Distinguishing coronavirus disease 2019 from influenza in children remains challenging

S. Zayet¹, T. Klopfenstein¹, N. Ursulescu², N. Belfeki³, V. Gendrin¹ and M. Osman⁴

I Infectious Disease Department, 2 Paediatrics and Neonatology Department, Nord Franche-Comté Hospital, Trévenans, 3 Department of Internal Medicine, Groupe Hospitalier Sud IIe de France, Melun, France and 4 University Tunis El Manar, Faculty of Medicine of Tunis, Tunisia

Abstract

Clinical descriptions about influenza-like illness in children seem nonspecific during the co-circulation of SARS-CoV-2 and influenza. This paper aimed to summarize recent studies comparing clinical features and outcome, laboratory and radiological findings of COVID-19 patients with influenza patients in the paediatric population. © 2021 The Author(s). Published by Elsevier Ltd.

Keywords: Children, coronavirus disease 2019, influenza, paediatric, severe acute respiratory syndrome coronavirus 2 Original Submission: 11 April 2021; Revised Submission: 20 April 2021; Accepted: 20 April 2021 Article published online: 24 April 2021

Corresponding author: S. Zayet, Department of Infectious Diseases, Nord Franche-Comté Hospital, 90400, Trevenans, France. E-mail: souhail.zayet@gmail.com

To the Editor,

Coronavirus disease 2019 (COVID-19), an infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first reported in December 2019 in Wuhan in the province of Hubei in China. Since then, it has evolved into a worldwide pandemic and became one of the world's toughest health problems, especially in adult patients but also in pediatric population [1-3]. Influenza A and B affect 20%–30% of children annually with most cases occurring during the winter season [4,5]. The 2019–2020 influenza season had a lower than

expected burden, especially in children. This decrease was probably the result of a behavioural or ecological interaction with COVID-19. The occurrence of a syndemic episode with co-circulating influenza virus and SARS-CoV-2 is still an unknown hypothesis. SARS-CoV-2 and influenza virus share similarities, such as viral shedding, route of transmission and clinical presentation in adults and children presenting with influenza-like illness. In October 2020, we published a paper in Microbes and Infection describing an observational study of 124 adults comparing clinical features and outcome between COVID-19 and influenza [6]. We showed that regarding demographic characteristics such as age, sex and co-morbidities no differences were found between the two groups. Neurological symptoms (facial headache, anosmia and dysgeusia) and diarrhoea were statistically more frequent in COVID-19 patients. Respiratory symptoms (productive cough and dyspnoea), ocular symptoms (conjunctival hyperhaemia and tearing) and vomiting were more frequent with influenza infection [6].

Until now, there have been few studies comparing COVID-19 with influenza in paediatric populations [7-10]. The current paper compares the clinical features and outcomes, and laboratory and radiological findings of children with COVID-19 and those with influenza. In these four studies, all patients were hospitalized. One study compared hospitalized COVID-19 patients with outpatients with influenza [8]. Table | summarizes studies of children comparing significant clinical features, and laboratory and radiological findings in COVID-19 and influenza paediatric populations with a value of p < 0.05. In the study by Song et al., the median age was 8.4 years for COVID-19 patients and 3.9 years for influenza patients. The hospitalization rate was 17.1% for COVID-19 patients and 20.8% for influenza patients [7]. The mean age in the Zhao et al. paediatric population was 5.7 ± 3.8 years in 23 hospitalized children with COVID-19, whereas in Li et al. the mean age was 21.8 ± 16.7 months in 59 patients infected with influenza A virus [8,10]. Hospitalized children infected with SARS-CoV-2 were older, and had a lower body temperature than those with influenza; however, fever and gastrointestinal symptoms such as vomiting and diarrhoea were more often described (in two of three studies) in influenza patients, and this difference was significant [8,10]. Song et al. reported that 65% of children hospitalized with COVID-19 had at least one underlying medical condition versus 42% in those hospitalized with influenza (OR 2.6; 95% CI 1.4-4.7, p 0.002). Neurological issues were the most often identified underlying condition and were present in 20% of patients hospitalized with COVID-19 compared with 8% of patients hospitalized with influenza (OR 2.8; 95% CI 1.3-6.2, p 0.002) [7]. In the paediatric population, symptoms such as fever, diarrhoea or vomiting, were more often described in

Reference (number of COVID-19/ influenza patients)	Findings type	Significant findings	Hospitalized with COVID-19 (%)	Hospitalized with influenza (%)	OR (95% CI)	p value
Song et al. [7] (315/1402)	Clinical	Age >15 years Fever Diarrhoea/vomiting Myalgia Headache Chest pain	37 76 26 22 11 11	6 55 12 7 3 3	25.8 (14.2-48.5) 2.6 (1.4-5.1) 2.5 (1.2-5.0) 3.9 (1.8-8.5) 3.9 (1.3-11.5) 3.9 (1.3-11.5)	<0.001 0.01 0.01 0.01 0.001 0.01 0.01
Yang et al. [8] (23/138)			Hospitalized COVID-19 (%)	Influenza (%) Inpatients	Outpatients	Both p*
	Clinical	Cough duration (days) Body temperature (°C) Fever duration (days) Fever >39.0°C Nasal congestion Rhinorrhoea Sore throat Vomiting	2.0 ± 5.2 37.4 ± 1.2 1.0 ± 1.4 8.7 4.3 4.3 0.0	2.4 ± 3.2 38.3 ± 1.5 2.4 ± 3.0 37.7 31.9 29.0 37.8 27.5	3.8 ± 2.3 39.3 ± 0.9 4.0 ± 1.5 60.9 30.4 27.5 23.2 24.6	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
	Laboratory	Aspartate aminotransferase (U/L) Alanine aminotransferase (U/L) Cholinesterase (U/L) CRP (mg/L) ESR (mm/h)	37.5 ± 56.1 36.3 ± 37.1 9477.2 ± 2414.1 2.2 ± 4.4 9.6 ± 9.8	35.5 ± 72.8 46.0 ± 83.7 6512.7 ± 2085.7 48.0 ± 74.8 21.2 ± 18.5	28.6 ± 11.1 24.8 ± 9.4 7391.4 ± 1193.5 7.9 ± 9.0 22.2 ± 7.0	<0.001 <0.001 <0.001 <0.001 0.019
Liu et al. [9] (24/67)	Laboratory	Aspartate aminotransferase (U/L, extr) Procalcitonin (ng/l, extr) Lactate dehydrogenase (U/L)	31.5 (20.35–40.0) 0.07 (0.05–0.1) 300.5 (206.0–394.0)	46.5 (36-59.3) 0.31 (0.09-0.63) 369 (319-467)		<0.001 0.001 0.036
Li et al. [10] (57/59)	Clinical	Cough Fever Gl symptoms Severe pneumonia	70.2 54.4 14.1 3.5	98.3 84.7 35.7 18.6		<0.001 <0.001 0.007 0.016
	Laboratory Radiological	Lymphocyte (× 10 ⁹ /L) Leucocytes (× 10 ⁹ /L) Neutrophils (× 10 ⁹ /L) CRP (mg/L) Procalcitonin (mm/h) Creatine kinase (U/L) D-dimer (ng/mL) Prothrombin time (mm/h) Potassium (mmol/L) GGO	$\begin{array}{c} 4.58 \pm 2.06 \\ 7.87 \pm 2.87 \\ 2.43 \pm 1.92 \\ 3.7 \pm 6.85 \\ 0.09 \pm 0.09 \\ 147 \pm 89 \\ 0.34 \pm 0.29 \\ 10.8 \pm 0.7 \\ 5.14 \\ 42.1 \end{array}$	3.56 ± 2.01 9.89 ± 4.84 5.16 ± 4.46 15.1 ± 32.2 0.68 ± 1.82 130 ± 121 1.94 ± 2.88 11.2 ± 0.8 7.07 15.0		0.006 0.027 <0.001 0.001 0.042 <0.001 0.042 <0.001 0.014 0.001 0.032
	. adiological	Consolidation	5.2	25.0	_	0.025

TABLE I. Significant clinical features, and laboratory and radiological findings in COVID-19 and influenza paediatric populations

Abbreviations: COVID-19, coronavirus disease 2019; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; extr, extremes; GI, gastrointestinal; GGO, ground-glass opacity.

⁴ values for both COVID-19 versus influenza inpatients and COVID-19 versus influenza outpatients. Bold type indicates illness (COVID-19 or influenza) with significant difference.

hospitalized patients with seasonal influenza than in those with COVID-19 [8,10]. However, Song et al. concluded that fever and gastrointestinal symptoms were more often described in children hospitalized with COVID-19. This can be explained by the demographic characteristics of the included patients; 37% were adolescents over 15 years old, who have results similar to those of adults [6]. Currently, it is known that neurological symptoms such as the association of anosmia and dysgeusia can lead to the diagnosis of SARS-CoV-2 infection in patients presenting with influenza-like illness [11]. This is not possible with children who are not going to express their subjective olfactory and gustatory dysfunctions; however, it is necessary to look for new loss of smell and taste in children from a certain age range. Concerning the outcome, no statistically significant difference was found in hospitalization rate, intensive care unit admission rate and use of mechanical ventilator support between the two groups [7]. These observations were habitually reported in adult studies [6]; however, SARS-CoV-2 and influenza virus affect children less severely than adults [3]. Zhao et al. concluded that children with COVID-19 were associated with a higher ratio of in-home infection than influenza inpatients (95.6% versus 21.7%, p < 0.001). Milder COVID-19 symptoms in children could be explained by the lower intracellular response induced by angiotensin-converting enzyme 2 in alveolar epithelial cells [8]. Concerning laboratory investigations, three studies of four concluded that children with COVID-19 had higher levels of lymphocytes, creatine kinase, aspartate aminotransferase (AST) and cholinesterase than children with influenza [8,10]. However, Liu et al. concluded in a recent paper that children with COVID-19 had statistically lower levels of

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

^{© 2021} The Author(s). Published by Elsevier Ltd, NMNI, 41, 100888

procalcitonin, AST and lactate dehydrogenase on univariate analysis; only AST was found to be statistically significant after multivariate analysis [9]. Since the identification of SARS-CoV-2 in children, a European systematic review of 655 children with mild to moderate clinical manifestations of COVID-19 noted lymphopenia or neutropenia in 13% and elevated inflammatory markers in 31% [3]. Laboratory results were comparable to those found in adult patients; COVID-19 patients showed significantly lower levels of leucocytes (especially of neutrophils) and inflammatory markers such as C-reactive protein and procalcitonin, whereas lymphocyte levels were significantly higher compared with influenza patients [10]. In children, imaging results more commonly presented as ground-glass opacities (GGO) in children with COVID-19 under 5 years of age; however, consolidation was more common in influenza patients [10]. In terms of imaging characteristics, only one study compared chest CT scans in this population and reported that GGO were significantly more common in children with COVID-19 than children with influenza [10]. Radiological data showed that GGO, interlobular septal thickening and a peripheral distribution were more common in adult patients with COVID-19 than in patients with influenza. However, consolidation, nodules and linear opacities and pulmonary complications such as pneumomediastinum and pneumothorax were more common in patients with influenza than those with COVID-19 [5]. The scarcity of moderate to severe respiratory forms in children makes the amount of radiological data limited in this population [3].

There are some limitations to our review. COVID-19 is relatively novel with a limited number of patients and studies. In most articles, the clinical features, laboratory data and CT findings reported about influenza dated before the onset of COVID-19. A meta-analysis is recommended to further define the differences and the similarities between COVID-19 and influenza.

This paper provides a comprehensive comparison between children with SARS-CoV-2 and influenza infections, regarding co-morbidities, clinical and paraclinical features and outcome. Clinical manifestations of COVID-19 and influenza seem to be similar with few differences; fever and gastrointestinal symptoms were more often described in children aged <15 years with COVID-19 than in children with influenza. The two viruses seem to provide laboratory abnormalities with no specifics for either of them (only AST level seems to be more elevated in COVID-19 than influenza). Radiological findings showed that GGO were usually more frequent and peripherally located in COVID-19 compared with influenza. All these findings can help paediatric infectious diseases clinicians when dealing with cases of influenza-like illness during the period of possible co-circulation of influenza and SARS-CoV-2.

Funding sources

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors' contributions

SZ and MO collected the epidemiological and clinical data, and drafted the manuscript. TK, NU, NB and VG revised the final manuscript.

Conflict of interest

None.

References

- Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382:727–33.
- [2] Shane L, Sato I, Kao I, Adler-Shohet C, Vora B, Jeffrey J, et al. A pediatric infectious diseases perspective of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and novel coronavirus disease 2019 (COVID-19) in children. J Pediatr Infect Dis Soc 2020;9: 596–608.
- [3] Liguoro I, Pilotto C, Bonanni M, Ferrari E, Pusiol A, Nocerino A, et al. SARS-COV-2 infection in children and newborns: a systematic review. Eur J Pediatr 2020;179:1029–46.
- [4] Ratre YK, Vishvakarma NK, Bhaskar LVKS, Verma HK. Dynamic propagation and impact of pandemic influenza A (2009 H1N1) in children: a detailed review. Curr Microbiol 2020;77:3809–20.
- [5] Onigbinde SO, Ojo AS, Fleary L, Hage R. Chest computed tomography findings in COVID-19 and influenza: a narrative review, vol. 2020. Hindawi Limited; 2020. https://doi.org/10.1155/2020/6928368.
- [6] Zayet S, Kadiane-Oussou NJ, Lepiller Q, Zahra H, Royer P-Y, Toko L, et al. Clinical features of COVID-19 and influenza: a comparative study on Nord FrancheComte cluster. Microbe Infect 2020. Published online June 16.
- [7] Song X, Delaney M, Shah RK, Campos JM, Wessel DL, DeBiasi RL. Comparison of clinical features of COVID-19 vs seasonal influenza A and B in US children. NLM (Medline) 2020;3. https://doi.org/10.1001/ jamanetworkopen.2020.20495.
- [8] Zhao Y, Sun DL, Bouchard HC, et al. Coronavirus disease 2019 versus influenza A in children: an observational control study in China. Biomed Environ Sci 2020;33:614–9.
- [9] Liu X-P, Guo MM-H, Liu S-F, Kuo H-C. Comparison of laboratory data between children with COVID-19 and influenza. Kaohsiung J Med Sci 2021. https://doi.org/10.1002/kjm2.12353.

- [10] Li Y, Wang H, Wang F, et al. Comparison of hospitalized patients with pneumonia caused by COVID-19 and influenza A in children under 5 years. Int J Infect Dis 2020;98:80–3.
- [11] Zayet S, Klopfenstein T, Mercier J, Kadiane-Oussou J, Wah C, Royer P-Y, et al. Contribution of anosmia and dysgeusia for diagnostic of COVID-19 in outpatients. Infection 2020. Published online May 14.