández, & Herrera, 2014; Sun, Wong, & Kamel, 2009), than mean-

ingful differences in the discriminability of the actual feature modality

(see also Section 4 on these points). Rather, these studies may be

taken as evidence that combining different neuroimaging modalities,

in this case relating to brain volume and structural connectivity,

improves classification accuracy, by providing complementary discrim-

inative information (see also Ferraro et al., 2017; Schuster et al., 2016;

van der Burgh et al., 2017). However, to date, no studies have actually

combined brain volume and functional connectivity features, although

this combination has proven particularly effective for other

neurodegenerative disorders (see for example Ballarini et al., 2020;

Castellazzi et al., 2020; Nemmi et al., 2019; see also Durstewitz,

Koppe, & Meyer-Lindenberg, 2019). One major focus of the present

study is to, therefore, investigate whether the multimodal fusion of

resting state functional connectivity and brain volume results in

improved classification accuracies of patients suffering from ALS as

compared with healthy controls (HCs).

A second major focus is to evaluate and integrate a third func-

tional feature set, namely features related to nonlinear network

dynamics. While functional connectivity typically captures only linear

and static (i.e., time-independent) dependencies between brain

regions or networks (Chen, Azeez, Chen, & Biswal, 2020; Rosazza,

Minati, Ghielmetti, Mandelli, & Bruzzone, 2012), it neglects that the

brain is a highly interconnected nonlinear dynamical system

(DS) which can generate very complex and flexible patterns of activity,

neuronal dependencies, and associated phenomena (Izhikevich, 2007;

Lin, Wang, Yao, & Tan, 2020; Michaels, Schaffelhofer, Agudelo-Toro, &

Scherberger, 2020; Sani, Abbaspourazad, Wong, Pesaran, &

Shanechi, 2021). It is precisely these dynamical phenomena which

have been argued to implement cognition (e.g., Durstewitz,

Seamans, & Sejnowski, 2000; Hopfield, 1982; Rabinovich, Huerta,

Varona, & Afraimovich, 2008; Tsuda, 2015; Wang, 2001;

Wang, 2008), and, in turn, underlie cognitive dysfunction (Armbruster,

Ueltzhöffer, Basten, & Fiebach, 2012; Dakka et al., 2017;

Durstewitz & Seamans, 2008; see also Durstewitz, Huys, &

Koppe, 2020 for a recent review).

One method to effectively extract the underlying generative

network dynamics from multivariate time series are recurrent neu-

ral networks (RNNs; Durstewitz, 2017; Koppe, Toutounji, Kirsch,

Lis, & Durstewitz, 2019; Pandarinath et al., 2018; Zhao &

Park, 2018). They have already been successfully employed to

extract dynamics from fMRI recordings (e.g., Koppe et al., 2019), as

well as to infer discriminative biomarkers based on longitudinal

structural MRI and resting state fMRI in neurodegenerative and

psychiatric disorders (e.g., Cui & Liu, 2019; Yan et al., 2019; see

also Bhagwat, Pipitone, Voineskos, & Chakravarty, 2019; Lian, Liu,

Zhang, & Shen, 2020). Some of these models have the additional

advantage of delivering dynamically interpretable features

(Durstewitz et al., 2020), in contrast to many other neurological

classification approaches based on deep neural networks (see

Durstewitz et al., 2019 for a recent review). Our study is, to our

knowledge, the first to explore the potential of such RNNs for the

classification of patients with ALS.

In sum, the aims of the present study are twofold: for one, we

evaluate whether the multimodal fusion of brain volume and function

(including functional resting state connectivity and nonlinear network

dynamics) benefits the classification of ALS, and second, we investi-

gate the potential of features derived from nonlinear network dynam-

ics as discriminative biomarkers of ALS. To increase interpretability of

these multivariate and multimodal analyses, we additionally explore

the relevance of features identified as important within the classifiers

by univariate statistical analyses.
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2 | METHODS

2.1 | Sample and clinical data

A total of 137 patients with ALS and 67 HCs were consecutively rec-

ruited from the Department of Neurology at Jena University Hospital.

The patients with ALS met the revised El-Escorial-criteria of definite,

probable, or laboratory-supported probable ALS (Brooks, Miller,

Swash, & Munsat, 2000) as examined by a trained neurologist. Four-

teen subjects were discarded due to irregularities in the rsfMRI scans.

From the remaining sample, age matched patients with ALS (N = 97)

and HCs (N = 59) were selected. To account for the imbalanced sam-

ple size and prevent the classifiers of extracting information primarily

of the majority class (also known as “imbalance problem”; He &

Garcia, 2009; L�opez et al., 2014; Sun et al., 2009), we applied a strati-

fied cross-validation scheme. In this scheme, an equal number of indi-

viduals per group is assigned to the training set to avoid

misclassifications due to imbalance and associated biases in prediction

error assessment (He & Garcia, 2009; L�opez et al., 2014; Sun

et al., 2009; please see Section 2.4 for details).

To validate the trained classifier, we exploratorily tested the

trained classifiers on an independent data set of 10 ALS mimics. These

ALS mimics expressed symptoms that led to the impression of an ALS

disease, but were diagnosed to suffer from another disorder. Details

and results will be presented in Appendix S1.

Disease severity was consecutively assessed during regular

follow-ups with the revised ALS Functional Rating Scale (ALSFRS-R;

Cedarbaum et al., 1999). To further relate neuroimaging features to

the individual disease state and trajectory at the time of MRI acquisi-

tion, the D50 disease progression model was applied (Poesen

et al., 2017; Prell, Gaur, Steinbach, Witte, & Grosskreutz, 2020;

Steinbach, Batyrbekova, et al., 2020; Steinbach, Guar, et al., 2020a).

The D50 model uses consecutive scorings of patients via the

ALSFRS-R to fit an individualized sigmoidal state transition from full

health to functional loss. According to recent improvements of the

D50 model, a variable elevated functional reserve level up to

5 months prior to symptom onset was applied as offset for the calcu-

lation of the curve. We thus accounted for the common uncertainties

in the exact time of symptom onset as remembered and reported by

the patients. Main resulting parameters of the D50 model are: the

D50 value depicting overall disease aggressiveness (defined as the

estimated time since symptom onset taken in months for a patient to

lose 50% of his/her functionality), and local measures of the disease

at the time of MRI, namely the calculated functional state (cFS), the

calculated functional loss (cFL), and the relative D50 (rD50). The latter

depicts the individual disease covered, independent of aggressiveness

as an open-ended reference point with 0 defining symptom onset and

0.5 depicting the time-point of halved functionality (Steinbach, Gaur,

et al., 2020b; Steinbach, Batyrbekova, et al., 2020). More traditional

disease metrics were also assessed, that is, the symptom duration

(months from symptom onset until MRI scan) and the progression rate

[calculated as (48-ALSFRS-R)/symptom duration].

Demographic and clinical data is summarized in Table 1. After

matching, individuals with ALS did not differ from HCs in gender (odds

ratio = 0.64; p = .186) or age (T154 = 1.54; p = .114).

All procedures conducted for this study were approved by the

local ethics committee (Nr 3633-11/12) and all experimental proce-

dures were in accordance with the ethical standards defined in the

1964 Declaration of Helsinki and its later amendments.

2.2 | Preprocessing imaging data

2.2.1 | Scanning parameter

MRI images were collected using a 1.5 T whole-body MRI scanner

(Siemens Sonata) with a manufacturer's four-channel phased array

head coil. T1-weighted anatomical images, serving as structural MRI

data, were collected with 1 mm isotropic resolution (FLASH 3D,

TR/TE = 15 ms/5 ms, FA 30�, FOV = 240 � 256 mm, slice thickness

1 mm, pixel size 1 mm � 1 mm). Blood-oxygenation level dependent

signal (BOLD) functional images were obtained with the standard

gradient-echo echo planar imaging (EPI) pulse sequence:

FOV = 256 � 256 mm, slice thickness 3 mm, pixel size 4 mm � 4 mm

(64 � 64 matrix, 40 slices), TR/TE = 3,060 ms/40 ms, flip

angle = 90�, 137 volumes).

Subjects were instructed to let their mind wander during the

6.98 minutes resting state scan (TR = 3.06 s, 137 scans).

2.2.2 | Structural MRI

Preprocessing of the structural data (T1 images) was conducted with

the Statistical Parametric Mapping software (SPM12; Wellcome Trust

Center of Neuroimaging, London, UK: http://www.fil.ion.ucl.ac.uk/

spm) by applying the voxel-based morphometry (VBM) toolbox

8 (Matsuda et al., 2012): all 3D T1-weighted MR images were first

segmented into gray matter volume (GMV), white matter volume

(WMV), and cerebrospinal fluid (CSF) components, and registered

using affine transformations followed by a nonlinear registration to a

standard SPM template (IXI-550 MNI template; Ashburner &

Friston, 2005). The gray matter anatomical images were then normal-

ized to MNI space by using the implemented Diffeomorphic Anatomic

Registration Through Exponentiated Lie (DARTEL) algebra algorithm

(IXI550 template; McConnell Brain Imaging Center, DARTEL normali-

zation; Yassa & Stark, 2009). The voxel values were multiplied with

the Jacobian determinant during normalization. Finally, the images

were further smoothed using an 8-mm full-width-half-maximum

(FWHM) Gaussian kernel.

Total GMV, WMV, and CSF were estimated by integrating all

voxel values within the segmented GMV, WMV, and CSF, respec-

tively, and normalized by the total intracranial volume (TIV), where

TIV = GMV + WMV + CSF (Menke, Agosta, Grosskreutz, Filippi, &

Turner, 2017; Welton et al., 2019).

THOME ET AL. 683

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm


2.2.3 | Resting state functional MRI

The rsfMRI data were corrected for differences in time acquisition via

realignment to the first image, and then re-sliced to the mean image

for each subject. Six realignment parameters for changes in motion

across the different planes were derived. The realigned and resliced

images (mean image) were co-registered to the anatomical image of

each subject. Functional images were then spatially normalized to the

MNI standard template (deformation field saved during segmentation,

see Section 2.2.2) and smoothed with a 6 mm FWHM Gaussian

kernel.

2.2.4 | ROIs and covariates

Regions of interest (ROIs) were selected based on the most common

findings of alterations in resting state functional connectivity (rsFC) in

ALS (for a systematic overview, please see Table S1). We decided to

base our selection on expert knowledge, as the limited sample size of

our data set restricts performing data-driven feature selection steps

to identify relevant ROIs and at the same time leave a sufficiently

large sample to assess an independent and robust out-of-sample pre-

diction error (see Cearns et al., 2019; Koppe et al., 2020). Broadly,

two approaches have been applied to study rsFC in ALS in the

TABLE 1 Sample characteristics

ALS HC

STATSN = 97 N = 59

Mean/N SD/% Mean/N SD/% Test-statistic dof p

Age at MRI (years) 57.92 11.1c 55.06 10.6c 1.59a 154 .114

Gender

Male 60 61.9d 30 50.8d 0.64b .186

Female 37 38.1d 29 49.2d

Handedness

Right 89 91.8d 54 91.5d

Left 8 8.2d 5 8.5d

Onset-type

Bulbar 28 28.9d

Limb 69 71.1d

Riluzole intake at MRI

Yes 80 82.5d

No 17 17.5d

Relevant riluzole intake during the disease course (>50%)

Yes 78 80.4d

No 19 19.6d

Age at symptom onset (years) 56.4 11.0c

Symptom duration (months) 18.59 17.98c

ALSFRS-R total score (points) 39.15 6.09c

Progression rate (points lost per month) 0.65 0.53c

D50 (months) 41.29 39.84c

rD50 0.25 0.1c

Phase

I 50 51.5d

II 47 48.5d

cFL (points lost per month) 0.91 0.9c

cFS (points) 38.99 5.8c

Abbreviations: ALS, amyotrophic lateral sclerosis; ALSFRS-R, ALS Functional Rating Scale Revised; cFL, calculated functional loss; cFS, calculated functional

state at the time point of scanning; dof, degrees of freedom; D50, overall disease aggressiveness; HC, healthy controls; MRI, magnetic resonance imaging;

rD50, relative disease aggressiveness; SD, standard deviation; p, p-value.
aT-value.
bOdds ratio.
cStandard deviation.
d%.
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literature, a seed-based approach, which assesses the coherence

between a single brain region (or “seed”) with multiple other brain

regions, and a large-scale brain network approach, where neuronal activ-

ity is separated into distinct spatial patterns of coherent activity, for

example, via independent component analysis or related methods

(e.g., Allen et al., 2011; Menon, 2011). Reduced rsFC has been observed

between brain regions associated with motor processing, such as the pri-

mary motor cortex, the precentral gyrus, the postcentral gyrus, the sup-

plementary motor area (SMA), and the cerebellum, together forming the

sensorimotor network (seed-based: Jelsone-Swain et al., 2010; Lee, Lee,

Lee, Park, & Ryu, 2019; Loewe et al., 2017; Meoded et al., 2015; Qiu

et al., 2019; Schmidt et al., 2014; Zhou et al., 2014; large-scale brain net-

works: Menke, Proudfoot, Talbot, & Turner, 2018; Mohammadi

et al., 2009; Trojsi et al., 2015; see also: Douaud, Filippini, Knight, Tal-

bot, & Turner, 2011; Fekete, Zach, Mujica-Parodi, & Turner, 2013;

Menke et al., 2017; Schulthess et al., 2016). Altered functional connectiv-

ity has been further detected between brain regions related to self-

referential and autobiographical memory processing, namely, the poste-

rior cingulate cortex, the precuneus, and the ventromedial prefrontal cor-

tex, collectively known to form the default mode network

(Menon, 2011), with some studies reporting increased rsFC (Agosta

et al., 2013; Meoded et al., 2015; Schulthess et al., 2016) while others

report decreased rsFC within the latter network (Li, Zhou, Huang,

Gong, & Xu, 2017; Mohammadi et al., 2009; Trojsi et al., 2015). Further-

more, increased rsFC has been observed between brain regions related

to attention and goal-directed processing (Cole et al., 2012; Marek

et al., 2018), such as lateral prefrontal (e.g., middle, superior frontal gyrus),

and parietal brain regions (e.g., inferior, superior parietal gyrus), together

forming the fronto-parietal network (Douaud et al., 2011; Menke

et al., 2018; Schulthess et al., 2016; Serra et al., 2019; but see also Trojsi

et al., 2015).

To accommodate for findings in both approaches (i.e., seed-based

and large-scale brain network approaches), ROI masks were taken

from the functional ROI atlas introduced by Shirer, Ryali,

Rykhlevskaia, Menon, and Greicius (2012) (https://findlab.stanford.

edu/functional_ROIs.html). The atlas provides masks for the most

common large-scale brain networks (i.e., network masks), as well as

masks covering the individual brain regions included within those net-

works (see also Dadi et al., 2019). The dimensions of the ROI masks

were resliced to match the dimensions of the MRI and fMRI images.

In agreement with the reported findings to date, we focused on

the sensorimotor network, the fronto-parietal network, as well as the

default mode network. Individual brain regions from these large-scale

network masks provided by Shirer et al. (2012) were selected based

on the reported group differences found in the literature (see

Table S1). Specifically, the following brain regions were selected: the

precentral/postcentral gyrus, the SMA, the thalamus (thal), and the

cerebellum (cereb) from the sensorimotor network (SMN); the medial

prefrontal cortex (mPFC), and the posterior cingulate cortex (PCC)

from the default mode network (DMN); as well as the superior frontal

gyrus (SFG), the superior, and the inferior parietal cortex (SPC, IPC)

from the fronto-parietal network (FPN).

2.3 | Feature extraction

Three distinct feature sets relating to brain volume (termed “VOL”),
resting state functional connectivity (termed “rsFC”), and nonlinear

resting state network dynamics (termed “rsDyn”) were selected to

investigate their separate and combined contribution to prediction.

2.3.1 | Feature set 1: brain volume (VOL)

From the preprocessed data, we selected global measures, namely the

normalized and non-normalized GM, WM and CSF volumes, and the

TIV (amounting to N = 7 global VOL features), as well as the normal-

ized regional GMV per subject within the individual pre-selected ROIs

(amounting to N = 12 regional VOL features; see also Section 2.2.4).

2.3.2 | Feature set 2: resting state functional
connectivity

BOLD time series from the preprocessed fMRI images were extracted

within the selected ROIs (Section 2.2), band-pass filtered (0.012–

0.1 Hz), and averaged. RsFC was assessed by setting up N � 1 multi-

ple linear regression models for each of the N ROIs (i.e., without

regression each feature on itself), considering one ROI as a regressor

of interest each time. Motion artifacts (six realignment parameters,

cf. Section 2.2), as well as physiological artifacts (i.e., the average CSF

and white matter signals accounting for cardiac activity and respira-

tion) were included as regressors of no interest (Chenji et al., 2016; Li

et al., 2017, 2018; Meoded et al., 2015; Zhang et al., 2017). The

inferred ROI regression coefficients [N � (N � 1) = 132] were used as

rsFC features for further analyses.

2.3.3 | Feature set 3: resting state dynamics

To assess resting state network dynamics, we inferred RNN based

latent variable models from the extracted time series (cf. Section 2.2).

RNNs are particularly well suited for this task as they are universal

dynamical system approximators, meaning they are capable of rep-

resenting almost any type of dynamics (Funahashi & Nakamura, 1993;

Kimura & Nakano, 1998). The proposed model in particular has more-

over previously been shown to successfully retrieve dynamics from

fMRI recordings (Koppe et al., 2019) and render dynamically interpret-

able features (Durstewitz et al., 2020).

The models consist of a latent state equation which specifies the

evolution of the system's state, and thus the generative system dynamics

(Equation (1)), and an observation equation which links this state to the

actual extracted time series, or observations (Equation (2)). In more detail,

the temporal evolution of the latent state zt �ℝM is given by

zt ¼Azt�1þWφ zt�1ð Þþhþ εt, εt �N 0,Σð Þ, ð1Þ
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where, A is a (M � M) diagonal matrix of auto-regression weights,

W is an (M � M) off-diagonal matrix of connection weights, φ(x):

=max(x,0) is an elementwise piecewise linear activation function, h is

a vector of constant bias terms, and εt represents Gaussian process

noise with diagonal covariance Σ. The observations are then gener-

ated from these states by

xt ¼B hrf �zτ:tð Þþ Jrtþηt,ηt �N 0,Гð Þ, ð2Þ

with, B representing a (N � M) matrix of regression coefficients

multiplied with the time-lagged latent states convolved with the

hemodynamic response function (hrf ), rt is a P-dimensional vector of

noise artifacts comprising motion artifacts (i.e., six realignment param-

eters, cf. manuscript Section 2.2), as well as physiological artifacts

(i.e., the average CSF and white matter signals accounting for cardiac

activity and respiration; Chenji et al., 2016; Li et al., 2017, 2018;

Meoded et al., 2015; Zhang et al., 2017; cf. Section 2.2) and J is their

(N � P) regression coefficient matrix. Lastly, ηt, is a vector of Gaussian

observation noise with diagonal noise covariance Г. Note that Equa-

tion (2) takes on the form of the conventional linear regression model

as implemented in SPM with the latent states acting as predictors of

interest.

For each subject, the extracted time series were handed over to

the inference algorithm and RNN models with latent state dimension

M = 6, …, 12 regularized toward manifold attractor configurations

with regularization factor λ = 1000 were inferred (please see Schmidt,

Koppe, Monfared, Beutelspacher, & Durstewitz, 2021 for details on

inference and regularization approach). From these, we selected

models with M = 8 latent states for further analysis, as these gener-

ated the lowest mean squared error between true and predicted

observations, where the prediction was obtained by running Equa-

tion (2) on the inferred states (running the full generative model

[Equations (1) and (2)], also resulted in lowest errors for M = 7 and

M = 8; see also Figure 3d for an example of BOLD response predic-

tion based on the full generative model).

As each model consists of a large set of parameters Θ = {A, W, h,

Σ, B, J, Г}, rather than handing over the entire parameters as rsDyn

feature set to the classification algorithms, we defined summary sta-

tistics capturing first and second moments of the parameter distribu-

tions, as well as other features directly related to network dynamics

and state space geometry. The state space represents the space

spanned by all dynamical variables, in this case the latent states z, and

thus define the dynamical system. The geometric objects in this space,

such as fixed point attractors, k-cycles and chaotic attractors, deter-

mine how the system changes over time, that is, its dynamics (please

see Durstewitz et al., 2020 for detailed examples and a simple intro-

duction to dynamical systems). The features we extracted relate to

these dynamics, although we emphasize that the chosen set is not

exhaustive, and rather represents a first attempt at collecting dynam-

ics features which are easily accessible and at the same time remain

interpretable.

We enumerate these features with the labels “FD1”–“FD18” for

simplicity and list these features below for completeness. We also

provide a loose interpretation for readers without DS background and

refer the reader to the supplement for more extensive information on

the formal interpretation of these features (see section 1.1 of

Appendix S1), and to MATLAB code for replication purposes (https://

github.com/JanineT-oss/ALS_PLRNN_classification). We (analytically)

assessed the total number of fixed points (“FD1”) as well as the num-

ber of unstable fixed points (“FD2”; together indicative of the pres-

ence of fixed point attractors and roughly relating to “state space

complexity”), the average over the maximum absolute imaginary

eigenvalues of the transition matrix around all fixed points (“FD3”;
indicative of spiral points and oscillatory behavior), the average abso-

lute deviation of the maximum absolute eigenvalues around these

points from 1 (“FD4”; indicative of how close the system is to a bifur-

cation, cf. Durstewitz, 2017), the variance of the parameters in the

transition matrices (where high variance favors a less stable and more

chaotic dynamics, cf. Bertschinger & Natschläger, 2004) separated for

both regularized and nonregularized parameters (“FD5–FD7”), the

average magnitude of the bias terms h separated for regularized and

non-regularized parameters (“FD8” and “FD9”; relating to mean activ-

ity of the system), the (numerically assessed) number of stable cycles

(“FD10”; capturing stable oscillations of the system), the net sum of

weights W averaged across states (“FD11–FD12”; indicating average

rate of change across states) separately for regularized and non-

regularized parameters, the net sum of absolute weights averaged

across states and evaluated along the system's trajectory (“FD13”;
relating to functional interactions), the average Euclidean distance

between the inferred states over time (“FD14”; also relating to the

velocity of the dynamics), and the average variance of the states over

time (“FD15”; loosely relating to the magnitude of oscillations). As

another measure to characterize the variability and complexity of the

dynamics, we quantified how often the system switched between dif-

ferent orthants in state space (“FD16”). Lastly, we assessed the aver-

age and variance over columns of regression coefficient matrix

B (“FD17–FD18”; where the variance for instance indicates whether

state information is distributed evenly or unevenly across observa-

tions). In total, this amounted to N = 18 features defined on the

inferred DS and its parameters (please see section 1.1 of Appendix S1

and MATLAB code for details, and Durstewitz et al. (2020), for further

information on DS theory).

2.3.4 | Age correction

Lastly, a well-documented confounding factor in neuroimaging fea-

tures sets and classification studies is age, showing a strong relation-

ship to both brain volume (Batouli, Trollor, Wen, & Sachdev, 2014;

Royle et al., 2013; Wierenga et al., 2018; see also Fjell &

Walhovd, 2010), and function (Betzel et al., 2014; Cunningham, Tom-

asi, & Volkow, 2017; Zhang et al., 2016; see also Mak et al., 2017). In

fact, performing a simple classification analysis by age on our own

sample revealed a classification accuracy of 60.85%, despite age-

matching our groups prior to the analysis (please see section 1.2 of

Appendix S1 and Figure S1). To therefore explicitly rule out that our
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classifiers learned age-related features, we additionally removed

effects of age from all features by linear regression (Fratello

et al., 2017). The residuals from these analyses were used as features

for the classifiers.

2.4 | Classification

2.4.1 | Classifier

Random forest (RF) classifiers (Breiman, 2001) were used to classify

individuals with ALS and HCs. The RF classifier is an ensemble tree-

based learning algorithm (Breiman, 2001) which achieves classification

by averaging over the outputs, that is, the “votes”, of multiple single

trees (Breiman, 1996a, 1996b, 2001). Each tree represents a separate

independent classifier trained on a random sub-sample (a procedure

referred to as bagging), and a random subset of features. Ensemble

tree-based learning algorithms have become very popular in various

scientific fields, including medicine and epidemiology, as they can rep-

resent nonlinear relationships, large numbers of features, and are not

tied to a specific data distribution (Strobl, Malley, & Tutz, 2009). At

each leaf node of a tree, a subset of features is randomly (re-)drawn

and the best separating feature is selected to further split the tree. In

this way, the tree continues to grow until a predefined number of

observations in a leaf node is reached. The number of trees, the num-

ber of features per tree, the number of observations in the last leaf

node, and the number of observations drawn to build each tree are

tunable parameters of the algorithm. At the same time RF classifiers

are quite robust, in the sense that they are rather insensitive to

parameter changes or number of input features (Probst, Wright, &

Boulesteix, 2019; Strobl et al., 2009). This spares the need for addi-

tional feature selection and parameter fine-tuning steps that would

come with an increased risk of overfitting and poor generalization, as

for instance needed in neural networks and, to a lesser degree, sup-

port vector machines (SVMs). Such additional steps need to be vali-

dated on an independent data set (please see Durstewitz et al., 2019;

Koppe et al., 2020 for reviews), which in our case is challenging in

light of the limited sample size available (cf. Koppe et al., 2020; Probst

et al., 2019). We therefore fixed the RF parameters to the common

default values during training (number of trees = 5,000; number of

features available at each split = √n; minimum leaf size = 1; sample

size drawn for each tree = 2/3; e.g., Probst et al., 2019).

Feature importance

Beside an average classification vote, the RF algorithm also enables to

ascribe each single feature x a so-called importance score which

assesses the relative contribution of each feature in predicting the

output y. The importance score of x is assessed by averaging the pre-

dictions on the left-out sample (out-of-bag sample) over all trees con-

taining x, and subtracting from it the predictions obtained after

randomly permuting x (Breiman, 2001). It is important to note that the

importance of a feature can only be interpreted in the context of the

features included in the classifier as it depends on and interacts with

the choices the algorithm makes on all of the features.

Classification certainty

To obtain an estimate of the level of certainty by which an RF classi-

fier assigned each subject to the ALS group, we assessed the relative

frequency of ALS votes across all trees. High values (close to 1) indi-

cate a high level of certainty for belonging to the ALS group as many

trees voted for ALS consistently in this case.

2.4.2 | Cross-validation

The estimation of the out-of-sample prediction error (PE) was per-

formed via stratified five-fold cross-validation (CV; Probst et al., 2019;

Varma & Simon, 2006; see also Ferraro et al., 2017; Sarica

et al., 2017; Schuster et al., 2016), to avoid biases in the PE assess-

ment due to imbalanced training set sizes (He & Garcia, 2009; L�opez

et al., 2014; Sun et al., 2009). The folds consisted of N = 22 individ-

uals with equal sample size per group, each fold serving once as test

set for PE assessment. The remaining 42 subjects which were not

assigned to any fold to warrant equal sample sizes were added to the

test set such that each test set consisted of 22 + 42 = 64 subjects.

To avoid potential sampling related effects and obtain a more robust

PE estimate, we repeated this procedure five times, each time ran-

domly redrawing the five folds. As out-of-sample PE estimates, we

assessed the balanced accuracy, the sensitivity, and the specificity

averaged across all test sets.

Individuals with more than 10 missing values were excluded when

training the classifiers (amounting to N = 6 exclusions when training

on rsFC and rsDyn features).

2.5 | Statistical analyses

Demographic characteristics were compared by applying independent

sample t-tests (age), and χ2-test (gender). Multivariate classification

was performed via the RF classifiers. Since the multivariate RF classi-

fiers may identify important features, but do not allow to interpret the

exact direction of their relationship, we followed up on these analyses

with post hoc independent t-tests. While these tests neglect higher

order interaction effects, they may at least indicate whether volumet-

ric features were larger or smaller, or functional connectivity was

higher or lower between ALS and HCs. Effect sizes were calculated

according to Cohen's d for unequal sample sizes (Cohen, 1988;

Lenhard & Lenhard, 2016). Moreover, Pearson correlation coefficients

were inferred to investigate the linear relationship between these fea-

tures, as well as the classification certainty, and ALS characteristics

(i.e., cFS, cFL, D50, age at symptom onset, symptom duration, and

progression rate). Statistical significance was initially set to p< .05 and

the threshold was Bonferroni adjusted for multiple comparisons. All

analyses were conducted in MATLAB (version 2019b).
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3 | RESULTS

We assessed the ability of classifying ALS patients and HCs based

on brain volume (VOL), resting state functional connectivity (rsFC),

and resting state dynamics (rsDyn), as well as based on combina-

tions of these feature sets, respectively (i.e., multimodal classifiers;

see also Figure 1). Please note that we have refrained from per-

forming a feature selection step on the feature sets, as a selection

needs to be done on a separate sample. Using the same sample

would result in an underestimation of the PE. Given the limited

sample size of the present investigation, an efficient splitting would

not have been feasible.

3.1 | Feature set 1: VOL

The RF classifier trained on VOL features achieved a mean balanced

accuracy of 59.66%, a mean specificity of 66.93%, and a mean sensi-

tivity of 52.38% (see Table 2, Figure 2a). Averaged feature importance

scores indicated that, in descending order, the normalized global

F IGURE 1 General procedure. Time series and volumes from hub brain regions of interest (ROI) of three major resting state networks were
extracted: the fronto-parietal network (FPN), the default mode network (DMN), and the sensorimotor network (SMN) during resting state
functional MRI (fMRI). Global brain volume (GMV, WMV, CSF, and TIV), as well as regional GMV of ROIs were estimated for each individual
(feature set 1: VOL). For the extracted time series, features relating to functional connectivity (feature set 2: rsFC) and nonlinear resting state
dynamics (feature set 3: rsDyn) were assessed. Network dynamics were inferred subject-wise via recurrent neural networks (RNNs). Features
were then assessed based on the inferred RNNs illustrated here in terms of a flow field containing stable (open circles) and unstable (filled circles)
fixed points, and nullclines (blue and red lines). Feature sets were used to build random forest classifiers classifying group membership (ALS
vs. HC) based on the unimodal feature sets, as well as based on two and three (i.e., multimodal) feature sets. BOLD, blood-oxygen level
dependent signal; CSF, cerebrospinal fluid; GMV, gray matter volume; TIV, total intracranial volume; WMV, white matter volume

TABLE 2 Classification performance
of all random forest classifiers

Feature set

Accuracy Sensitivity Specificity

Mean SEM Mean SEM Mean SEM

VOL 59.66 1.19 52.38 1.44 66.93 2.40

rsFC 61.66 1.50 54.74 1.66 68.57 1.43

rsDyn 56.35 1.37 56.42 2.48 56.29 2.09

VOL + rsFC 66.82 0.01 62.50 0.02 71.14 0.04

VOL + rsDyn 62.85 0.01 63.42 0.01 62.29 0.03

rsFC + rsDyn 64.36 0.01 61 0.01 67.71 0.02

VOL + rsFC + rsDyn 65.01 0.005 58.58 0.02 71.43 0.01

Abbreviations: rsFC, resting state functional connectivity; rsDyn, resting state dynamics; SEM, standard

error of the mean; VOL, brain volume. The bold values represent the highest accuracy/sensitivity/

specificity.
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WMV, the GMV of the right thalamus, the normalized global CSF vol-

ume, the WMV, as well as the GMV of the bilateral mPFC ranged

among the five most important features in classifying groups (see

Figure 2b).

Subsequent t-tests confirmed that some of these features dif-

fered significantly between groups. Compared with HC, individuals

with ALS showed an increased CSF volume (T151 = 3.69, pcorr = .002,

dcohen = 0.61), and marginally reduced GMV of the bilateral mPFC

(T153 = 2.72, pcorr = .087, dcohen = 0.44). No differences between

groups were observed in the GMV of the right thalamus, or the WMV

(normalized or non-normalized; pcorr-values > .1; see also Figure 2c,d;

Table S2).

3.2 | Feature set 2: rsFC

The RF classifier trained on rsFC features achieved a mean balanced

accuracy of 61.66%, a mean specificity of 68.57%, and a mean sensi-

tivity of 54.74% (see Table 2, Figure 2f). Averaged feature importance

scores indicated that, in descending order, the rsFC between the PCC

and the right SFG, the PCC and the right IPC, the PCC and the left

SFG, the right IPC and the PCC, as well as the PCC and the bilateral

cerebellum ranged among the most important features in classifying

groups (Figure 2g).

Subsequent post hoc t-tests confirmed that these features signifi-

cantly differed between groups. As compared with HC, individuals

F IGURE 2 Classification of ALS versus HCs based on brain volume (VOL) and resting state functional connectivity (rsFC). (a) Mean and
standard error of the mean (SEM) across samples for performance measures of the VOL classifier. Dots represent the performance on individual
test sets. (b) Mean and SEM of feature importance scores of VOL features. The background is color-coded to highlight brain regions related to
global brain volume in gray, the DMN in red, the FPN in green, and the SMN in blue. (c) Mean and SEM of the normalized CSF volume of each
group. (d) Mean and SEM of the normalized mPFC GMV of each group. Group comparisons are reported at a Bonferroni-adjusted threshold in c
and d, and dots represent individual volumina (please see Table S2 for more details). (e).Relationship between the certainty of ALS classification
and symptom duration in individuals with ALS, thresholded at an exploratory level of p < .01. (f) Mean and SEM of classification performance of
the rsFC classifier. (g) Mean and SEM of feature importance scores of rsFC features. The background is color-coded to highlight features related
to the DMN in red, the FPN in green, and the SMN in blue. Please note that for illustrational purposes, we displayed the five most important rsFC
features for each network. (h) Significant group differences in rsFC features at a Bonferroni-adjusted threshold in the univariate analyses. Black
lines indicate decreased connectivity for ALS as compared with HC (please see Table S3 for more details). ** p < .01; (*) p < .1 (Bonferroni-
adjusted); ALS, amyotrophic lateral sclerosis; b, bilateral; Cereb, cerebellum; CSF, cerebrospinal fluid; DMN, default mode network; FPN, fronto-
parietal network; GM, gray matter; HC, healthy controls; IPC, inferior parietal cortex; l, left; mPFC, medial prefrontal cortex; norm, normalized;
PrePostC, precentral/ postcentral cortex; PCC, posterior cingulate cortex; r, right; SMN, sensorimotor network; SFG, superior frontal gyrus; SMA,
supplementary motor area; SPC, superior parietal gyrus; Thal, thalamus; TIV, transcranial volume; WM, white matter
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with ALS showed a reduced rsFC between the PCC and the left and

right SFG (left: T147 = 5.76, pcorr < .001, dcohen = 0.96; right: T146

= 5.69, pcorr < .001, dcohen = 0.97), the PCC and the right IPC (T147

= 5.24, pcorr < .001, dcohen = 0.88), as well as the PCC and the cere-

bellum (T148 = 5.37, pcorr < .001, dcohen = 0.9; Figure 2h).

3.3 | Feature set 3: rsDyn

The RF classifier trained on rsDyn features achieved a mean balanced

accuracy of 56.35%, a mean specificity of 56.29%, and a mean sensi-

tivity of 56.42% (Table 2, Figure 3a). Averaged feature importance

scores indicated that, in descending order, the average variance of the

regression coefficients (FD18; cf. Section 2.3, Figure 3c,e), the Euclid-

ean distance between inferred states over time (FD14), the total num-

ber of unstable fixed points (FD2), the total number of fixed points

(FD1), as well as variance of the parameters in the transition matrices

(FD5) ranged among the five most important features in classifying

groups (see Figure 3b).

Subsequent post hoc Bonferroni corrected t-tests confirmed that

one of these features differed significantly between groups. As com-

pared with HC, individuals with ALS showed an increased average

variance in the regression coefficients (T138 = 3.61, pcorr = .008,

dcohen = 0.63; see Figure 3c).

3.4 | Feature set combinations

Combining individual feature sets (i.e., combination of two or three

feature sets) outperformed unimodal classifiers (see Table 2 and

Figure 4a–c). Specifically, the classifier combining VOL and rsFC fea-

tures achieved the highest classification accuracy (66.82%), followed

by the classifier combining all three feature sets (65.01%).

3.4.1 | VOL and rsFC

We built a classifier by combining all VOL and rsFC features to classify

group membership (ALS vs. HC). The RF classifier achieved a mean

balanced accuracy of 66.82%, a mean specificity of 71.14%, and a

mean sensitivity of 62.50% (Figure 4a–c). Averaged feature impor-

tance scores indicated that overall rsFC features were most important

for classification. In descending order, these features included the

rsFC between the PCC and the right SFG, the PCC and the right IPC,

the PCC and left SFG, the right SFG and the PCC, as well as the right

IPC and the PCC (see also Figure 4d).

Subsequent post hoc t-tests confirmed that these features signifi-

cantly differed between groups. As compared with HC, individuals

with ALS showed a reduced rsFC between the PCC and the left and

right SFG (left: T147 = 5.76, pcorr < .001, dcohen = 0.96; right: T146

F IGURE 3 Classification of ALS versus HC based on resting state network dynamics (rsDyn). (a) Mean and standard error of the mean (SEM)
of classification performance of the rsDyn classifier. (b) Mean and SEM of the feature importance of rsDyn features in classifying ALS diagnosis.
(c) Significant group differences in the univariate analyses in feature FD18 at a Bonferroni corrected threshold (please see Table S4 for more
details on rsDyn features). (d) Examples for true BOLD time series of the mPFC (red), the SFG (green), and the pre- and postcentral cortex (blue),
and (generated) model predictions (gray with 90% confidence interval) of one individual. (e) Schematic illustration of FD18: according to the
model (Equations (1) and (2)), the observed time series are regressed onto each underlying network state zi via regression coefficients
β1,i ,β2,i, …, βn,i �B:,i (see Equation (2)). A low variance across columns of B thus indicates that each state zi is evenly represented across all
observed time series. ALS, amyotrophic lateral sclerosis; FD, feature dynamics (see Section 2.3 for details); HC, healthy controls; mPFC, medial
prefrontal cortex; rel, relative; SFG, superior frontal gyrus
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= 5.69, pcorr < .001, dcohen = 0.97), as well as the PCC and the right

IPC (T147 = 5.24, pcorr < .001, dcohen = 0.88).

3.4.2 | VOL and rsDyn

The classifier combining VOL and rsDyn features achieved a mean

balanced accuracy of 62.85%, a mean specificity of 62.29%, and a

mean sensitivity of 63.42% (Figure 4a–c). Averaged feature impor-

tance indicated that, in descending order, the normalized global

WMV, the average variance of the regression coefficients (FD18), the

GMV of the right thalamus, the bilateral mPFC, as well as the normal-

ized global CSF ranged among the most important features in classify-

ing groups (see also Figure S2a).

Subsequent t-tests confirmed that some of these features dif-

fered significantly between groups. Compared with HC, individuals

with ALS showed an increased CSF volume (T151 = 3.69, pcorr = .002,

dcohen = .61), and an increased average variance in the regression

coefficients (T138 = 3.61, pcorr = .008, dcohen = 0.63), as well as a mar-

ginally reduced GMV of the bilateral mPFC (T153 = 2.72, pcorr = .087,

dcohen = 0.44). No differences between groups were observed in the

GMV of the right thalamus, or the normalized WMV (pcorr's > .1).

3.4.3 | rsFC and rsDyn

The classifier combining all rsFC and rsDyn features achieved a

mean balanced accuracy of 64.36%, a mean specificity of

67.71%, and a mean sensitivity of 61% (Figure 4a–c). Averaged

feature importance indicated that overall features from the rsFC

classifier were most important in classifying ALS diagnosis.

These included the rsFC between the PCC and the left SFG, the

PCC and the right SFG, the PCC and the cerebellum, the PCC and

the right IPC, as well as the PCC and the left thalamus (see also

Figure S2b).

Subsequent post hoc t-tests confirmed that these features signifi-

cantly differed between groups. As compared with HC, individuals

with ALS showed a reduced rsFC between the PCC and the left and

right SFG (left: T147 = 5.76, pcorr < .001, dcohen = 0.96; right: T146

= 5.69, pcorr < .001, dcohen = 0.97), the PCC and the cerebellum (T148

= 5.37, pcorr < .001, dcohen = 0.9), as well as the PCC and the right

IPC (T147 = 5.24, pcorr < 0.001, dcohen = 0.88).

3.4.4 | VOL, rsFC, and rsDyn

The classifier combining all three feature sets achieved a mean

balanced accuracy of 65.01%, a mean specificity of 71.43%, and a

mean sensitivity of 58.58% (see Table 2, Figure 4a–c).

Averaged feature importance scores indicated that overall, rsFC

features were most important in classifying ALS, and yielded the five

features of highest importance. These features included, in des-

cending order, the rsFC between the PCC and the left SFG, the PCC

and the bilateral mPFC, the PCC and the bilateral cerebellum, the PCC

and the right SFG, as well as the PCC and the left thalamus (see also

Figure 4e).

F IGURE 4 Random forest multimodal classifiers. Mean and standard error of the mean (SEM) of the classification accuracy (a), sensitivity (b),
and specificity (c) of multimodal classifiers (two, as well as three feature set combinations), respectively. The mean and SEM of the feature
importance scores of the two classifier achieving the highest (i.e., bimodal: VOL and rsFC) and second highest (i.e., combination of three feature
sets) performance are displayed in d and e, respectively. Yellow indicates VOL features, gray indicates rsFC features, and orange indicates rsDyn
features (see Figure S2 for information on the feature importance scores of the remaining multimodal classifiers). b, bilateral; Cereb, cerebellum;
CSF, cerebrospinal fluid; FD, feature dynamics; l, left; IPC, inferior parietal cortex; mPFC, medial prefrontal cortex; norm, normalized; PCC,

posterior cingulate cortex; PrePostC, precentral/ postcentral cortex; r, right; rsDyn, resting state dynamics; rsFC, resting state functional
connectivity; SFG, superior frontal gyrus; Thal, thalamus; VOL, brain volume; WM, white matter
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Subsequent post hoc t-tests confirmed that some of these most

important features significantly differed between groups. As com-

pared with HC, individuals with ALS showed a reduced rsFC between

the PCC and the left and right SFG (left: T147 = 5.76, pcorr < .001,

dcohen = 0.96; right: T146 = 5.69, pcorr < .001, dcohen = 0.97), the PCC

and the mPFC (T146 = 4.58, pcorr = .001, dcohen = 0.77), as well as the

PCC and the cerebellum (T148 = 5.37, pcorr < .001, dcohen = 0.9; see

Table S3).

3.5 | Relationship between features, clinical
characteristics, and ALS classification

No significant correlations between the most important features per

classifier and ALS clinical characteristics were observed, either after

adjusting for multiple testing (VOL global: pcorr < .007, VOL regional:

pcorr < .004, rsFC: pcorr < .0004, rsDyn: pcorr < .003), or using a more

lenient exploratory threshold of p < .01. No significant correlations

between the certainty of ALS classification per classifier and ALS clini-

cal characteristics were observed after adjusting for multiple testing

(pcorr < .007). Adopting a more lenient exploratory threshold of

p < .01 revealed a positive relationship between the certainty of the

VOL classifier and symptom duration (r = .277, see Figure 2e).

4 | DISCUSSION

The present study expands on efforts to find discriminative and gen-

eralizable neuroimaging biomarkers of ALS which may improve diag-

nostic classification and aid in future therapeutic trials. We examined

the ability of unimodal feature sets relating to brain structure and

brain function, namely brain volume, resting state functional connec-

tivity, and nonlinear resting state dynamics, as well as combinations of

these sets, to predict ALS and HC. For classifiers based on unimodal

feature sets, we obtained classification accuracies of 59.66%, 61.66%,

and 56.35% for brain volume, resting state functional connectivity,

and resting state dynamics, respectively. Importantly, the combination

of feature sets increased classification accuracy to 62.85%–66.88%,

indicating that brain structure and brain function indeed carry comple-

mentary disease related information. Opposed to the more common

view that structural brain information is more discriminative than

functional brain information in this disorder, resting state connectivity

features turned out as most relevant in both the unimodal, as well as

the combined classifiers, highlighting the importance of functional

brain features when discriminating between ALS and HC.

4.1 | Unimodal classifier: Brain volume

Our classifier trained on brain volume achieved a classification accu-

racy of 59.66% (sensitivity = 52.38% and specificity = 66.93%). The

certainty of the classifier was further positively related to symptom

duration, indicating that the volume classifier was more sensitive in

detecting ALS patients at later disease stages at which biomarkers

may be expected to manifest more strongly. The present sample is

characterized by a relatively low level of disease accumulation, that is,

early-stage ALS (see Table 1), which may partly explain the low sensi-

tivity of the volume classifier.

To the best of our knowledge, no study has yet reported results

of a classifier trained exclusively on brain volume, although evidence

toward the importance of volumetric features stems from studies

combining brain volume and structural brain connectivity (Ferraro

et al., 2017; Schuster et al., 2016). These studies reveal slightly higher

classification accuracies, namely 73% and 78.37%, partly attributable

to the combination of these modalities (see also van der Burgh

et al., 2017).

Feature importance scores of the unimodal classifier indicated

that the global brain volume measures WMV, CSF volume, as well as

the GMV of the right thalamus and the mPFC were most important

for classification. These features were found consistently across all

trained classifiers, independent of focusing on unimodal, or multi-

modal feature sets.

Further contrasting groups with respect to the most important

features, revealed that as compared with HC, ALS individuals

exhibited an increased CSF volume, as well as a reduced GMV of the

bilateral mPFC, though the latter was only marginally significant.

These findings are in line with previous investigations (Cerami

et al., 2014; Grosskreutz et al., 2006; Raaphorst et al., 2014;

Steinbach, Gaur, et al., 2020a; Tavazzi et al., 2015; Zhang et al., 2017;

see also Shen et al., 2018). The low level of disease accumulation

might partly explain the rather limited differences in brain volume.

Differences become more evident during later disease stages, which

may further explain a higher rate of misclassification of ALS individ-

uals in the present investigation (see also Menke et al., 2018; Shen

et al., 2018; Steinbach, Batyrbekova, et al., 2020; van der Burgh

et al., 2020). The present investigation points toward the importance

of global features, especially CSF volume, during earlier stages of the

disease, as these ranked relatively stable across the trained classifier

among the most important brain volume features.

4.2 | Unimodal classifier: Resting state functional
connectivity

The classifier trained on resting state functional connectivity between

regions related to large-scale brain networks (i.e., DMN, SMN, and

FPN) achieved an accuracy of 61.66% (sensitivity = 54.74% and spec-

ificity = 68.57%). While this is in line with a previous investigation

focusing on discriminating between groups based on functional con-

nectivity within the DMN (classification accuracy of 65%; Fratello

et al., 2017), another investigation focusing on several resting state

brain networks achieved a higher classification accuracy of 71.50%

(Welsh et al., 2013). The lower performance found by us and Fratello

et al. (2017) may partly be driven by a stricter control for age in the

effect of the input features, which in both cases was ensured by

matching the samples for age and additionally regressing out residual
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age-related effects. While Welsh et al. (2013) also matched their

groups for age, this matching alone was, at least in our case, not suffi-

cient to rule out age-related effects (see also Figure S1). As age signifi-

cantly impacts both functional connectivity (Betzel et al., 2014;

Cunningham et al., 2017; Zhang et al., 2016; see also Mak et al., 2017)

and brain volume (Batouli et al., 2014; Royle et al., 2013; Wierenga

et al., 2018), we therefore argue that a strict age correction is elemen-

tary to identify discriminative features of the disease.

Feature importance scores additionally revealed that resting state

functional connectivity between the DMN and (a) the FPN, as well as

(b) the SMN were particularly relevant for classifying ALS, which is in

line with a previous publication (Welsh et al., 2013).

Our results indicated a reduction in resting state functional con-

nectivity within the DMN, as well as between the DMN and both the

SMN and the FPN, in ALS as compared with HC. Specifically, the

observed reduction was primarily related to the functional connectiv-

ity between the PCC and all other brain regions, supporting findings

of previous investigations (for an overview of functional connectivity

reductions in DMN see Chiò et al., 2014; Trojsi, Sorrentino, Sor-

rentino, & Tedeschi, 2018; Turner et al., 2012; for specific reductions

of PCC functional connectivity see Bueno et al., 2018; Bueno

et al., 2019; Matías-Guiu et al., 2016; Mohammadi et al., 2009). The

PCC and the DMN in general underly self-referential and episodic

memory processing (for an overview see Menon, 2011). Reduced

functional connectivity within this network might be related to epi-

sodic memory deficits reported in ALS (Machts et al., 2014). In sum,

reduced resting state functional connectivity within the DMN and

between the DMN and both the FPN and SMN seem to be critical,

pointing towards the importance of resting brain synchronization for

classifying ALS.

4.3 | Unimodal classifier: Resting state network
dynamics

Network dynamics—which we understand here strictly in terms of

properties of the generative dynamical system underlying the

observed brain activation—is seen in computational neuroscience as

the basis for cognition and computational function (e.g., Durstewitz

et al., 2000; Durstewitz et al., 2019; Koppe et al., 2019; Rabinovich

et al., 2008; Wang, 2001; Albantakis & Deco, 2009; Durstewitz

et al., 2000; Wang, 2001; Wang, 2002, 2008a; Wills, Lever, Cacucci,

Burgess, & O'Keefe, 2005). Aberrant dynamics may in turn cause

many neurological or psychiatric deficits or dysfunctions

(e.g., Armbruster et al., 2012; Floresco, Block, & Maric, 2008;

Forster & Lavie, 2016; Koppe et al., 2020; Rolls, Loh, & Deco, 2008).

Efficiently capturing dynamics may thereby prove effective in discrim-

inating between the diseased and healthy brain.

To assess dynamics, here we investigated a novel approach that

has never been applied in this context before: We inferred piecewise

linear RNNs from the resting state BOLD time-series of each individ-

ual (cf. Section 2.3). We then defined (interpretable) summary statis-

tics on these RNNs which summarize to a certain degree the

properties of the inferred systems and assigned them as features to

train an RF classifier. The resting state dynamics classifier yielded an

accuracy of 56.35% (sensitivity = 56.24% and specificity = 56.29%)

when classifying ALS.

Feature importance scores of individual features revealed that

the average variance of the regression coefficients, the Euclidean dis-

tance of the inferred states over time, the total number of fixed points

and unstable fixed points, as well as variance of the parameters in the

transition matrices ranged among the most important features when

classifying groups. Collectively, these features indicate alterations in

the dynamics relating to instability as well as information disintegra-

tion in the ALS group. Although overall the resting dynamics classifier

performed slightly below the other unimodal classifiers, this is the first

study to demonstrate altered network dynamics in ALS patients using

a novel and recent approach, bearing high potential for future

applications.

Subsequent univariate analyses revealed that the (column-wise)

variance in regression coefficients strongly discriminated between

groups, with ALS individuals characterized by a higher variation as

compared with HCs. This feature measures the variation by which

each of the dynamical variables, or latent states of the DS model, con-

tributes to generating the observed ROI time series (see also

Figure 3e). A low variance indicates that each dynamical variable con-

tributes to a similar degree to all observed time series, and thus infor-

mation contained in the generative DS is evenly distributed in each

ROI. In contrast, a high variance indicates that some dynamical vari-

ables may dominate the information present in a certain ROI over

another. In other words, low values of this feature are indicative of

evenly distributed and integrated information processing across all

examined brain regions, while high values may indicate an integration

loss (i.e., disintegration, see Figure 3e). This could provide first evi-

dence pointing toward a deficit in information integration as a distinct

biomarker of ALS. Note that this feature does not directly indicate

alterations in the underlying generative dynamics. Rather, it suggests

that information transfer may be aggravated, in line with the findings

that altered (and in our case reduced) brain functional connectivity is

an important biomarker of ALS. Although groups did not differ statisti-

cally between the remaining resting state dynamics features identified

as important, the classification was further mainly driven by alter-

ations in fixed points, the latent state velocity, as well as a feature for

which higher values are associated with more chaotic as compared

with stable dynamics. Collectively, these features may indicate alter-

ations in the dynamics relating to increased instability (see also

Appendix S1).

4.4 | Multimodal classification

When we combined the different neuroimaging feature sets, our mul-

timodal classifiers, consisting either of two or three feature sets,

achieved accuracies ranging between 62.85% and 66.82%, thereby

outperforming all unimodal classifiers. The highest classification accu-

racy was achieved by combining brain volume and functional
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connectivity features, followed by the combination of all three feature

sets. Our findings are in line with recent classification studies

reporting higher accuracies when combining, rather than focusing on

unimodal feature sets such as combining brain volume and structural

connectivity (DMN: 65.0%, fractional anisotropy [FA]: 58.2%, DMN

+ FA: 66.70%–67.50%; Fratello et al., 2017).

Feature importance scores of the multimodal classifiers provided

further evidence for the relevance of brain function, indicating that

functional connectivity features were most important in classifying

ALS (both observed for the combination of two, as well as three fea-

ture sets). Once more, subsequent univariate analyses revealed

reduced resting state functional connectivity in ALS as compared with

HC between the DMN and the FPN, as well as between the DMN

and the SMN (for previous overviews see Chiò et al., 2014; Trojsi

et al., 2018; Turner et al., 2012). Although previous investigations

mainly focused on structural brain features (for an overview see

Grollemund et al., 2019), our evidence therefore undermines the role

of functional brain features as discriminative biomarkers of ALS.

4.5 | Methodological differences to other studies
and explaining classification accuracy differences to
other studies

Several explanations may account for differences in classification

accuracies obtained by us in contrast to other studies. First, the pre-

sent sample is characterized by a relatively low level of accumulated

disease at the time of MRI scanning: patients had a mean relative D50

(rD50) of 0.25 and could all be allocated either to disease phases I or

II (see also Table 1). This probably affects both volumetric and func-

tional features, as additional disease accumulation along with the dis-

ease course will lead to larger differences in these features and

therefore higher discriminative power on a case–control level (Menke

et al., 2018; Shen et al., 2018; Steinbach, Batyrbekova, et al., 2020;

van der Burgh et al., 2020).

Second, we controlled for the effect of age on classification perfor-

mance by both age matching groups, and subsequently removing linear

effects of age from all features. This may partly explain the slightly lower

classification performance than observed in some studies, as a few of

these studies did not match for age at all (Ferraro et al., 2017; Schuster

et al., 2016), or did not regress out residual age-related effects (Sarica

et al., 2017; Welsh et al., 2013). This notion is supported by a study fol-

lowing a comparable procedure in removing age effects and also provid-

ing slightly lower classification accuracies (Fratello et al., 2017).

Differences in classification performance could furthermore be

related to the applied PE assessment scheme. While we applied a

stratified five-fold cross-validation where accuracy was averaged

across the five folds (see also Sarica et al., 2017), others selected the

best model across their ten-fold cross-validation (Schuster

et al., 2016), or used a different validation scheme such as leave-one-

out cross validation (Pagani et al., 2016; Welsh et al., 2013). Both of

the latter strategies can bias the PE estimate for instance by causing

overfitting (e.g., Koppe et al., 2020; Vabalas, Gowen, Poliakoff, &

Casson, 2019; Varma & Simon, 2006). Moreover, while we trained the

classifier on all pre-defined features, others applied feature selection

steps prior to training, where feature selection was performed on data

used for testing/PE assessment (e.g., in a non-nested feature selection

fashion; Pagani et al., 2016; Sarica et al., 2017; Schuster et al., 2016),

also potentially causing a biased PE estimate (Cearns et al., 2019;

Koppe et al., 2020; Vabalas et al., 2019). Lastly, differences in accu-

racy could also be due to differences in sample sizes between studies

which may affect classification performance indirectly by affecting the

possible complexity or the standard error of the learned classifier (see

also Durstewitz et al., 2019; Dwyer, Falkai, & Koutsouleris, 2018;

Koppe et al., 2020).

5 | LIMITATIONS

Several limitations of the present investigation should be mentioned.

The (f)MRI recordings in the present study were collected using a 1.5

Tesla whole-body MRI scanner while other classification studies were

based on a 3 Tesla scanner (Bede et al., 2018; Ferraro et al., 2017;

Fratello et al., 2017; Sarica et al., 2017; Schuster et al., 2016; Welton

et al., 2019). The lower magnetic field strength applied here may be

inferior in detecting subtler changes related to the disease due to a

smaller signal-to-noise ratio. This might partly account for the some-

what more modest sensitivity level of the volume classifier, in contrast

to the unimodal classifier related to brain function, as the present

sample is characterized by a rather low disease accumulation (see

Table 1) and differences in structural brain features become more evi-

dent the more the disease progresses (Menke et al., 2018; Shen

et al., 2018; Steinbach, Batyrbekova, et al., 2020; van der Burgh

et al., 2020). Nevertheless, even though the data was collected on a

less sensitive (f)MRI scanner, we did find predictive features. This was

further supported by an exploratory application of the classifiers on

an independent data set comprising ten ALS mimics (see section 2.2

Appendix S1). If the trained classifiers had rather learned features

unrelated to the specific disease, one could have expected them to mis-

classify ALS mimics more often as ALS, which would be reflected in low

specificities. Instead, however, we observed a comparable pattern of

specificities across all trained classifiers as found when distinguishing

ALS from healthy individuals (see Table 2, section 2.2 Appendix S1, and

Table S5), supporting that the classifiers did learn discriminatory ALS-

specific information (Ferraro et al., 2017; see also Feneberg et al., 2018;

Poesen et al., 2017; Van Weehaeghe et al., 2020).

Critically, the findings must be interpreted in the context that the

(f)MRIs used for this study were acquired on a clinical scanner used in

clinical routine procedures from 2009 onwards, which may have impli-

cations for using (f)MRI in ALS as a surrogate parameter applicable in

more common clinical situations (also outside of university settings),

where often only 1.5 Tesla scanners are available. Also, using samples

with low disease accumulation is crucial for early disease detection.

Lastly, the study is based on a relatively small sample size which was

further limited to allow to match the groups according to current age

and gender and therefore control for potential age effects (see also
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Fratello et al., 2017; Pagani et al., 2016; Sarica et al., 2017; Welsh

et al., 2013). Due to the limited sample size, we further decided on

pre-defining features and regions of interest based on previous find-

ings (cf. Section 2.2) or, in the case of network dynamics, on prior

experience and intuition. While on the one hand, this is a safer proce-

dure to avoid overfitting and poor generalization, on the other hand, it

precluded the detection of other potential brain area candidates, or

dynamics features. On the other hand, our feature selection proce-

dure resulted in a higher number of functional connectivity features

than volumetric and dynamics features, the latter of which were com-

parable. Although RF classifiers are particularly robust against differ-

ent numbers of input features (Probst et al., 2019; Strobl et al., 2009),

we cannot entirely exclude the possibility that the importance of the

functional connectivity features was therefore slightly inflated. How-

ever, as the classifier based on all three feature sets did not out-

perform all others, and that the bimodal classifiers all performed in a

similar range, renders this explanation rather unlikely. In any case, this

would once more emphasize the importance of our new tested fea-

ture set of network dynamics and brain volume for classification.

We also want to note that features identified as important here may

only be interpreted as such in the context of the entire investigated fea-

ture set. Since the importance score reflects the average decrease in pre-

diction accuracy caused by a random permutation of a given feature in

each tree (for more details see, e.g., Strobl et al., 2009), it may be partly

related to the interaction with the remaining features (as expected for a

multivariate classifier). Lastly, we did not include structural connectivity

features (as, e.g., measured via DTI), which have been proven to discrimi-

nate well between groups. Integrating this feature set into our multi-

modal classifier could further improve the detection of ALS based on

neuroimaging biomarkers.

6 | CONCLUSION AND OUTLOOK

In the present study, we show that combining functional and struc-

tural neuroimaging features distinctly contributes to the discrimina-

tion of ALS and HC. Specifically, the combination of brain volume and

resting state functional connectivity achieved the highest classifica-

tion performance. Out of all features sets, resting state functional con-

nectivity produced the most discriminative biomarkers overall, being

identified as most important within the multimodal classifiers and

achieving the highest unimodal classification results. Both this feature

set, as well as our RNN features, further indicated that ALS may be

characterized by disturbances in information integration across large-

scale brain networks. Our study is the first to evaluate the potential of

resting state network dynamics as discriminatory biomarkers for ALS.

Larger multicenter data sets are needed to disentangle the effects of

network dynamics and its interaction with other features to develop

on objective neuroimaging markers of ALS.
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