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Abstract. Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by CAG repeat expansions
inthe IT15 gene which encodes the huntingtin (HTT) protein. Currently, no treatments capable of preventing or slowing disease
progression exist. Disease modifying therapeutics for HD would be expected to target a comprehensive set of degenerative
processes given the diverse mechanisms contributing to HD pathogenesis including neuroinflammation, excitotoxicity, and
transcription dysregulation. A major contributor to HD-related degeneration is mutant HTT-induced loss of neurotrophic
support. Thus, neurotrophin (NT) receptors have emerged as therapeutic targets in HD. The considerable overlap between NT
signaling networks and those dysregulated by mutant HTT provides strong theoretical support for this approach. This review
will focus on the contributions of disrupted NT signaling in HD-related neurodegeneration and how targeting NT receptors to
augment pro-survival signaling and/or to inhibit degenerative signaling may combat HD pathologies. Therapeutic strategies
involving NT delivery, peptidomimetics, and the targeting of specific NT receptors (e.g., Trks or p75N™®), particularly with

small molecule ligands, are discussed.
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INTRODUCTION

Huntington’s disease (HD) is an autosomal domi-
nantly inherited neurodegenerative disorder caused
by an expansion of CAG repeats in exon 1 of
the IT15 gene which encodes an extended polyglu-
tamine stretch in the huntingtin (HTT) protein [1-3].
Although progressive motor dysfunction is the pri-
mary clinical manifestation of HD, cognitive and
psychiatric impairments are prevalent and often occur
before motor symptoms manifest [3, 4]. Neuropatho-
logical hallmarks of HD include preferential loss
of medium spiny projection neurons (MSN5s) in the
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striatum and nuclear HTT aggregates [3, 5]. Synap-
tic dysfunction and ultimately dendritic and neuronal
degeneration extends beyond the striatum to other
brain areas such as the cortex and hippocampus. The
mechanisms that give rise to these pathologies are
numerous and diverse including inflammatory pro-
cesses, excitotoxicity, metabolic disturbances, and
dysregulated proteolysis and transcription [6]. Nev-
ertheless, mutant HTT-induced loss of neurotrophic
support is thought to have a major contributory role to
HD-related degeneration [6, 7]. Neurotrophins (NTs)
including nerve growth factor (NGF), brain derived
neurotrophic factor (BDNF), NT-3, and NT-4/5 pro-
mote synaptic function and survival of neuronal
populations particularly affected in HD including
striatal MSNs and cortical projection neurons [8].
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Fig. 1. Mutant huntingtin (HTT) effects on Trk and p75N™R signaling pathways. This simplified schematic diagram depicts the signaling
pathways regulated by the neurotrophin (NT) receptors, Trk and p75NTR | and their high integration with those dysregulated by mutant HTT.
Arrows indicate up-regulation or promotion while F indicates inhibition or dysregulation. NTs signal through preformed or induced receptor
dimers. Mature NT binding to Trks recruits adaptor proteins Shc and growth factor receptor-binding protein 2 (Grb2) and activate kinases
resulting in further autophosphorylation and signaling via the PLCy/PKC, MAPK (Ras/Raf/MEK/ERK) and PI3K/AKT pathways. p75NTR
lacks intrinsic catalytic activity and regulates cellular processes by modulating Trk signaling and/or recruiting cell survival or cell death
associated adaptor molecules including tumor necrosis factor receptor-associated factor 1-6 (TRAF1-6), NT receptor-interacting MAGE
homolog (NRAGE), NT receptor-interacting factor (NRIF), and receptor-interacting protein 2 (RIP2). Depending on the cellular context and
receptors present, mature NT binding to p75N™ may potentiate NT binding to Trk receptors and/or reinforce Trk signaling to promote cell
survival. Mature NT or pro-NT binding to p75NTR can cause activation of the RhoA and JNK signaling pathways leading to dendritic spine
loss, caspase release, and/or cell death.

Moreover, each NT has been shown to be neuro- HTT-induced impairments in NT receptor signal-

protective against HD-related pathology, with BDNF
the most extensively studied [7, 9-11]. NTs bind to
two types of receptors, namely tropomyosin receptor-
kinases (Trks) and the 75kDa pan-NT receptor
(p75NTR) which are classically thought to regulate
pro-survival and degenerative signaling, respectively.
The intracellular signaling systems regulated by both
Trks and p75NTR largely intersect with those con-
tributing to HD pathogenesis (see Fig. 1). A majority
of studies report that levels of NTs and/or their Trk
receptors decrease while p75N'R levels increase in
the HD brain [7, 11-15]. The ensuing loss of trophic
signaling and attendant gain in degenerative signaling
is thought to causally contribute to fundamental HD
pathologies [11, 13]. Given the mechanistic complex-
ity of HD and the large overlap between NT signaling
networks and those affected by mutant HTT, targeting
NT signaling has great potential to combat multi-
plex symptoms. This review will focus on mutant

ing and how targeting these signaling pathways with
NT administration or up-regulation and/or by phar-
macological means may be an effective therapeutic
strategy.

NEUROTROPHIN RECEPTOR
SIGNALING

NTs are a family of secreted proteins comprised
of NGF, BDNF, NT-3, and NT-4/5 that promote neu-
ronal survival and synaptic function [16-18]. NTs
are produced as a pro-protein that is proteolytically
cleaved into a mature form prior to release from
diverse cell types including neurons and glia. Both
NT forms bind to two classes of cell surface recep-
tors: Trks and p75NTR . Mature NTs principally bind
to one of three Trk isoforms to promote cell survival
or differentiation with NGF preferentially binding to
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Fig. 2. Mutant huntingtin (HTT) effects on Trk signaling pathways. A simplified schematic diagram showing the interactions between
mutant HTT and Trk signaling pathways. Arrows indicate up-regulation or promotion whilet indicates inhibition or dysregulation. NTs
signal through preformed or induced receptor dimers. Mature NT binding to Trks causes phosphorylation of intracellular domain tyrosine
(Y) residues that form cores of binding sites for adaptor proteins Shc and growth factor receptor-binding protein 2 (Grb2) and activate kinase
activity. Phosphorylation at Y785 (for TrkA; Y817/Y820 for Trks B and C) initiates signaling via the PLCy/PKC pathway and Y490 (for
TrkA; Y515/Y516 for Trks B and C) initiates signaling via the MAPK (Ras/Raf/MEK/ERK) and PI3K/AKT pathways. The effects of NT-Trk
signaling via these pathways are typically related to synapse and dendritic spine integrity, long-term potentiation (LTP) and cell survival.

TrkA, BDNF and NT-4/5 to TrkB, and NT-3 to TrkC.
Some heterologous binding also occurs for exam-
ple NT-3 has been shown to activate TrkB [18, 19].
All mature NTs also bind unselectively and with low
affinity to p75NTR thus activating trophic signaling by
potentiating Trk function or degenerative signaling
if cognate Trks are absent or low [20-22]. Pro-NTs
preferentially bind with high affinity to p75NTR and a
protein dimer receptor complex of p75NTR-sortilin
to initiate cell death signaling pathways. p75NIR
also acts as a co-receptor for neurite outgrowth
inhibitors with the NOGO receptor/LINGO-1 com-
plex to regulate axonal regeneration and plasticity
[23, 24].

Trk signaling

Mature NTs have a central region that is the
main Trk binding site and three hairpin 3-turn loops
(loops 1, 2, and 4) that vary amongst the NTs and

confer receptor specificity. Thus, these loops have
been exploited for the structure-based development of
small molecule ligands for specific Trks, as discussed
in the NT- and Trk-based Therapeutic Strategies sec-
tion [20]. NTs signal through preformed or induced
Trk dimers and trigger autophosphorylation at multi-
ple tyrosine residues in the Trk cytoplasmic domain
[18, 25, 26]. When the tyrosine residues are phos-
phorylated, they form cores of binding sites for
adaptor proteins [e.g., Src, Shc, and growth factor
receptor-binding protein 2 (Grb2)] leading to the
activation of canonical downstream signaling path-
ways: MAPK (Ras/Raf/MEK/ERK), PI3K/AKT, and
PLCv/PKC [16, 18, 23] (Fig. 2). PLCy/PKC signal-
ing is initiated by binding to phosphorylated Y785
on TrkA and analogous sites on TrkB and TrkC
(Y817/Y820), PI3K/AKT and MAPK/ERK activa-
tion involves Y490/Y515/Y516 [18, 27]. The effects
of NT-Trk signaling via these pathways are typically
related to cell survival and differentiation.
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Fig. 3. Mutant huntingtin (HTT) effects on p75N™R signaling pathways. p7SNTR lacks intrinsic catalytic activity and regulates cellular
processes by modulating Trk signaling and recruiting adaptor molecules including TRAF1-6, NRAGE, NRIF, and RIP2 which determine
the signaling pathways activated. Regulated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-«B) signaling supports cell
survival but when chronically activated, as in the presence of cytokines, inhibitor of kappa beta kinase (IKK)/NFx[3 signaling mediates
neuroinflammation. Inhibitor of nuclear factor kB (IxBa) sequesters NFk3 however when IkBa is phospohorylated (p) NF«f is free to enter
the nucleus to activate genes that promote inflammation. Mature NT or pro-NT binding to p75N™® can cause activation of the RhoA/Rho
associated kinase (ROCK) and JNK signaling pathways. p7SNTR interacts with Rho-GDI which activates RhoA small GTPase and ROCK
signaling. ROCK then activates PTEN, which dephosphorylates PI3K thereby suppressing survival signaling and the promotion of synaptic
plasticity mediated by TrkB. p75N™R can recruit TRAF6, NRAGE, and NRIF leading to activation of the JNK pathway and caspases, and cell
death. Pro-NT binding to the sortilin/p75N™® complex (not shown) can also activate PTEN directly, which acts like toggle between survival
and degenerative signaling, and the JNK pathway.

p75NTR are ligand-dependent and, along with the co-receptors

present, determine the signaling pathways activated

signaling

p75NTR contains an extracellular domain with four
cysteine-rich domains, two of which bind to NTs
(domains 2 and 3), and a cell death domain in the intra-
cellular region [28]. Pro- or mature NTs form homod-
imers that bind to dimeric p75NTR, which is either pre-
formed or created with NT binding [29]. p75NTR lacks
intrinsic enzymatic activity but regulates multifunc-
tional cellular processes by modulating Trk signaling
and recruiting adaptor molecules that act as bifunc-
tional toggles for cell survival or death signaling.
Interactions between p75N R and adaptor molecules
[e.g., tumor necrosis factor receptor-associated fac-
tor 1-6 (TRAF1-6), NT receptor-interacting MAGE
homolog (NRAGE), NT receptor-interacting factor
(NRIF), and receptor-interacting protein 2 (RIP2)]

[18, 23]. High concentrations of NTs and/or low
Trk levels promote p75NTR interactions with adap-
tor proteins TRAF6, NRAGE, and NRIF leading
to activation of the JNK pathway and cell death
[23, 30] (Fig. 3). p75N™R also triggers JNK signal-
ing via interfaces with NRAGE to activate caspases
or by interacting with ceramide via sphingomyelinase
activation [31, 32]. Moreover, binding of pro-NTs
to p75NTRsortilin also mediates cell death via INK
signaling and c-Jun activation after recruitment of
adaptor molecules specific for certain cell types
[23, 33]. For instance, in hippocampal neurons, pro-
BDNF and pro-NGF binding induce p75™ R recruit-
ment of NRAGE and/or NRIF to mediate apoptosis
[23,34].



D.A. Simmons / Modulating Tri/p75N"® Signaling as HD Therapy 307

Conversely, TRK-p75NTR interactions enhance
NT binding affinity to promote pro-survival signal-
ing via MAPK/ERK, PI3K/AKT, and PLCvy/PKC
pathways [35, 36]. Regulated nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-«B)
signaling also supports cell survival in the absence
of Trks by NT-p75NTR binding, particularly NGF,
and recruitment of RIP2 and TRAF6 [37, 38]. When
chronically activated as in the presence of cytokines,
inhibitor of kappa beta kinase (IKK)/NF«[3 signal-
ing mediates neuroinflammation [39]. NT—p75NTR
binding or pro-NT binding with the sortilin/p75NTR
complex can activate the phosphatase and ten-
sion homolog (PTEN), which acts like a switch
between trophic and degenerative signaling. p75N R
interacts with Rho-GDI which activates RhoA/Rho
associated kinase (ROCK) signaling. ROCK then
activates PTEN, which dephosphorylates PI3K
thereby suppressing survival signaling and synaptic
plasticity/long-term potentiation (LTP) mediated by
TrkB [40, 41] (Figs. 1 and 3). Finally, when NOGO or
myelin-derived proteins bind to the p75NTR-NOGO
receptor/LINGO1 complex, RhoA is activated and
RAC is inhibited which negatively modulates
the cytoskeletal system including deregulation of
dendritic spine dynamics [42, 43].

TRK SIGNALING IN HD
TrkA signaling in HD

Few studies have investigated the effects of mutant
HTT on NGF or TrkA levels. In HD patients, nRNA
levels of NGF in cortex and TrkA in hippocampus
were unchanged [44, 45]; striatal levels have yet to
be examined. NGF levels were unaltered in the stria-
tum, cortex, and hippocampus at early symptomatic
disease stages of the R6/1 transgenic mouse model of
HD, but were reduced in hippocampus at later stages
[46, 47]. Moreover, TrkA levels were decreased in
striatal and cortical synapses of the CAG140 full-
length HTT knock-in mouse model at symptomatic
stages [48].

Disrupted NGF-TrkA signaling may contribute
to HD-associated cholinergic deficits of striatal
interneurons and hippocampal neurons. TrkA is
absent from striatal MSNs but is present in cholin-
ergic interneurons, which have synaptic plasticity
deficits and abnormal morphologies in HD mouse
models and/or patients [49-55]. Mutant HTT reduced
striatal TrkA activation, as evidenced by decreased

TrkA phosphorylation at Y791, in the R6/2 stria-
tum (Simmons et al., unpublished results; [11]) and
interferes with TrkA signaling contributing to neu-
rite outgrowth [56, 57]. In vitro studies showed that
mutant HTT interacts abnormally with huntingtin
interacting protein 1 to reduce plasma membrane lev-
els of TrkA and with Grb2 to disrupt TrkA signaling
via the PI3K/AKT, MAPK, and JNK pathways that
regulate neurite outgrowth [56, 57]. Finally, choliner-
gic neurochemical deficits in the R6/1 hippocampus
were ameliorated by intracerebroventricular delivery
of NGF which was also accompanied by increased
neurogenesis and improved hippocampal-dependent
memory [46]. In all, although NGF and TrkA have
limited overlap with areas and cell types affected
in HD, they may contribute considerably to specific
aspects of HD degeneration.

TrkC signaling in HD

NT-3 has been shown to provide functional and
trophic support to peripheral proprioceptive and
motor neurons and to promote synapse formation
and plasticity [58—62]. NT-3-containing neurons are
located in brain regions affected in HD, including
the striatum, cortex and hippocampus [63, 64]. In the
cortex, NT-3 mRNA levels were greatly reduced in
HD patients [45] as were N'T-3 protein levels in R6/2
striatum (Simmons et al., unpublished results; [11]).
NT-3’s receptor TrkC is expressed by MSNs, primar-
ily in the D1a dopamine receptor-containing neurons
of the direct pathway (dSPNs) of the basal ganglia
that are involved in movement initiation [51, 63—65].
Interestingly, TrkB is predominately expressed in D2-
containing MSNs of the opposing indirect pathway
(iSPNs) [66, 67]. In R6/2 mice, striatal TrkC levels
and activation are decreased at a mid-symptomatic
stage (Simmons et al., unpublished; [11]) and this
could contribute to the dysfunction of dSPNs seen
in later stages of HD as their survival is com-
promised with diminished NT-3-TrkC signaling
[66, 67]. Finally, NT-3-TrkC signaling has been
shown to inhibit excitotoxicity-induced death of
MSNs and ameliorate cortical neuron dysfunction [9,
10], and these effects are attributed to the PI3K/AKT,
not ERK, pathway [68].

TrkB signaling in HD

The native ligands for TrkB are BDNF and NT-4/5.
NT-4/5 is expressed throughout the CNS, including
the striatum, and regulates the chemical phenotype
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of striatal neurons [9, 10, 69]. Little is known about
the role of NT-4/5 in HD except that neurodegen-
eration was ameliorated by NT-4/5-secreting cells
transplanted into the striatum of an excitotoxic rodent
model of HD [9, 10]. Thus, this section will concen-
trate on discussing the contribution of BDNF-TrkB
signaling disturbances to HD pathogenesis.

BDNEF is involved in diverse cellular processes
including development, synaptic plasticity, and neu-
rotransmission. It is well known as a potent
neuroprotective agent and promotes the survival of
cortical and striatal neurons in vitro and prevents
cell death in vivo following axotomy, ischemia, 3-
nitroproionic acid toxicity and excitotoxic insults
[70-76]. Pro- and mature forms of BDNF are present
in the hippocampus and cortex while the primary
source of mature BDNF for the striatum is antero-
grade transport via cortical projection neurons as
well as dopaminergic and thalamic afferents [15, 63,
77-80]. BDNF’s receptor TrkB is widely expressed in
the CNS including specific neuronal types affected in
HD including cortical projection neurons, dopamine-
containing nigrostriatal neurons, and striatal MSNss,
particularly those of the indirect pathway (iSPNs)
containing D2 dopamine receptors and enkephalin
[63, 66, 67, 81]. TrkB is also located on striatal den-
dritic spines and is thus situated to form and stabilize
these structures [82—87]. Accordingly, BDNF-TrkB
signaling has been shown to be critical for memory
processes including maintaining synapses and stabi-
lizing LTP in hippocampus and striatum [82, 87-90].

Much evidence suggests that BDNF and TrkB
mRNA and/or protein levels are markedly reduced in
the cortex, striatum and hippocampus of HD patients
and mouse models [7, 12, 13, 15, 77, 91-102]. Hip-
pocampal and/or cortical pro-BDNF levels were also
shown to decrease in early symptomatic HdhQ'!!
mice and zQ175 [77]. However, there have been
reports that levels of cortical BDNF expression and
striatal TrkB were unaltered in HD patients and/or in
early to mid-symptomatic HD mice (for reviews see
[15, 40]). These differing reports may be due to dif-
ferent HD mouse models used, technical limitations,
and/or methodological differences including the use
of ELISA which does not differentiate mature and
pro-forms of BDNF, normalization to housekeeping
genes that undergo disease-related changes, and/or
BDNF antibodies with low specificity/sensitivity [11,
15,40, 84]. To address these technical challenges, Ma
et al. (2015) measured pro- and mature BDNF lev-
els in zQ175 mice knocked-in with BDNF containing
an HA epitope tag which allows highly specific HA

antibodies to be used to accurately quantify BDNF
[15]. This technique revealed that mature BDNF lev-
els were reduced by ~50% in the striatum of zQ175
mice at early symptomatic stages and in the cortex
at later stages. Hippocampal and cortical pro-BDNF
levels were also decreased in early symptomatic
zQ175 mice [15].

Beyond the reported reductions in BDNF and TrkB
expression, BDNF-TrkB signaling is disrupted by
mutant HTT impaired axonal transport of BDNF
from cortical neurons to striatum and compromised
motility of vesicular BDNF in striatal and hip-
pocampal neurons [80, 103-106]. TrkB cell surface
expression is reduced in HD knock-in striatal cells
(STHdhQ!!'!) which may also hinder BDNF signaling
[107]. Moreover, TrkB signal transduction is nega-
tively impacted by deleterious effects of mutant HTT
on scaffolding proteins, receptor phosphorylation,
and downstream signaling intermediates. BDNF-
TrkB signaling via the ERK pathway was markedly
decreased in STHdhQ!!'! cells due to diminished
Shc adaptor protein levels while TrkB phosphory-
lation was not affected [107]. On the other hand,
striatal TrkB phosphorylation was reduced in R6/1
and R6/2 mice at tyrosine residues Y705 or Y515 but
remained unchanged at Y817 in R6/2 and YAC128
mouse models of HD [91, 98, 100, 108]. These
TrkB phosphorylation deficits were accompanied by
decreased AKT, ERK1/2, and PLCY signaling in the
R6/1 and R6/2 striatum and occur at pre-symptomatic
stages in the latter mouse model [91, 100,
108]. Depolarization-induced TrkB phosphorylation
(Y515) in striatum was unaltered in the full-length
BACHD mouse model of HD at mid-symptomatic
stages while AKT signaling was attenuated suggest-
ing mutant HTT effects on downstream signaling
elements [40]. Thus, mutant HTT adversely affects
BDNEF-TrkB signaling at multiple levels: BDNF and
TrkB expression, as well as signal transduction and
downstream signaling stages. These deficits result in
a severe loss of trophic support to neuronal popula-
tions that undergo degeneration in HD.

Disturbed BDNF/TrkB signaling has been shown
to play a major role in the development of many
key pathophysiological features of HD, including
motor and cognitive deficits. Motor dysfunction in
HD mice is exacerbated by genetic manipulations
that decrease BDNF levels, as are dopaminergic
deficits and degeneration of enkephalinergic striatal
projection neurons [80, 81, 109, 110]. On the other
hand, these pathologies are alleviated and motor
performance improved by over-expressing BDNF in
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HD mice potentially by normalizing AKT and ERK
signaling [98, 100]. Loss of BDNF via cortical affer-
ents to striatal iISPNs is thought to contribute to HD
motor symptoms, including chorea [6, 40]. Striatal
iSPNss are preferentially affected in HD and suppress
involuntary movement while dSPNs promote vol-
untary actions. BDNF-TrkB signaling via the AKT
pathway is decreased in iSPNs, but not dSPNs, as
was LTP [40]. Given that deficient BDNF-TrkB sig-
naling in iISPN’s causes hyperactivity in normal mice,
these deficits may contribute directly to HD motor
symptoms [111].

Mutant HTT-induced synaptic dysfunction, den-
dritic spine loss, and memory deficits have also been
associated with perturbed BDNF-TrkB signaling
(Fig. 2). As mentioned above, BDNF-TrkB signal-
ing potently modulates the structural and functional
aspects of synaptic plasticity, including dendritic
spine formation and morphology as well as LTP
[7, 89, 112-116]. Applying exogenous BDNF in
vitro, up-regulating endogenous BDNF, or over-
expressing the NT prevents dendritic spine loss
and decreased cortico-striatal connectivity, and/or
reverses hippocampal LTP deficits in HD mice
[77, 80, 93, 98, 117-119]. This BDNF-induced
preservation of synaptic integrity was accompanied
by elevated AKT, PLC~, and/or CREB signaling and
preserved memory [93, 98, 117, 118].

Finally, BDNF-TrkB signaling may aid in
mutant HTT clearance since it facilitates ubiquitin-
proteosome processing which is one way that
pathological protein aggregates are degraded [112].
Reduced BDNF-TrkB signaling via the AKT path-
way may contribute to mutant HTT pathology as
AKT has been shown to phosphorylate HTT or
increase its degradation by the proteasome thus
decreasing mutant HTT aggregation and toxicity
[120-122]. In support of this suggestion, overex-
pressing BDNF or TrkB in HD cell lines and mouse
models increases AKT signaling and/or reduces
striatal HTT huntingtin aggregates and cell death
[98, 100, 123].

Taken together these studies show the complex
effects of mutant HTT on BDNF-TrkB signaling
which likely involve early deficits in signal transduc-
tion including mitigated TrkB activation as well as
reduced adaptor protein levels and downstream sig-
naling. These deficits may be exacerbated at mid- to
late symptomatic stages by declining levels of BDNF
and TrkB. Ultimately, these severe BDNF-TrkB sig-
naling disruptions have strong causal links to many
of the hallmark HD pathologies.

NT- AND TRK-BASED THERAPEUTIC
STRATEGIES FOR HD

The above section stressed that NT-Trk signal-
ing networks are highly integrated with pathways
responsible for synaptic function and neuronal
health/survival and those that are dysregulated by
mutant HTT (Figs. 1 and 2). Thus, targeting NT-Trk
signaling could offer mechanism-based therapeutics
to counteract HD degenerative processes by offset-
ting deficiencies in NT/Trk levels and/or by inducing
Trk downstream signaling. This idea has prompted
the development of NT- and Trk-based therapeu-
tics for HD using two main approaches: 1) delivery
of exogenous recombinant NTs or endogenous up-
regulation of the native Trk ligands, particularly
BDNF, and 2) ligands (e.g., antibodies or small
molecules) that bind to and activate Trks in the CNS.

Each of the NT- and Trk-based therapeutic
approaches has been shown to have beneficial effects
against neurodegeneration in preclinical HD studies
and, in clinical trials for other neurodegenerative dis-
orders, cellular NT delivery and NT up-regulation
via electrical stimulation have produced promising
results. However, each approach also has general
and/or HD-related technical limitations and logis-
tic considerations that need addressing to achieve
therapeutic efficacy with minimal or no unwanted
pleiotropic effects. One major technical obstacle for
NT administration and the currently available Trk
ligands is low brain bioavailability which, for the for-
mer, requires invasive delivery and the latter requires
better formulations. A consideration for NT-based
therapeutic strategies is that mature NTs can pro-
duce deleterious effects in conditions in which Trk
levels are low or absent by initiating p75N 'R degen-
erative signaling and can be particularly detrimental
if p75NTR levels are elevated [13, 124, 125]. This
state occurs in HD patients and mouse models as
TrkB levels are reduced while p75NR levels are
increased ([13, 95]; see more detailed discussions in
the p75NTR signaling in HD section). In the context
of this HD-related p75NTR/TrkB imbalance, BDNF-
mediated neuroprotection is reduced by activating
JNK signaling via p75NTR [13]. Thus, the therapeutic
window for effective use of NT-based HD treatments
would start before the altered p75NR-TrkB ratio is
prominent (i.e., prior to when TrkB levels are reduced
to the extent that downstream signaling of existing
receptors is inadequate to provide neuroprotection
and JNK signaling via p75NTR induces degeneration).
A similar concern arises for the use of TrkB ligands
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as HD therapeutics reduced levels of the target and
signal transduction deficits may render them unable
to activate trophic signaling. Therefore, TrkB ligands
would have to be administered before severe TrkB
loss or be sufficiently potent to activate the remain-
ing receptors to induce trophism. Thus, the use of
NT-/Trk-based treatment strategies requires careful
consideration of the therapeutic window given that
the target levels are altered in HD. These NT- and
Trk-based therapeutic strategies will be discussed fur-
ther in the following sections, as will their advantages
and limitations, with emphasis on BDNF- and TrkB-
based strategies as these are the most prevalent and
relevant to HD.

NT-based therapy

The rationale for delivery of exogenous NTs
is partially based on rodent studies demonstrating
that each of the NTs have neuroprotective effects
against striatal neurodegeneration and/or HD-related
pathologies when they are administered intraven-
tricularly, via systemic delivery of the recombinant
protein, or by cellular delivery methods [8-10, 46,
97, 126-128]. While these preclinical studies demon-
strate the efficacy of NT administration against HD
pathologies, the delivery methods used have limited
clinical feasibility as NTs have low stability with brief
serum half-lives, low bioavailability via oral admin-
istration routes, and restricted blood brain barrier
permeability. The low brain penetration of the macro-
molecular NTs dictates invasive delivery methods
that still may result in limited diffusion throughout
the brain and would necessitate chronically admin-
istering the NTs due to the progressive nature of the
neurodegeneration in HD [129, 130]. Furthermore,
the NTs could produce adverse pleiotropic effects,
including pain, by activating multiple receptors (e.g.,
p75NTR). In attestation to these limitations, clinical
trials involving intraventricular infusion of NGF in
Alzheimer’s disease (AD) patients and intrathecal
injection of recombinant BDNF in amyotrophic lat-
eral sclerosis (ALS) patients showed limited CNS
bioavailability of the NTs accompanied by minimal
or no improvement in outcome measures and unde-
sirable side effects including increased innervation of
cerebral blood vessels, weight loss, disrupted sleep,
and/or neuropathic pain [131-136]. Thus, efforts to
develop NT-based therapies began to focus on alter-
nate delivery methods that are less invasive and would
increase levels and functional duration of the NTs in
the brain.

Although invasive, intracranial implantation of
NT-producing mesenchymal stem cells (MSCs) may
be an effective delivery strategy as these cells may
provide a sustained supply of trophic factors to
degenerating neurons. MSCs have been shown to up-
regulate BDNF expression but can also be engineered
to deliver NTs and other factors that potentiate neu-
roprotective effects (e.g., BDNF and noggin) [137].
They migrate to regions of injured tissue and can be
transplanted without eliciting immune rejection by
the host, in fact, they have been shown to reduce
inflammation [138]. Bone marrow-derived MSCs
transplanted into the striata of R6/2 mice increased
BDNF mRNA expression, improved motor and cog-
nitive ability, and reduced brain volume loss [139].
When murine or human MSCs genetically engineered
to overexpress BDNF or NGF were transplanted
into striatum of HD mouse models, BDNF-MSCs
improved motor performance, increased neurogene-
sis, and/or reduced anxiety-like behavior and striatal
atrophy, while NGF-MSCs transiently alleviated
motor deficits and did not affect survival of striatal
neurons [128, 140]. Phase I and II clinical studies
have demonstrated the biosafety of MSCs in diseases
such as AD and ALS [141-143], but MSCs have
yet to be tested in HD patients. A clinical trial for
intrastriatal implants of BDNF-MSCs in HD patients
is planned and has been accruing subjects via an
observational study (PRE-CELL; ClinicalTrials.gov:
NCT01937923) [127]. A relatively non-invasive and
cost-effective delivery method has been developed
in which MSCs are intranasally administered and
travel extracellularly along axons of the olfactory
pathway to bypass the blood brain barrier [144, 145].
This approach has been used to ameliorate behavioral
symptoms and neurodegeneration in rodent mod-
els of AD and Parkinson’s disease (PD) but clinical
application of this approach has not been attempted
[145-148]. Thus, MSC delivery of NTs may circum-
vent some of the obstacles faced with the infusion
approach in offering a more sustained and targeted
delivery of NTs with more controlled dosing and less
unwanted side effects.

Another approach to delivering NTs to subcor-
tical brain regions is administering a viral vector
engineered to encode the NT. Again this method
is invasive as it involves injection of the virus into
the target brain area, however, it may require fewer
injections than the MSC approach since the virus
would affect a stable change in the neuron’s abil-
ity to produce the NT [143, 149]. Preclinical studies
employing this technique have been described in HD
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rodent models. Adenoviral BDNF and noggin, which
reduces glial production, intraventricularly applied in
R6/2 mice increased neurogenesis in the striatum and
improved survival but did not affect motor function
[150]. However, in this study, adenoviral expression
was transient thus, the same group showed similar
neurogenesis effects in rats using adeno-associated
virus serotype 4 (AAV4) vectors to express BDNF
and noggin in striatal neurons which produce pro-
longed changes, up to 2 and 6 years in rodents and
primates respectively [149]. Similarly, an AAV,,
vector containing BDNF injected bilaterally into the
striatum of HD transgenic rats increased neurogene-
sis, ameliorated striatal atrophy, and improved motor
and cognitive ability [151]. However, unlike MSCs,
AAV vectors provoke immunogenic responses which
limit their clinical use and clinical trials are needed
to show safety and efficacy.

Instead of introducing the NTs themselves or
using cell- or viral vector-mediated gene deliv-
ery approaches, many HD preclinical studies
aimed at augmenting neuroprotective signaling
have successfully increased endogenous levels of
BDNF via behavioral modifications (e.g., exercise,
environmental enrichment, and dietary restric-
tion) or by pharmacological means including
anti-depressants/psychotics (e.g., sertraline, NP03),
anti-oxidants (e.g., B401), or glutamate receptor
modulators/agonists (e.g., ampakines, LY379268)
[47, 92, 93, 152-158]. These studies demonstrate
that BDNF up-regulation produces neuroprotective
effects and support pursuing BDNF- and Trk-based
therapies for HD [for reviews, see [6, 7, 11]]. How-
ever, these behavioral strategies and compounds do
not specifically target BDNF or TrkB and may have
undesirable off-target effects.

BDNF expression has also been elevated in vivo
via deep brain stimulation (DBS) or electroconvul-
sive therapy (ECT). ECT delivered chronically (over
10 days) increased BDNF mRNA and protein in the
rat hippocampus and cortex for up to 48 hours and
decreased levels of TrkB while increasing its acti-
vation (phosphorylation at site Y705) [159, 160].
ECT and DBS have been used clinically to ameliorate
motor, cognitive, and/or behavioral symptoms (e.g.,
depression and agitation) in PD, AD and HD patients
[161-165]. However, the procedure is invasive, select
effects were transient, and in some patients adverse
effects were noted including weight gain as well as
impaired speech, gait, and cognition [166]. More-
over, whether any of these effects can be attributed to
BDNF elevations are unknown. Further safety data

and optimized stimulation paradigms for DBS are
needed and will be addressed in an ongoing clini-
cal trial examining the effects of pallidal-DBS in HD
patients (ClinicalTrials.gov: NCT02535884) [164].

TrkB receptors as therapeutic targets

Despite the progress of the approaches described
above, the prevailing limitations of NTs for clin-
ical use, including invasive delivery, suboptimal
pharmacological properties and pleiotropic activi-
ties via activation of multiple receptors (e.g., Trks
and p75NTR), have led to development of alternative
therapeutic strategies targeting specific NT recep-
tors. Attempts to increase neurotrophic signaling
via TrkB activation have revealed agonistic mon-
oclonal TrkB antibodies that activate the receptor.
Other efforts used a structure-based design approach
to: 1) synthesize peptidomimetics that act as TrkB
agonists, or 2) screen compound libraries, using in
silico or cell-based methods, for small molecule TrkB
activators.

The initial studies along these lines manufactured
dimeric peptides containing the loop 2 sequence of
BDNEF, a region that confers TrkB binding and acti-
vation [167]. These peptides had BDNF-like activity
in that they promoted the survival of embryonic
chick sensory neurons in vitro [168] but have yet to
be tested in vivo and their ability to activate TrkB
was not investigated. Moreover, the therapeutic rele-
vance of these reported peptide-based TrkB agonists
is questionable considering these compounds have
some of the same unfavorable pharmacological char-
acteristics as the NTs themselves, primarily low oral
bioavailability and in vivo instability, less options for
optimized delivery methods, and effects at multiple
receptors [169].

Monoclonal antibodies targeted to human and
mouse TrkB have been generated that activate the
receptor and/or support neurite outgrowth and cell
survival similar to BDNF [170-172]. These bivalent
agonist antibodies induced phosphorylation of TrkB
at multiple sites (Y490, Y516, Y706/707, Y816), ele-
vated intracellular Ca%t release, and/or activated the
MAPK and AKT signaling pathways in several cell-
based assay systems. Two of these TrkB antibodies,
29D7 and 38B8, provided protection against mutant
HTT-induced degeneration of striatal, not cortical,
neurons in primary cortico-striatal co-cultures [173].
To date, functional monoclonal TrkB antibodies have
not been tested in HD animal models or patients and
therapeutic delivery will be a major challenge.
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To circumvent delivery obstacles structurally
inherent to macromolecular NTs and monoclonal
antibodies, small molecule ligands selective for TrkB
have been identified by cell-based or in silico screen-
ing methods that penetrate the blood brain barrier,
activate TrkB and its downstream signaling, and pro-
vide neuroprotection. These small molecule TrkB
ligands act as partial agonists as they phosphorylate
differential patterns of tyrosine residues on the recep-
tor and activate signaling pathways that are distinct
from BDNF.

A cell-based apoptotic screen identified gedunin
and flavone derivatives as TrkB agonists [174-177].
Deoxygedunin, a natural product from the Indian
neem tree, prevented apoptosis in oxygen/glucose-
deprived hippocampal neurons and, after oral
or intraperitoneal delivery, phosphorylated TrkB
(Y817) and initiated MAPK/ERK and P13K/AKT
signaling while improving motor performance and
reducing neurodegeneration in rodent models of PD
[174, 177, 178]. Deoxygedunin has not been tested
in HD animal models and, as its water solubility and
brain permeability are low, derivatives of the com-
pound are being pursued [177]. Finally, it is unknown
whether deoxygedunin interacts with other Trks or
p75NTR which could produce pleiotropic effects.

The flavone product 7,8-dihydroxyflavone (7,8-
DHF) and its synthetic derivative 4’-dimethylamino-
7,8-DHF (4°’DMA-7,8-DHF) have been shown to
activate TrkB, not TrkA or TrkC, and to provide
neuroprotection in animal models of neurodegenera-
tive disease, including Rett syndrome, AD, Down’s
syndrome, and PD [175, 179-183]. Moreover, two
preclinical studies have been conducted in HD mice
showing that chronic oral administration of 7,8-
DHF and/or 4 DMA-7,8-DHF activates TrkB and
its downstream signaling and protects against neu-
rodegeneration [184, 185]. In the N171-82Q mouse
model of HD, 7,8-DHF and 4’DMA-7,8-DHF phos-
phorylated TrkB (Y706) and MAPK in the striatum,
ameliorated brain volume loss, increased striatal
DARPP-32 levels and neurogenesis, improved motor
function, and prolonged survival [184]. A more recent
study showed that 7,8-DHF prevented the reduction
of TrkB phosphorylation at residue Y816, not Y515,
increased PLCYy signaling, and reduced p75NR lev-
els in the striatum of R6/1 mice [185]. This increased
TrkB signaling was associated with improved cog-
nition and ameliorated HD-related neuropathologies
in striatum including: HTT aggregate number and
size, reduced enkephalin levels, striatal atrophy,
and elevated inducible nitric oxide synthase, a

neuroinflammation indicator [185]. The neuroprotec-
tive effects of 7,8-DHF may be partially attributed to
TrkB activation, however, TrkB-independent effects
also contribute as in vitro studies show that in the
presence of the Trk inhibitor K252a, 7,8-DHF still
prevents cell death and it acts as an antioxidant to pro-
tect cells that are devoid of TrkB [185, 186]. Finally,
itis unknown whether 7,8-DHF activates p75NTR and
it decreases p75NTR Jevels which could contribute to
its beneficial effects as a p75NTR/Trk imbalance plays
arole in HD pathogenesis [13, 185].

In silico screening of compound libraries was used
by the Longo and Massa laboratories to identify
small molecule non-peptide TrkB ligands that have
structural similarities to loop 2 of BDNF and selec-
tively activate TrkB, but not the other Trks or p75NTR
in in vitro studies [20, 187]. One of these ligands,
LM?22A-4, has been shown to phosphorylate TrkB
to recruit the Shc, GRB2 and SOS1 adaptor pro-
teins and initiate signaling via all the major Trk
signaling routes to promote neuronal survival in in
vitro assays [20, 187-189]. LM22A-4 also demon-
strated neuroprotective effects in mouse models of
numerous neurodegenerative conditions, including
Rett syndrome, stroke, and traumatic brain and spinal
cord injury [187, 189-192]. LM22A-4 has also been
shown to be effective against HD pathology. In R6/2
mice, systemic LM22A-4 administration activated
TrkB (phosphorylation at Y705) as well as down-
stream signaling via AKT, PLCvy, and CREB [91].
It also decreased intranuclear HTT aggregates in
striatum and cortex, reduced striatal microglial acti-
vation, and prevented degeneration of two main types
of striatal neurons affected in HD: parvalbumin-
containing interneurons and DARRP-32-containing
medium-spiny projection neurons. LM22A-4 also
prevented dendritic spine loss of medium spiny neu-
rons and improved motor performance in both R6/2
and BACHD mice [91]. Taken together, the above
findings suggest that targeting TrkB can combat HD
degenerative mechanisms and improve motor perfor-
mance and is therefore a viable therapeutic strategy
for HD.

TrkA and TrkC as HD therapeutic targets

TrkA- and TrkC-based therapeutic strategies for
HD have received much less attention than those
involving TrkB but have followed similar devel-
opmental paths in that receptor structure has been
used to design peptidomimetics or to identify small
molecules that activate or potentiate the effects of
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the receptors’ signaling. Peptidomimetic TrkA ago-
nists with structural similarity to NGF loop 4 have
been shown to activate AKT and ERK signaling
and provide neuroprotection in cell culture sys-
tems [193—-195]. One of these peptide-based selective
TrkA agonists, D3, delivered intraventricularly to
an AD mouse model increased hippocampal and
cortical AKT signaling and improved memory in
AD mice but disrupted it in wild-types [196, 197].
Peptidomimetic TrkC agonists have also been iden-
tified that have trophic activity in in vitro assays but
have not been tested in vivo [193]. To date, neither
peptide-based TrkA nor TrkC agonists have been
tested in HD models. Again, peptide-based thera-
peutic strategies are limited by potential pleiotropic
effects caused by multi-receptor binding and sub-
optimal pharmacological characteristics, including
poor brain penetration and in vivo instability [169].

Small molecule non-peptide TrkA receptor ago-
nists have been identified by cell-based apoptotic
assays (e.g., gambogic amide) and in silico screen-
ing (e.g., MT2). Gambogic amide binds TrkA but
not the other Trks and stabilizes TrkA dimers thus
potentiating NGF activity. It activates TrkA by phos-
phorylation at Y490, Y751, and Y494 as well as
PI3K/AKT and MAPK/ERK signaling in primary
hippocampal neurons and blocks neuroexcitotoxic-
ity in vivo [169, 177]. However, gambogic amide
also binds to transferrin receptors and can induce
apoptosis. MT2 activates TrkA by phosphorylation
at Y490, Y674/675, and Y785 to initiate AKT and
ERK signaling and decreased amyloidogenesis and
neuronal death in NGF-deprived rat hippocampal cul-
tures [198]. Neither of these TrkA ligands have been
tested in in vitro or in vivo models of HD. However,
potentiating NGF effects in R6/2 mouse model of HD
with a substituted pyrimidine, KP544 (also known as
CXB-909), shown to induce MAPK signaling in vitro,
ameliorated motor deficits and prevented enlarged
ventricles [199, 200]. These results suggest the ther-
apeutic potential of small molecule modulation of
TrkA signaling in HD.

A TrkB/TrkC co-activator, LM22B-10, was iden-
tified by an expanded in silico screening of small
molecule libraries using the pharmacophore based
on BDNF loop 2 that identified the TrkB ligand
LM22A-4 [201]. LM22B-10 is a non-peptide small
molecule that binds to and phosphorylates TrkB
(Y515, Y705, Y817) and TrkC (Y516, Y820) but
not TrkA or p75NTR It recruits the Shc adaptor
protein and triggers ERK and AKT signaling in hip-
pocampus and striatum as well as PLCy signaling

in in vitro assays. Furthermore, LM22B-10 activated
synaptic TrkB and TrkC and alleviated deficits in pre-
and post-synaptic proteins as well as dendritic spine
loss in aged mice [201]. Analysis of LM22B-10/Trk
kinetics revealed that LM22B-10 produced signaling
patterns that were similar to those of NT-3/TrkC and
differed from BDNF/TrkB. The LM22B-10-induced
TrkB/TrkC signaling may be synergistic as LM22B-
10’s neurotrophic effects on hippocampal neurons
exceeded that of the native NTs in that it promoted
survival and neurite outgrowth to a greater extent
than BDNF or NT-3 [201]. This functional synergy
afforded by multi-target ligands could potentially
combat diverse pathological mechanisms present in
complex diseases such as HD [202]. Accordingly,
initial examinations of LM22B-10 in R6/2 mice
revealed that increasing TrkB and TrkC signaling
reduced HTT aggregates and ameliorated DARPP-
32 and motor deficits (Simmons et al., unpublished).
These preliminary results are proof-of-concept that
simultaneous targeting of multiple NT receptors may
be a feasible and effective therapeutic strategy for HD
and other neurodegenerative diseases. Current inves-
tigations are focused on developing TrkB/C ligands
with improved pharmacological properties as brain
permeability after oral administration of LM22B-10
is low and the ligand has a sub-optimal metabolic
profile.

Testing of TrkA- and TrkC-based treatments in HD
has received much less attention than those involving
TrkB, however the data that does exists along these
lines suggests that they may be effective therapeu-
tic strategies. However, all the Trk ligands developed
to date share the limitation of poor brain penetrance
necessitating the development of novel deriva-
tives with better bioavailability particularly via oral
administration routes.

Challenges in developing small molecule Trk
ligands

Identifying Trk ligands that can activate large
multi-subunit receptors can be challenging espe-
cially concerning monomeric and monovalent small
molecules [20, 203]. Bivalency is typically consid-
ered a requirement for receptor dimerization and
activation, however, monovalent small molecules can
bind and activate pre-formed dimeric receptors and
may activate Trks in this way as TrkA and most
TrkB receptors exist as homodimers [20, 25, 26, 197,
203-205]. Alternatively, small molecules can cause
dimerization by binding to monomeric receptors and
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changing their conformation or by allosteric mech-
anisms [20]. Partial agonism is typically the result
of monomeric/monovalent small molecule binding to
Trks initiating patterns of autophosphorylation and
signaling that can differ from the native NTs which
are dimerically bound [91, 184, 187, 201]. This point
is demonstrated by the differing patterns of Trk phos-
phorylation of 7,8-DHF, LM22A-4 and LM22B-10
from each other and the native NT, as described in the
above sections. These differences and the less robust
effects produced by the small molecule Trk ligands
compared to the full agonism of the NT's makes estab-
lishing target engagement by assessing activation of
TrkB and its downstream signaling difficult. In fact,
two recent reports failed to discern an effect of 7,8-
DHF or LM22A-4 on TrkB activation and AKT and
ERK signaling in several in vitro assays [173, 206].
These findings are in sharp contrast to the positive
results on these endpoints from several other indepen-
dent laboratories testing these compounds in similar
in vitro paradigms [20, 187—189]. These conflicting
results are most likely due to the use of variable cellu-
lar contexts and experimental conditions [206]. These
variables include insufficient assay sensitivity and
replications to detect the less pronounced biological
effects, particularly Trk phosphorylation, produced
by the small molecule ligands relative to the native
NTs. For example, to detect LM22A-4 activation
of TrkB (Y490) in hippocampal neurons by West-
ern blotting 8—11 replications were performed from
4-5 independent cultures [187]. Moreover, in vitro
systems undeniably differ from the in vivo milieu
and may not accurately recapitulate the environment
needed for receptor activation (e.g., presence of pre-
formed Trk homodimers or transactivation of Trks
by G protein-coupled receptors) [23, 206]. Accord-
ingly, in in vivo studies from multiple independent
research groups, both LM22A-4 and 7,8-DHF have
been shown to activate TrkB and its downstream
signaling to provide neuroprotection in numerous
pre-clinical animal models of diverse neurodegener-
ative conditions, as mentioned above [LM22A-4:[91,
187, 189-191, 207, 208]; 7,8-DHF: [175, 179-185]].
Thus, despite discrepant in vitro results, developing
small molecule Trk ligands for neurodegenerative
diseases, including HD, remains a viable therapeu-
tic strategy especially given the in vivo success of
the currently available ligands and that the eventual
goal of developing these compounds is in vivo activ-
ity and utility. However, the lack of reliable assays
that can detect Trk activation and that are translat-
able between in vitro and in vivo systems remains an

obstacle in identifying novel small molecule Trk acti-
vators [20, 206].

P75NTR SIGNALING IN HD

p75NTR signaling mediates diverse cellular pro-
cesses including neurite outgrowth, synaptic plas-
ticity, and inflammation as well as cell death or
survival depending on its modulation of other recep-
tors (e.g., Trks and sortilin) and the intracellular
signaling adaptors it recruits [20, 23, 209]. In the
adult brain, p75NTR is predominantly present in basal
forebrain cholinergic neurons, but it is also expressed
in neurons of brain areas primarily affected in HD
including striatum, cortex, and hippocampus as well
as other cell types (e.g., glial cells) [13, 210-215].
Within the striatum, p75N™R is located on many of
the specific cell types vulnerable to mutant HTT
including DARPP32-containing MSNs, cholinergic
and GABAergic interneurons, and oligodendrocytes
[13, 15, 40, 55, 215].

In HD patients, p75SN'R expression is up-regulated
in the hippocampus and striatum, but not in the cor-
tex, and is elevated in all three of these brain areas
in HD mouse models at mid- to late symptomatic
stages [13, 55, 95, 215, 216]. Interestingly, p75NTR
increases were larger in the rostral than caudal regions
of the R6/1 striatum suggesting a role of p75N'R in
striatal atrophy which follows a rostro-caudal gra-
dient [1, 13]. However, in the zQ175 HD mouse
model, p75NTR levels were unaltered in striatum at
pre-symptomatic stages (5-6 months of age) and asso-
ciated with survival signaling via the AKT and NF«3
pathways [217] but were decreased in striatum and
cortex at symptomatic stages (12 months of age) [15].
Levels of sortilin, p75NTR’s cell death co-receptor,
are increased in the striatum, but not the cortex of
12 month-old zQ175 mice [15]. While p75NTR Jev-
els were generally decreased in zQ175 striatum, they
were increased in striatal immature oligodendrocytes,
as were sortilin levels, which may contribute to the
myelin deficiencies seen in HD patients and mouse
models [15, 218, 219].

The elevated p75N'R levels and reduced lev-
els of TrkB and/or its signaling intermediates seen
in HD patients and most mouse models gener-
ates an imbalance in the ratio of p75NTR to TrkB
which likely contributes greatly to HD pathogenesis
[13, 40, 55, 91, 95, 216]. This p75NTR/TrkB imbal-
ance has been linked to increased pro-apoptotic
JNK signaling and reduced pro-survival signaling by



D.A. Simmons / Modulating Tri/p75N"® Signaling as HD Therapy 315

inhibiting BDNF/TrkB activation of the AKT path-
way in mutant HTT-expressing cells [13]. It has also
been reported to reduce the resistance of striatal cells
to mutant HTT-induced excitotoxic injury [13]. The
effects of this imbalance can be exacerbated by a
paucity of NTs, as seen with reduced BDNF and
NT-3 in the HD striatum and/or cortex, which can
lead to a default mode of p75NTR signaling involv-
ing degenerative pathways including JNK [20, 220].
Increased JNK signaling, as induced by mutant HTT
[13, 55, 101, 215, 221, 222], has been linked to mul-
tiple HD-related pathologies, including excessive tau
phosphorylation. Recent evidence suggests that HD
may be amongst a large group of neurodegenera-
tive diseases categorized as tauopathies [223]. Tau is
phosphorylated directly by numerous kinases includ-
ing JNK and toxic forms of the protein, including
hyperphosphorylated and oligomeric tau, are present
in the brains of HD patients and mouse models [223].

p75NTR signaling networks are highly integrated
with those affected by mutant HTT and those that
are involved in synaptic plasticity and neuronal sur-
vival (Fig. 3). Along these lines, several recent studies
have shown that dysregulated p75™'R signaling con-
tributes substantially to fundamental HD pathologies,
particularly structural and functional synaptic plas-
ticity deficits. BDNF binding to p75N™®R has been
shown to regulate hippocampal long-term depression
[17]. p75NTR is located on dendritic spines of hip-
pocampal CA1 pyramidal neurons as well as dentate
gyrus neurons and is a negative regulator of den-
drite complexity and spine formation by activating
RhoA signaling [43, 224]. In the hippocampus of the
HdhQ7/QU1T mouse model of HD, post-synaptic lev-
els of p75NTR and RhoA activation are up-regulated
[215]. These increases likely contribute to impaired
synaptic function as normalizing p75N™R levels and
RhoA activity by genetic knockdown of p75NTR
in HdhQ7/Q! mice prevented decreases in spine
density and synaptic proteins, including PSD-95,
CREB-binding protein (CBP), and phosphorylated
GluAl [210, 215]. This leveling of hippocampal
p75NTR was also associated with improved LTP and
cognition in HD mice [215].

Aberrant p75NTR signaling also contributes sig-
nificantly to HD-related corticostriatal synaptic
plasticity deficits. BDNF/TrkB-dependent LTP was
selectively impaired in striatal projection neurons
of the indirect (iISPN), not direct (dSPN), pathway
of basal ganglia circuits at an age coinciding with
the emergence of motor symptoms in BACHD and
Q175 HD mouse models [40]. The LTP deficit was

correlated with dendritic spine loss and reduced
post-synaptic AMPA receptors on the iSPNs. Knock-
down of p75NTR expression rescued iSPN LTP in
BACHD mice. The proposed mechanism underly-
ing this effect involves p75NTR-induced inhibition
of TrkB signaling via RhoA/ROCK activation of
PTEN, which blocks PI3K/AKT signaling neces-
sary for TrkB-induced potentiation. Expression of
PTEN is increased in striatum of HD mice [40, 55],
specifically in iSPNs which could lead to diminished
LTP induction in these cells [40]. LTP deficits were
prevented by pharmacological blocking of multiple
intermediates in the p75NR-RhoA signaling path-
way, including Rho-GDI and ROCK, lending support
for this mechanism [40]. Although p75NTR signaling
was associated with synaptic plasticity dysfunction
in iSPNs, which are involved in motor suppression,
striatal knockdown of p75NTR did not significantly
ameliorate deficits in rotarod motor performance
[215].

When chronically activated, p75N'R signaling via
the inhibitor of kappa beta kinase (IKK)/NFkf3
pathway may contribute to the neuroinflammatory
responses shown to integrally contribute to HD patho-
genesis [225]. IKK/NF«B signaling mediates glial
activation and inflammatory processes and is exces-
sively activated in HD patients and mouse models [39,
226, 227]. The increased NFx[3 signaling could be
caused by mutant HTT-induced decreases in levels of
inhibitor of nuclear factor kB (Ixa) [228-230]. I« B
prevents NF«f3 from translocating to the nucleus
to activate genes that promote inflammation and its
levels are reduced in the R6/1 hippocampus [216]
and R6/2 striatum [55]. Independent of its NF«f3
activating effects, IKK has been shown to phospho-
rylate and acetylate HTT thus tagging it for clearance
via autophagy and/or the ubiquitin-proteasome path-
ways and up-regulating IKK-related gene expression
with an HDAC inhibitor decreased HTT aggre-
gates in the cortex and/or striatum of HD mice
[231, 232].

Thus, dysregulated p75NTR signaling promotes
HD-related neuroinflammation and compromises
hippocampal and corticostriatal synaptic plasticity
contributing to memory problems and motor deficits
[11, 13, 40, 216]. Given how interconnected p75NTR
signaling networks are with those affected by mutant
HTT, therapeutic targeting of p75NTR has the poten-
tial to combat a broad array of HD pathologies,
especially if its degenerative signaling could be
blocked while concurrently augmenting its trophic
signaling.
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P75NTR _BASED THERAPEUTIC
STRATEGIES FOR HD

In developing p75NTR-based HD therapeutics, two
distinct strategies have been utilized to normalize
disrupted p75NTR signaling. The first involves a
pharmacological modulation that removes the imbal-
ance in the ratio of p75N™R to TrkB by lowering
p75NTR levels [216]. The second entails using small
molecule ligands that selectively bind to and activate
p75NTR to increase survival signaling while reducing
degenerative signaling [55].

Addressing the first strategy, the p75NTR/TrkB
imbalance in the hippocampus of R6/1 mice was
eradicated by chronic treatment with a modulator
of sphinosine-1 phosphatase receptor, fingolimod
[216]. This effect of fingolimod may be due to
its inhibition of TNFa, a cytokine that was shown
to increase p75N'R in R6/1 hippocampal cultures
conceivably via NF-«B signaling [216, 233]. Chron-
ically treating pre-symptomatic R6/1 mice with
fingolimod ameliorated the loss of PSD-95 and den-
dritic spines in hippocampus and improved long-term
memory possibly by increasing BDNF expression
and cAMP/CREB signaling while reducing RhoA
activity [216]. Fingolimod also reduced astrocyte-
mediated inflammation potentially by reducing
signaling via the NF-«B pathway. These beneficial
effects of fingolimod on cognition and structural
synaptic plasticity in hippocampus of R6/1 mice is
likely due, in part, to its prevention of p75N'R yp-
regulation as signaling associated with the receptor
was affected, including the RhoA and NF-«B path-
ways. However, its immunomodulatory properties
and elevation of BDNF would also be expected to
contribute significantly to its efficacy in ameliorating
the HD phenotype.

The other approach to normalizing p7 sig-
naling in HD involves direct targeting of the receptor
using potent and selective small molecule p75NTR lig-
ands. The Longo and Massa laboratories used in silico
screening to identify non-peptide small molecules
corresponding to NGF’s loop 1 3-turn domain which
interacts with p75NTR [234]. These compounds are
specific p75NTR ligands in that they do not bind
Trk receptors and were negative when screened for
binding to >50 common G-protein coupled and ion
channel receptors [234, 235]. In in vitro studies, the
p75NTR lJigands prevented neuronal death and pro-
moted survival signaling while blocking degenerative
signaling by pro-NGF-independent mechanisms or
by competing with pro-NGF for p75N™R binding

5NTR

[234-236]. One p75NTR ligand identified, LM11A-
31, has the favorable characteristics of a drug lead,
including suitable oral bioavailability and BBB pene-
tration with a brain-to-plasmaratio >1, and has shown
therapeutic efficacy in in vitro and in vivo models of
multiple neurodegenerative disorders including AD
and traumatic brain injury [20, 234-242].
LMI11A-31 has also been examined for its effects
against HD pathology in multiple mouse models of
the disease. LM11A-31 restored p75NTR-associated
trophic signaling via the AKT pathway and inhib-
ited degenerative signaling via the JNK pathway in
the R6/2 and BACHD striatum [55]. It also pre-
vented the increases in striatal RhoA/ROCK and
NF-«B signaling seen in R6/2 mice [55, 243].
LM11A-31’s normalizing effects on p75NTR signal-
ing could be the mechanism by which the ligand
ameliorates several fundamental HD pathologies.
For example, intranuclear HTT aggregates of stri-
atal, cortical and hippocampal neurons in R6/2 mice
were reduced by the p75NTR ligand potentially via
its actions on AKT and/or RhoA/ROCK signaling
[55], as activation of the former and inhibition of
the latter have been shown to reduce mutant HTT
aggregation and toxicity [106, 120, 121, 244, 245].
LMI11A-31 prevented dendritic spine loss of stri-
atal MSNs and hippocampal CA1 pyramidal neurons
of R6/2 and BACHD mice most likely by trigger-
ing AKT and PAK signaling [55], which positively
regulates spine formation and function [115, 246],
while inhibiting RhoA signaling, which negatively
affects spines [243, 247-250]. Microglial activa-
tion was also reduced by LM11A-31 possibly by
alleviating deficits in IxB-a [55], which isolates
NF-«B thereby blocking its ability to induce neu-
roinflammation [228-230]. Moreover, LM11A-31
elevated DARRP-32 levels and prevented neurite
degeneration of MSNs and cholinergic interneurons
in the striatum which may involve its effects on
multiple signaling pathways including JNK, RhoA,
and AKT [251-253]. Importantly, LM11A-31 pro-
longed the survival of R6/2 mice and improved
cognition and motor function in both R6/2 and
BACHD mice. In vivo target engagement of LM11A-
31 was suggested by elevated striatal levels of
p75NTR cleavage products [55], which are prote-
olytically formed with ligand binding [254, 255].
Thus, the effects of LM11A-31 are most likely due
to its direct interactions with p75N TR, Taken together
these results indicate that targeting p75N'R signal-
ing may be an effective therapeutic strategy for HD.
Notably, LM11A-31 is in Phase Ila clinical trials for
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AD (ClinicalTrials.gov: NCT03069014) and is there-
fore a feasible candidate for HD clinical testing.

CONCLUSIONS AND FUTURE
DIRECTIONS

Mutant HTT produces a pervasive set of degen-
erative effects that warrants the development of
disease modifying therapeutics capable of counter-
acting broad and fundamental disease mechanisms.
Loss of neurotrophic signaling and up-regulation of
degenerative signaling are key mechanisms under-
lying HD-related neuronal dysfunction and death.
The substantial overlap between NT signaling path-
ways and those dysregulated by mutant HTT provides
strong rationale for targeting NT receptors as a ther-
apeutic strategy for HD. Support for this approach is
provided by preclinical studies showing that small
molecule ligands for both types of NT receptors,
Trks and p75NTR, reduce degenerative signaling
and/or increase trophic signaling to prevent HD-
related pathology in mouse models of the disease.
Regarding Trk ligands, future studies will determine
if novel small molecules with optimized bioavail-
ability can be identified that also prevent HD
pathogenesis to improve cognition and motor abil-
ity. Since the p75NTR ligand, LM11A-31, is already
in Phase Ila clinical trials for AD (ClinicalTrials.gov:
NCT03069014), current work is focused on prepar-
ing for HD clinical trials, including development
of non-invasive biomarkers capable of detecting the
therapeutic efficacy of LM11A-31.
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