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In diffuse large B-cell lymphoma (DLBCL), the heterogeneity 
of response to standard first-line therapy1 largely relies on 
the tremendous biological complexity of the disease, claim-
ing for an urgent improvement of our capacity to char-

acterize it at diagnosis to guide treatments. Among emerging 
prognosticators, peculiar cytotypes of tumor microenvironment 
(TME) and relative gene sets were shown to predict patients’ 
risk.2–5 We previously recognized prognostic genes reflecting pat-
terns of stromal (myofibroblasts [Myo]) and immune elements 
(CD4+ T and dendritic cells) intriguingly associated with mac-
rophages (Mo).6 These latter as well as the choice of reproduc-
ible biomarkers to capture their functional heterogeneity remain 
an object of intense debate.7 Starting from the notion that Mo 
polarization and inflammatory response may be influenced by 
oxysterol levels via nuclear “Liver X receptors” (LXRs),8,9 we 
recently recognized the prognostic role of LXRα (NR1H3) in 
DLBCL, prompting future investigation on new LXR agonists 
for therapeutic purposes.10

Here, we sought to corroborate our previous observations using 
a decision-tree approach on large independent DLBCL cohorts to 
refine risk stratification integrating TME and clinical features. In 
doing so, we validated NR1H3 as an intriguing M1-Mo-related 
prognosticator, envisioning its potential as a molecular predictor 
toward future approaches of Mo-targeting drugs.

We applied the deconvolution algorithm CIBERSORT4 in 
combination with a decision tree–based approach on 2 large 
independent DLBCL cohorts to recognize the most relevant 
features among clinical and TME prognosticators. The whole 
methodological pipeline is detailed in Figure 1A.

Briefly, GEP data from 928 DLBCL cases (training set; 
GSE117556, Table  1) were deconvoluted to quantify the rel-
ative percentages of 24 TME cytotypes (Suppl. Table S1, 
Figure 1B) and dichotomized according to maximally selected 
rank statistics (surv_cutpoint function implemented in surminer 
R package) based on both progression-free survival (PFS) and 
overall survival (OS). The resulting variables in keeping with 
known clinical prognosticators (cell of origin [COO] subtypes 
and revised International Prognostic Index [Rev-IPI]) and other 
clinical features (gender, age at diagnosis, lactate dehydrogenase 
> upper limit of normal, Eastern Cooperative Group perfor-
mance status, Ann Arbor stage, extranodal involvements, and 
treatment arm) underwent univariate feature selection by apply-
ing log-rank and Cox proportional hazard test on PFS and OS 
(Suppl. Table S2). Then, the selected significant features were 
included in a recursive decision-tree model (partykit package 
implemented in R software).11 To increase the translational 
power of the model, it was reapplied by substituting prognostic 
cell types with consistent molecular surrogates (smooth muscle 
alpha-2 actin encoded by ACTA2 gene for Myo and NR1H3 for 
M1-Mo). The expression values of these 2 genes were dichot-
omized according to a cutoff identified by maximally selected 
rank statistics in 2 groups (high or low) before reapplying the 
recursive model. Finally, we validated the results on an inde-
pendent case set of 137 DLBCL (GSE98588)12 (Suppl. material) 
using Rev-IPI, ACTA2, and NR1H3 expression value dichoto-
mized according to the cutoff previously identified in the training 
set. To overcome the batch effect on normalization derived from 
2 different array platforms, the expression values were prop-
erly scaled. To validate our methods, we used the Transparent 
Reporting of a Multivariable Prediction Model for Individual 
Prognosis Or Diagnosis (TRIPOD) criteria (Suppl. TRIPOD).

Among all clinical and TME features undergone univariate 
analysis, only 12 displayed significant association with both PFS 
and OS (Suppl. Figures S1–S2). As previously observed,6,7 those 
cases with higher predominance of M1-Mo (Suppl. Figure S1A–
B) and Myo showed significantly longer OS and PFS (Suppl. 
Figure S1C–D). Our recursive PFS-based model (Figure 1C) rec-
ognized the Rev-IPI as the first feature splitting the entire study 
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Step 1. Clinical variables collection: GSE117556 dataset including 928 DLBCL patients was used as training set. 
Nine clinical features were considered (gender, age at diagnosis, LDH>ULN, ECOGps, AAStage, extra-nodal 
involvements, Rev IPI, and COO, treatment arm).

Step 2. Biological variables collection: percentages of 24 TME cytotypes as derived by CIBERSORT were 
dichotomized in two groups by maximally selected rank statistics according to PFS and OS in the training set.

Step 3. Univariate feature selection of variables from steps 1-2 based on both PFS and OS using log-rank and Cox 
proportional hazards tests (Table S1). 

Step 4. The twelve significant variables from step 3 were eligible for recursive tree-based model analysis using both 
PFS and OS as outcomes.  

Step 5. Analysis from step 4 selected Rev-IPI, myofibroblasts and macrophages M1 as the most relevant variables 
for PFS, whereas Rev-IPI and macrophages M1 were selected for OS. 

Step 6. Correlation analysis between ACTA2 and NR1H3 and each proportion of TME cytotypes, respectively.

Step 7. Myofibroblasts levels were surrogated with the expression of ACTA2, whereas macrophages M1 with the 
expression of NR1H3.

Step 8. Application of recursive tree-based model analysis using the significant clinical variables from step 3, 
NR1H3 and ACTA2 dichotomized by maximally selected rank statistics according to PFS and OS in the training 

Step 9. Application of CIBERSORT algorithm and correlation analysis to GSE98588 dataset used as validation 
cohort. 

Step 10. NR1H3 and ACTA2 expression values from the validation cohort were dichotomized according to the cutoff 
derived from training set and recursive tree-based model analysis applied including Rev-IPI as clinical variable.
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Figure 1. Decision tree–based model combining IPI and TME cells in DLBCL. (A) Schematic description of the pipeline used for data processing. (B) 
Histograms showing the relative percentages of each cell type in the M24 customized signature as detected by CIBERSORT analysis deconvolution of the 
GSE117556 dataset (n = 928). Decision-tree depicting results of recursive models applied on clinical and biological features built on PFS (C) and OS (D) in the 
training set. The most relevant groups are shown along with survival plots (log-rank test, P < 10−3). Decision-tree showing results of recursive models applied on 
clinical features (Rev-IPI variables), ACTA2 and NR1H3 surrogating Myofibroblasts and M1 macrophages, respectively, built on PFS (E) and OS (F). Most relevant 
groups are shown along with survival plots (log-rank test, P < 10−3). Kaplan-Meier survival plots for PFS (G–H) and OS (I–J) of ACTA2 and NR1H3 dichotomized 
expression combined with Rev-IPI in the validation cohort (GSE98588, n = 98). Adjusted P values as derived from pairwise comparisons using log-rank test 
are shown. ***P ≤ 0.001; **P ≤ 0.01; *P ≤ 0.05; ns (not significant) P > 0.05. AAstage = Ann Arbor Stage; ABC = activated B cell; ECOGps = eastern cooperative oncology group 
performance status; GBC = germinal B center-like; IPI or Rev-IPI = Revised International Prognostic Index; LDH>/≤ULN = lactate dehydrogenase >/≤ upper level of normal; NK = natural killer; 
OS = overall survival; PFS = progression-free survival; TME = tumor microenvironment. 
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Table 1

Patients’ Characteristics

 Training Set Validation Set   

No. of patients 928 137 P Value 

  Gender, N of males (%) 517 (55.7) 76 (55.5) 1
  Age, y: median (IQR) 44.0 (35.0–50.0) 45.5 (36.0–55.0) 0.018
  LDH > ULN, N (%) 388 (41.8) 52 (50.0) 0.134
  ECOGps 3/4, N (%) 105 (11.3) 21 (19.4) 0.022
  AAStage III/IV, N (%) 638 (68.8) 69 (63.9) 0.35
  Extranodal involvement, N (%) 521 (56.1) 28 (25.9) <0.001

Rev IPI (%)   0.029

  Poor 446 (48.1) 44 (42.3)  
  Good 428 (46.1) 47 (45.2)  
  Very good 54 (5.8) 13 (12.5)  
  NA 0 33  

COO (%)   <0.001

  ABC 255 (27.5) 63 (46.0)  
  GCB 543 (58.5) 54 (39.4)  
  UNC 130 (14.0) 20 (14.6)  

Molecular high grade (%) NA

Double hit/triple hit 35 (9.7) NA  
  MYC-normal 309 (85.8) NA  
  MYC-rearranged 14 (3.9) NA  

TME cytotypes

  Tumor cells ABC lowa, N (%) 552 (59.5) 109 (79.6) <0.001
  Tumor cells ABC lowb, N (%) 552 (59.5) 109 (79.6) <0.001
  Tumor cells GCB lowa, N (%) 834 (89.9) 29 (21.2) <0.001
  Tumor cells GCB lowb, N (%) 831 (89.5) 29 (21.2) <0.001
  Naive B-cells lowa, N (%) 792 (85.3) 87 (63.5) <0.001
  Naive B-cells lowb, N (%) 777 (83.7) 106 (77.4) 0.085
  Memory B-cells lowa, N (%) 107 (11.5) 94 (68.6) <0.001
  Memory B-cells lowb, N (%) 107 (11.5) 19 (13.9) 0.516
  Plasma cells lowa, N (%) 237 (25.5) 107 (78.1) <0.001
  Plasma cells lowb, N (%) 699 (75.3) 107 (78.1) 0.548
  CD8+ cells lowa, N (%) 699 (75.3) 55 (40.1) <0.001
  CD8+ cells lowb, N (%) 383 (41.3) 74 (54.0) 0.007
  CD4+ cells lowa, N (%) 417 (44.9) 77 (56.2) 0.017
  CD4+ cells lowb, N (%) 680 (73.3) 100 (73.0) 1
  Gamma delta TC lowa, N (%) 765 (82.4) 124 (90.5) 0.024
  Gamma delta TC lowb, N (%) 763 (82.2) 124 (90.5) 0.021
  Follicular helper TC lowa, N (%) 413 (44.5) 35 (25.5) <0.001
  Follicular helper TC lowb, N (%) 504 (54.3) 35 (25.5) <0.001
  Regulatory cells lowa, N (%) 518 (55.8) 137 (100.0) <0.001
  Regulatory cells lowb, N (%) 808 (87.1) 137 (100.0) <0.001
  NK resting lowa, N Low (%) 830 (89.4) 15 (10.9) <0.001
  NK resting lowb, N Low (%) 223 (24.0) 28 (20.4) 0.414
  NK activated lowa, N (%) 217 (23.4) 0 (0.0) <0.001
  NK activated lowb, N (%) 203 (21.9) 40 (29.2) 0.072
  Monocytes lowa, N (%) 187 (20.2) 11 (8.0) 0.001
  Monocytes lowb, N (%) 187 (20.2) 28 (20.4) 1
  M1-Mo lowa, N (%) 198 (21.3) 112 (81.8) <0.001
  M1-Mo lowb, N (%) 790 (85.1) 113 (82.5) 0.498
  M2-Mo lowa, N (%) 807 (87.0) 56 (40.9) <0.001
  M2-Mo lowb, N (%) 0 (0.0) 29 (21.2) <0.001
  Dendritic cell lowa, N (%) 0 (0.0) 121 (88.3) <0.001
  Dendritic cell lowb, N (%) 0 (0.0) 119 (86.9) <0.001
  Eosinophils lowa, N (%) 0 (0) 0 (0) NA
  Eosinophils lowb, N (%) 307 (33.1) 0 (0.0) <0.001
  Neutrophils lowa, N (%) 371 (40.0) 0 (0.0) <0.001
  Neutrophils lowb, N (%) 824 (88.8) 0 (0.0) <0.001
  Myofibroblasts lowa, N (%) 703 (75.8) 113 (82.5) 0.103
  Myofibroblasts lowb, N (%) 665 (71.7) 0 (0.0) <0.001
  Lymphatic endothelial cells low a, N (%) 223 (24.0) 0 (0.0) <0.001

AQ4

(Continued)
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cohort into good/very good and poor categories (P < 0.001). 
The more favorable one was further subdivided—according 
to the level of Myo infiltration—into “high” and “low” sub-
sets differing significantly in terms of PFS (P = 0.04). On the 
other hand, the proportion of intra-tumor M1-Mo (distinct in 
“high” and “low”) was able to separate the poor category into 2 
smaller subsets, M1-Mo “high” and “low” (P < 0.001), the latter 
being at worst prognosis, independently of double hit or triple 
hit (DH/TH) status (Suppl. Figure S3A). Notably, the good/very 
good and Myo “high” subgroup displayed the best PFS, remark-
ably longer than cases in the Poor/M1-Mo “low” subgroups. In 
terms of OS (Figure 1D), our model confirmed the Rev-IPI as 
main prognosticator (P < 0.001) and recognized the extent of 
M1-Mo infiltration as the only feature identifying—within the 
poor category—patients at very high risk, independently of DH/
TH status (Suppl. Figures S3B). Interestingly, good/very good 
patients showed OS similar to those that, even belonging to the 
poor category, have higher M1-Mo infiltration.

Based on our recent finding6,7 and a new correlation analy-
sis (Suppl. Figure S4A–B), we constructed a decision-tree model 
using the expression of ACTA2 and NR1H3 as molecular surro-
gates of Myo and M1-Mo, respectively. Again, in the PFS-based 
model (Figure 1E), the Rev-IPI subdivided patients into good/
very good and poor categories (P < 0.001). ACTA2 expres-
sion split good/very good patients into 2 additional subgroups 
with significantly different PFS, while the poor category com-
prised patients at worse PFS with no further subcategorization. 
According to OS (Figure 1F), the model confirmed the Rev-IPI 
as the main risk predictor (P < 0.001), showing that the poor 
category included patients at lower NR1H3 expression and 
shortest OS (P < 0.001). Notably, despite belonging to the poor 
category, those expressing higher levels of NR1H3 displayed 
similar OS compared with good/very good patients.

We used an independent set12 of 137 cases to validate these 
findings. In the univariate and multivariate analysis, ACTA2 
showed no correlation with survival, whereas NR1H3 displayed 
a significant prognostic value in terms of both PFS and OS, con-
firmed also by a multivariate analysis including the Rev-IPI and 
COO (Suppl. Figure S5). Our PFS-based model categorized 
patients according to the Rev-IPI and ACTA2 expression and 
split only the good/very good cases into 2 additional subclasses 
with no PFS difference (P = 0.80, Figure 1G). Conversely, within 
the poor category, those at higher NR1H3 expression showed 
longer PFS (almost comparable to the good/very good sub-
group) (Figure 1H). Consistently, in terms of OS, while ACTA2 
did not show any significant stratification in good/very good 
cases (Figure 1I), Rev-IPI poor patients with higher expression 
of NR1H3 largely overlapped with good/very good patients. 
On the other hand, the impact of NR1H3 expression on OS 

was even more evident for the patients classified as at high risk 
based on the sole Rev-IPI (P < 0.001) (Figure 1J). Moreover, the 
recursive model including NR1H3 evaluated on OS (C-index 
[C] = 0.7, standard error [SE] = 0.04 and Akaike Information 
Criterion [AIC] = 259.7) outperformed the one on PFS (C = 
0.61, SE = 0.04, and AIC = 310.9) as well as models including 
ACTA2 (PFS, C = 0.67, SE = 0.04, and AIC = 267.6 and OS, C 
= 0.61, SE = 0.04, and AIC = 310.9).

Here, we corroborate the prognostic value of peculiar TME 
components in DLBCL,6,7 using clinical and transcriptomic data 
from large patient cohorts to build practical tree-based mod-
els of risk stratification. Such an approach may not only enable 
early prognostication, but also help in enriching a subset of 
patients who might benefit from new therapeutic opportunities.

Beyond confirming the prognostic value of the Rev-IPI, we 
pointed out Myo and M1-Mo as key features associated with 
outcomes, independently of DH/TH status. In particular, we vali-
dated (i) a direct correlation between stromal cell infiltration and 
longer PFS in Rev-IPI favorable patients; and (ii) the capacity 
of M1-Mo infiltration extent to mitigate (when higher) the out-
come of patients at high clinical risk and, conversely, to recognize 
(when lower) those at very high risk, in terms of both PFS and OS.

Recent deconvolution analyses of TME revealed intriguing 
association of cellular ecosystems with patients’ survival, high-
lighting on the one hand the prognostic relevance of complex 
interactions between different immune/stromal elements and, on 
the other, a recurrent enrichment of fibroblast- and Mo-related 
signatures in those subsets of DLBCL at relatively favorable 
prognosis.13,14 Moreover, these results remain of arguable trans-
lational value due to the lack of (i) definite mechanistic relation-
ships between TME cells and outcomes, and (ii) robust functional 
biomarkers to be incorporated in practical models of risk predic-
tion. Our previous7 and present results provide novel insights on 
the latter point, supporting the potential usefulness of NR1H3 
and ACTA2 as functional prognostic biomarkers related to spe-
cific TME components, namely M1-Mo and myofibroblasts, 
respectively. Our unsupervised model supports the capacity of 
NR1H3 to identify more favorable cases at higher expression, 
while recognizing patients at very high risk and lower expres-
sion. We envision a potential relevance of such results in guiding 
future strategies of Mo-targeted immunomodulation,10 although 
they still require a comprehensive mechanistic explanation that 
takes into account the impact of different immune and/or stro-
mal elements on tumor behavior. Moreover, despite the current 
lacking of an independent real-world validation, we believe that 
the broad availability of platforms for the routine measurement 
of target genes (ie, NanoString Technology) could add transla-
tional value to our results in the future, thus prompting the gen-
eration of new rationales for TME-oriented therapeutics.

 Training Set Validation Set   

No. of patients 928 137 P Value 

  Lymphatic endothelial cells lowb, N (%) 0 (0.0) 43 (31.4) <0.001
  Artery endothelial cells lowa, N (%) 0 (0.0) 120 (87.6) <0.001
  Artery endothelial cells lowb, N (%) 611 (65.8) 110 (80.3) 0.001
  Adipocytes lowa, N (%) 611 (65.8) 113 (82.5) <0.001
  Adipocytes lowb, N (%) 771 (83.1) 113 (82.5) 0.958
  Pericytes lowa, N (%) 193 (20.8) 118 (86.1) <0.001
  Pericytes lowb, N (%) 813 (87.6) 113 (82.5) 0.127
  R-CHOP like chemotherapy, N (%) 113 (12.2) 24 (17.5) 0.108

aCut-off on PFS.
bCut-off on OS.
Italic values represent significant P values: P < 0.05.
AAStage = Ann Arbor stage; ABC = activated B cell; COO = cell of origin; ECOGps = Eastern Cooperative Group performance status; GCB = germinal center B cell; IPI = international prognostic index; IQR 
= interquartile range; LDH = lactate dehydrogenase; Mo = macrophages; NA = not available; NK = natural killer; OS = overall survival; PFS = progression-free survival; TME = tumor microenvironment; 
ULN = upper limit of normal; UNC = unclassified.

Table 1 (Continued)
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On the other hand, our findings confirm the Rev-IPI as the main 
prognosticator in DLBCL. However, as compared with previous 
studies based on canonical regression or machine-learning models,15 
we highlight here the practical advantage of a tree-based approach 
in improving the accuracy of risk stratification by easily combining 
well-known and novel prognostic determinants.

In conclusion, we provided evidence that the assessment of 
stromal and Mo-related features of DLBCL may be of practical 
help for identifying patients at higher risk, independently of clas-
sical prognosticators. Future studies are needed to (i) mechanisti-
cally clarify the prognostic significance of TME-related features; 
(ii) explore their biological meaning, and (iii) integrate them with 
tumor-related features for a practical improvement of prognosti-
cation and, hopefully, therapeutic prediction in DLBCL.
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