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Tumor immune escape plays an essential role in both cancer progression and immunotherapy responses. For prostate cancer (PC),
however, the molecular mechanisms that drive its different immune phenotypes have yet to be fully elucidated. Patient gene
expression data were analyzed from The Cancer Genome Atlas-prostate adenocarcinoma (TCGA-PRAD) and the International
Cancer Genome Consortium (ICGC) databases. We used a Cell-type Identification by Estimating Relative Subsets of RNA
Transcripts (CIBERSORT) analysis and an unsupervised clustering analysis to identify patient subgroups with distinct immune
phenotypes. These distinct phenotypes were then explored for associations for differentially expressed genes (DEGs) and both
epigenetic and genetic landscapes. Finally, we used a protein-protein interaction analysis to identify key hub genes. We
identified two patient subgroups with independent immune phenotypes associated with the expression of Programmed death-
ligand 1 (PD-L1). Patient samples in Cluster 1 (C1) had higher scores for immune-cell subsets compared to Cluster 2 (C2), and
C2 samples had higher specific somatic mutations, MHC mutations, and genomic copy number variations compared to C1. We
also found additional cluster phenotype differences for DNA methylation, microRNA (miRNA) expression, and long noncoding
RNA (lncRNA) expression. Furthermore, we established a 4-gene model to distinguish between clusters by integrating analyses
for DEGs, lncRNAs, miRNAs, and methylation. Notably, we found that glial fibrillary acidic protein (GFAP) might serve as a
key hub gene within the genetic and epigenetic regulatory networks. These results improve our understanding of the molecular
mechanisms underlying tumor immune phenotypes that are associated with tumor immune escape. In addition, GFAP may be a
potential biomarker for both PC diagnosis and prognosis.

1. Introduction

Prostate cancer (PC) is the most frequently diagnosed type of
cancer and ranks second among the leading causes of cancer-
related deaths in men [1]. Although early detection has
improved significantly, and the 5-year survival rate for
early-stage cancer is excellent, the rate of false-positives is
high for the prostate-specific antigen (PSA) screening test,
and prostate metastatic disease is associated with both poor
outcomes and deceptively low serum PSA levels that can lead
to false-negative results [2]. Thus, it is critical to identify
novel prognostic biomarkers and therapeutic strategies for
improving overall survival (OS) for patients with PC.

Several studies have demonstrated that the tumor micro-
environment has both tumor-antagonizing and tumor-
promoting roles. Tumor-antagonizing immune cells mainly
consist of M1-polarized macrophages, CD8+ cytotoxic T
cells, effector CD4+T cells, natural killer (NK) cells, dendritic
cells (DCs), and N1-polarized neutrophils which are able to
either present tumor cells, kill them directly, or secrete cyto-
kines that interact with malignant cells [3, 4]. Tumor-
promoting immune cells mainly include regulatory T cells
(Tregs) and myeloid-derived suppressor cells (MDSCs) [3].
Notably, cancer cells can eventually evade immune surveil-
lance through a variety of mechanisms and resist the cyto-
toxic effects of immune cells. As a new hallmark of cancer,
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this ability of immune escape provides new opportunities for
cancer treatment strategies. Recently, four groups of micro-
environment immune types have been categorized using
genomic analysis of 14 types of solid cancers. However, con-
sidering their complexity and the dynamic nature of immune
cells, it is evident that a more in-depth evaluation of the asso-
ciations between immune cells and PC is needed.

The programmed cell death-1 receptor (PD-1) is a repre-
sentative immune checkpoint inhibitor expressed in acti-
vated T cells, B cells, and macrophages. Programmed
death-ligand 1 (PD-L1), a ligand of PD-1, is often found on
both tumor cells and antigen-presenting cells and provides
potent inhibitory interactions within the tumor microenvi-
ronment [5]. The major function of PD-L1 limits tumor cells
from evading immunity, but unfortunately, this has become a
main mechanism for immune resistance in the immune
microenvironment. In addition, the expression of PD-L1 in
tumors is often regarded as a negative prognostic factor,
but it is clearly a positive factor for PD-1/PD-L1 treatments
[6].

In this PC study, we established two patient-sample clus-
ters with different immunophenotypes using an integrative
multiomic approach to better understand the molecular
mechanisms of tumor immune escape and found the key reg-
ulatory node within the genetic and epigenetic regulatory
networks. Furthermore, this key regulatory node may be a
novel tumor immune escape predictor and a promising tar-
get for PC therapy.

2. Materials and Methods

2.1. Patients and Gene Expression Profiles. Clinical and RNA-
expression patient data in pan-cancer were collected from the
prostate adenocarcinoma dataset of The Cancer Genome
Atlas (TCGA-PRAD; https://portal.gdc.cancer.gov/) and
TCGA-PRAD serves as training datasets. The cohorts used
for validation studies were downloaded from the Interna-
tional Cancer Genome Consortium (ICGC; https://dcc.icgc
.org/). All patient data that were used in the present study
had complete clinical information, including age, sex, grade,
TNM stage, and overall survival time. The PRAD protein-
expression data were obtained from https://http://www
.tcpaportal.org/tcpa. Functional lncRNA and microRNA
data were downloaded from the TCGA data portal (https://
portal.gdc.cancer.gov/) [7].

2.2. Cell-Type Identification by Estimating Relative Subsets of
RNA Transcripts (CIBERSORT) Analyses. The CIBERSORT
computational approach is commonly used to predict the
infiltration of 22 types of immune cells from the gene expres-
sion profiles of complex tissues (http://cibersort.stanford
.edu) [8]. The 22 types of immunes cells include 7 types of
T cells, 3 types of macrophages, naïve B cells, memory B cells,
activated NK cells, plasma cells, monocytes, resting natural
killer (NK) cells, resting mast cells, activated mast cells, rest-
ing dendritic, cells, activated dendritic cells, neutrophils, and
eosinophils.

In the present study, CIBERSORT is used to calculate the
absolute immune-cell fraction in the PC samples

(model = absolute, permutation = 1,000, disable quantile
normalization for RNA-Seq data as recommended) using
the method of estimating the relative subset of RNA tran-
script for cell type identification.

2.3. Unsupervised Hierarchical Cluster Analysis. Immune-cell
expression values were clustered using an unsupervised hier-
archical clustering method (Euclidean distance and ward
linkage) provided by the dendextend R software package
[9]. The ClustVis tool (http://biit.cs.ut.ee/clustvis/) was used
to process and modify these data for the final plotting of
the principal component analysis and the heat map [10].

2.3.1. Comparing Somatic Mutation Frequencies and Somatic
Copy Number Variants (CNVs). To assess the relative fre-
quency of somatic mutation between the different immuno-
phenotypes, the somatic mutation sequencing data from
TCGA-PRAD clinical samples were acquired from cBioPor-
tal (http://www.cbioportal.org/) [11] and were analyzed
using the Complex Heatmap R software package [12]. Total
gene mutations frequencies ≥ 5% for DNA damage responses
and repair factors were identified. In addition, the character-
istic molecular profiles of the cohorts were determined.

Level 3 CNV data from TCGA were retrieved from the
firebrowse data portal (http://firebrowse.org/) using a thresh-
old of 0.2 for segmented mean amplification values and −0.2
for deletion values. Fisher’s exact test was used for determin-
ing statistical significance (http://convaq.combio.sdu.dk/),
using the average number of deletions and duplications per
sample as background data, and the number of samples with
deletions and amplifications for the loci [13]. The CNV sum-
mary diagram was generated by IGV-2.2.19, and the Circos
figure was analyzed using the RCircos R software package.

2.4. The Single-Sample Gene Set Enrichment Analysis
(ssGSEA). As described previously, ssGSEA was used to score
each sample based on the list of screened genes in the TCGA-
PRAD cohort. To determine any correlations between the
immune phenotypes and the screened genes and to verify
grouping accuracy, we use the ssGSEA algorithm to calculate
the ssGSEA enrichment score of immune genes in the ICGC-
PRAD-CA cohort based on the published immune-related
gene set genes (doi:10.1172/JCI91190).

2.5. Target-Gene Predictions for MicroRNAs (miRNAs) and
Long Noncoding RNAs (lncRNAs). To study miRNA func-
tionality, the target mRNAs for identified miRNAs were pre-
dicted using DIANA (http://diana.imis.athena-innovation
.gr/DianaTools/index.php). The screening threshold used
was a miTG score of ≥0.95. Target-gene predictions for iden-
tified lncRNAs were made using LncRNA2Target software
(http://123.59.132.21/lncrna2target/download.jsp).

2.6. DNA Methylation Analysis. The DNA methylation anal-
yses were performed using Illumina 450K chip-based infor-
mation from the TCGA-PRAD database (http://gdc
.xenahubs.net/download/TCGA-PRAD.methylation450.tsv
.gz/). The methylation data were standardized using the
watermelon package in R software, and the probes for
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Figure 1: Continued.
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differential methylations were detected using the minfi pack-
age in R software.

2.7. Analysis of Protein-Protein Interactions (PPIs). The PPI
network was analyzed using the STRING Consortium online
database (https://string-db.org/). In Cytoscape (version
3.6.1) software, the PPI network was analyzed using Cytos-
cape plugin-MCODE (for clustering of the PPI network)
and cytoHubba (for identifying hub proteins), as described
previously [14].

2.8. Statistical Analyses. All statistical analyses were per-
formed using SPSS 25 (IBM, Chicago, IL, USA) and Graph-
Pad Prism 7.0 (GraphPad Software, La Jolla, CA, USA).
The versions of R software used were more recent than
v.3.5.1. For the correlation analyses, Student’s t-tests were
used. A univariate analysis was performed to analyze possible
prognostic factors. All statistical results with p < 0:05 were
considered statistically significant.

3. Results

3.1. Identification of the Immune-Cell Subsets Related to PD-
L1 Expression in PC Samples. To evaluate the infiltrations of
different immune-cell subtypes, a training set (TCGA-
PRAD, n = 519) and a validation cohort (ICGC-PRAD-CA,
n = 144) were used for the CIBERSORT analysis. Overall,
nine immune-cell subtypes (activated mast cells, monocytes,
M1 macrophages, activated dendritic cells, naive B cells, acti-
vated memory T cells-CD4, resting dendritic cells, resting
NK cells, and resting memory T cells-CD4) were identified
as being positively correlated with PD-L1 transcript levels

(Figure 1(a)). These nine cell types were then further
characterized.

3.2. Classification of PC Samples into Subgroups Based on
Immune-Cell Subsets. To better describe the relationship
between tumor-infiltrating immune cells and tumor-cell
immune escape, we classified the PC sample data into two
major clusters (C1 and C2) based on the above nine
immune-cell subsets (Figure 1(b)). Patient samples in group
C1 had higher scores for selected immune-cell subsets com-
pared to C2 samples (Figure 1(b)), so C1 patient samples
were defined as having a high cell-cytotoxic immune pheno-
type, and C2 patient samples were defined as having a low
cell-cytotoxic immune phenotype. The same findings were
also verified using the ICGC-PRAD-CA validation cohort.
A Kaplan-Meier analysis demonstrated that C1 patients also
had shorter overall survive times than C2 patients according
to TCGA-PRAD dataset (Figure 1(c)).

3.3. Differences in MHC Class I Gene Expression Related to
Immune Phenotypes. MHC class I (MHC-I) tumor antigens
expressed on tumor-cell surfaces determine the capacity of
cytotoxic T lymphocytes (CTLs) to recognize and eliminate
tumor cells. The lack of MHC-I antigens on CTLs is an
important mechanism leading to tumor-cell immune eva-
sion. The expression of MHC-I antigens on cancer cells also
affects tumor responses to immunotherapy.

We therefore evaluated the transcript levels of β2-micro-
globulin (B2M) and human leukocyte antigen (HLA) genes
encoding MHC class I protein in the independent TCGA-
PRAD validation cohort. The results showed that C2 expres-
sions were lower than C1 expressions (Figure 2(a)), indicating
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Figure 1: The immune-related subtypes for prostate cancer. (a) Correlations between the expression of PD-L1 and immune-cell infiltration
ratios in TCGA-PRAD and ICGC-PRAD cohorts. (b) The distribution of immune-related subtypes and associated clinical characteristics of
TCGA (top) and ICGC (bottom) cohorts. (c) Kaplan-Meier analysis of groups C1 and C2 in TGCA-PRAD cohort.
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Figure 2: Differences in MHC class I gene expression and somatic mutations between the two immune phenotypes. (a) The transcription
levels for B2M and for human leukocyte antigen (HLA) genes encoding MHC class I protein in TCGA-PRAD (top) and ICGC-PRAD
cohorts (bottom). (b) The top-10 mutated genes in groups C1 (top) and C2 (bottom) in thePRAD database. (c) In TCGA-PRAD cohort,
the mutation frequency of TP53 in group C2 was relatively higher than in group C1 for most types of cancer.
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impaired antigen presentation for C2 tumor cells and an
escape mechanism for C2 immune surveillance. The same
results were obtained using the independent ICGC-PRAD-
CA validation cohort (Figure 2(a)).

3.4. Somatic Mutation Differences between Immune
Phenotypes. To understand changes at the gene level, we ana-
lyzed the number and quality of somatic mutations in the C1
and C2 subgroups of the TCGA-PRAD cohort. We found
that the TP53 mutation frequency in group C2 was higher
than that in group C1, and the 10 most-mutated genes are
shown in Figure 2(b). Similar to the TCGA-PRAD results,

the mutation frequency of TP53 in C2 was relatively high
in most types of TCGA cohort cancers (Figure 2(c)).

3.5. Differences in Genomic CNVs between Immune
Phenotypes. Studies have found that genomic CNVs are
closely associated with immune system evasion [15, 16].
Analyses of changes in the genomes of TCGA-PRAD cohort
showed that group C2 had significant amplifications (chro-
mosomes 1q, 4q, 14q, and 17q) and significant deletions
(chromosomes 7q, 8p, 14q, and 19q) in several hotspot
regions compared to group C1 (Figure 3(a)). To assess
whether CNVs affected gene expression, both C1 and C2
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Figure 3: Differences in genomic copy number variations (CNVs) related to the two immune phenotypes. (a) CNV statistics between groups
C1 and C2 in TCGA-PRAD cohort. (b) The distribution of differentially expressed genes (DEGs) between groups C1 and C2. (c) GO
enrichment analysis of DEGs in group C1. (d) GO enrichment analysis of DEGs in group C2. (e and f) CNVs compared among six other
tumor types in TCGA cohorts. Cohorts from outside to inside diameters: PRAD, GBM, KIRP, LGG, PAAD, SARC, and TGCT.
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were screened for DEGs, and the results showed that 134
genes were upregulated in group C1 and 135 genes were
upregulated in group C2 (Figure 3(b)). GO enrichment anal-
ysis determined that the upregulated C1 genes were involved
in immune-cell adhesion and movement, functions related to
the activation of immune cells (Figure 3(c)). Upregulated C2
genes were involved in functions related to keratinization,
development, and differentiation (Figure 3(d)). Similar to
the PRAD dataset results, several TCGA cohorts (glioblas-
toma multiforme (GBM), kidney renal papillary cell carci-
noma (KIRP), brain lower-grade glioma (LGG), liver
hepatocellular carcinoma (LIHC), pancreatic adenocarci-
noma (PAAD), sarcoma (SARC), testicular germ cell tumor
(TGCT), and prostate adenocarcinoma (PRAD)) shared sig-
nificantly enriched deletions in chromosomes 6p, 10p, and
18p, and increased copy numbers of chromosome 1q in
group C2 compared to group C1 (Figures 3(e) and 3(f)). Col-
lectively, the results indicate that group C2 cancer cells adapt
to the presence of tumor-infiltrating lymphocytes by acquir-
ing specific somatic mutations, MHC mutations, and geno-
mic CNVs, and group C1 escapes immune surveillance by
changing the activation and proliferation of immune cells
in the immune microenvironment.

3.6. Differences in DNA Methylation and miRNA Expression
between Immune Phenotypes. Aberrant DNA methylation is
associated with both cellular identity and tumor immune
surveillance [17]. To explore how DNA methylation affected
tumor immunophenotype, we analyzed genome-wide meth-
ylation data in the TCGA-PRAD cohort. In total, we found
43 differentially methylated regions between groups C1 and
C2 (FDR < 0:05), and a total of 33 gene sequences were rep-
resented by these regions. The regions with higher beta values

for group C1 compared to group C2 had relatively low gene
expression levels (Figure 4(a)).

Next, 83 differentially expressed miRNAs
(significance = −1 < fold − change (FC) or FC > 1, false-
discovery rate ðFDRÞ < 0:01) were assessed between groups
C1 and C2 based on TCGA-PRAD cohort (Figure 4(b)).
Considering that identifying the target genes for these miR-
NAs would be useful for understanding miRNA regulatory
functions, we identified 5185 target genes and 10437 gene
links. Finally, we also identified 166 links for DEGs
(−1:41 < FC or FC > 1:41, FDR < 0:01), of which 101 were
upregulated in group C1 and 65 were upregulated in group
C2 (Figure 4(b)).

3.7. Differences in lncRNA Expression between Immune
Phenotypes. lncRNAs compete with miRNAs by occupying
shared binding sequences, thereby sequestering miRNAs
and changing the expression of their downstream target
genes. Interaction networks between lncRNAs, miRNAs,
and mRNAs have been documented for a variety of
biological processes in many diseases [18]. Here, we
found 118 differentially expressed lncRNAs
(significance = −0:5 < log 2FC > 0:5, FDR < 0:05) between
groups C1 and C2 using TCGA-PRAD cohort, with 53
of them highly expressed in group C1, and 65 highly
expressed in group C2 (Figure 4(c)). In addition, our
results revealed 2752820 lncRNA-miRNA links, including
2588 miRNAs and 14666 lncRNAs from the miRcode
database. By combining the differentially expressed
lncRNA analysis with the lncRNA-miRNA links informa-
tion from the miRcode database, we documented 46 dif-
ferentially expressed lncRNAs that interacted with
miRNAs and 746 lncRNA-miRNA links. We next used
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Figure 5: Identification of a key node within the genetic and epigenetic regulatory networks. (a) The integration of DEG, lncRNA, miRNA,
and methylation analyses to determine upregulated differentially expressed genes in groups C1 and C2. (b) The four genes positively
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the LncRNA2Target database to predict the target genes
for these lncRNAs. A total of 138 DEGs were found to
interact with these lncRNAs. Among them, 88 targeted
DEGs were upregulated in group C1, and 50 targeted
DEGs were upregulated ingroup C2 (Figure 4(c)).

3.8. Glial Fibrillary Acidic Protein (GFAP) as a Key Node
within the Genetic and Epigenetic Regulatory Networks. Can-
cer is the result of complicated interactions between genetic
and epigenetic variations [19], and we considered that these
two tumor immunophenotypes might be driven by both
genetic and epigenetic regulators. We identified 13 DEGs
that were increased in group C1 and 13 DEGs were increased
in group C2 by integrating the analyses of DEGs, lncRNAs,
miRNAs, and methylation (Figure 5(a)). We used a single-
factor Cox regression for these 26 genes and identified four
genes that were significantly associated with PC prognosis.
Three of these four genes were highly expressed in group C
1, and one of the four was highly expressed in group C2. As
expected, the ssGSEA scores based on these genes were con-
firmed for both the C1 and C2 groups using TCGA-PRAD
cohort and the independent validation ICGC-PRAD cohort
(Supplementary Figure 1). In addition, the ssGSEA scores
were further confirmed for both the C1 and C2 groups for
other tumor typesin TCGA cohort (Supplementary Figure 2).

These four identified genes were also confirmed using a
random forest blot from TCGA-PRAD cohort data
(Figure 5(b)). After calculating the risk scores for the four
gene sets using a multivariate Cox regression analysis, they
were used for a prognosis analysis of data from the TCGA-
PRAD cohort. These four genes were found to have excellent
predictive ability for PC prognoses (p < 0:05, Figure 5(c)).

Importantly, we identified GFAP as a key hub gene
within the network using PPIs from the STRING Consor-
tium database (Figure 5(d)), and we used Spearman’s corre-
lation analysis to assess any correlations between GFAP
transcription levels and immune-cell subsets in the TCGA-
PRAD cohort. We found that GFAP expression was posi-
tively correlated with T cell CD4 memory resting and NK
cells resting, while GFAP expression was natively correlated
with T cells follicular helper, eosinophils, NK cells activated,
plasma cells, and macrophage M1 (Figure 5(e)). The results
confirmed that high GFAP expression was positively corre-
lated with immunosuppression.

4. Discussion

Tumor-associated immune cells are an important part of the
tumor microenvironment. A growing number of evidences
show that immune cells in tumor microenvironment play a
vital role in the initiation and progression in prostate cancer
[20]. The infiltrating immune cells in the prostate tumor
microenvironment mainly include macrophages, neutro-
phils, myeloid-derived suppressor cells (MDSCs), and T reg-
ulatory cells (Tregs) [21]. In the present study, the results of
CIBERSORT analyses showed that 9 immune-cell subtypes
(activated mast cells, monocytes, M1 macrophages, activated
dendritic cells, naive B cells, activated memory T cells-CD4,
resting dendritic cells, resting NK cells, and resting memory

T cells-CD4) were positively correlated with PD-L1 transcript
levels. To better describe the relationship between tumor-
infiltrating immune cells and tumor-cell immune escape, we
classified the PC sample data into two major clusters (C1 and
C2) based on the above nine immune-cell subsets.

Different immune subtypes have been identified among
patients with cancer, a promising approach for understanding
the effects of the immune microenvironment on tumors. For
hepatocellular carcinoma, Sia et al. also identified two sub-
groups characterized by exhausted or adaptive immune
responses to predict the therapeutic effects of PD-1, PD-L1, or
transforming growth factor β1 inhibitor [22]. Similarly, Li
et al. reported both immune-reduced and immune-enhanced
subtypes with differing immune-related and clinical character-
istics to provide targets for new treatments [23]. For breast can-
cer, Zheng et al. developed an immune phenotype classifier for
predicting both immune activity within the tumor microenvi-
ronment and prognoses for patients with triple-negative breast
cancer [24]. In addition, numerous investigations have been
conducted using immune subtypes to predict clinical prognoses
and treatment guidance for bladder cancer [25], ovarian carci-
noma [26], uveal melanoma [27], lung cancer [28, 29], and head
and neck cancers [30]. Here, we have identified two immune
system-related PC phenotypes with differing transcription level
scores among immune-cell subsets using a CIBERSORT analy-
sis and further characterized their differences using a multiomic
approach. The results revealed that identifying immune-related
cancer subtypes wasmeaningful for both a better understanding
of tumor molecular mechanisms and for clinical prognoses.

Emerging evidence suggests that both genetic and epige-
netic alterations in cancer cells drive malignancy. Here, we
have highlighted the genetic mutations and epigenetic aber-
rations driving different PC immunophenotypes. Similarly,
Feng et al. described the mutational and epigenetic landscape
for head and neck cancers using immune-related phenotypes
[30]. For glioblastomas, tumor drug tolerance would evolve
by acquiring genetic and epigenetic alterations [31]. For
ovarian cancers, both genetic and epigenetic factors likely
contribute to shaping the immunosuppressive tumor micro-
environment and to improving the response rate of ovarian
cancer to immune checkpoint therapies [32]. Similarly, for
acute myeloid leukemia, genetic abnormalities and aberrant
epigenetic regulators both play essential roles that affect
responses to therapy and prognoses [33].

By integrating the genetic and epigenetic alterations and
their effects on DEGs between these two immune subgroups,
we found that GFAP was the key hub gene in this regulation
network. Previous research has demonstrated that the
expression of GFAP was aberrant in astrocytoma tissue com-
pared to normal brain tissue [34–38], with GFAP levels
decreasing as with astrocytoma grading increased [39–41],
so GFAP levels may serve as a novel cancer diagnostic
marker.

5. Conclusions

The present data provide further insight into the underlying
molecular mechanisms for alterations to both the mutational
landscape and the epigenome for these two
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immunophenotypes. GFAP, a key node among mechanistic
pathways, may be a potential biomarker both for PC diagno-
sis and for predicting prognoses.
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