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Cancer stem cells induced 
by chronic stimulation 
with prostaglandin E2 exhibited 
constitutively activated PI3K axis
Hideki Minematsu1,2, Said M. Afify3,4, Yuki Sugihara2, Ghmkin Hassan4, Maram H. Zahra4, 
Akimasa Seno4, Masaki Adachi2 & Masaharu Seno4*

Previously, our group has demonstrated establishment of Cancer Stem Cell (CSC) models from stem 
cells in the presence of conditioned medium of cancer cell lines. In this study, we tried to identify the 
factors responsible for the induction of CSCs. Since we found the lipid composition could be traced 
to arachidonic acid cascade in the CSC model, we assessed prostaglandin E2 (PGE2) as a candidate 
for the ability to induce CSCs from induced pluripotent stem cells (iPSCs). Mouse iPSCs acquired 
the characteristics of CSCs in the presence of 10 ng/mL of PGE2 after 4 weeks. Since constitutive 
Akt activation and pik3cg overexpression were found in the resultant CSCs, of which growth was 
found independent of PGE2, chronic stimulation of the receptors EP-2/4 by PGE2 was supposed to 
induce CSCs from iPSCs through epigenetic effect. The bioinformatics analysis of the next generation 
sequence data of the obtained CSCs proposed not only receptor tyrosine kinase activation by growth 
factors but also extracellular matrix and focal adhesion enhanced PI3K pathway. Collectively, chronic 
stimulation of stem cells with PGE2 was implied responsible for cancer initiation enhancing PI3K/Akt 
axis.
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LPC	� Lysophosphatidylcholine
LPE	� Lysophosphatidylethanolamine
LPI	� Lysophosphatidylinositol
LPS	� Lysophosphatidylserine
LTA4h	� Leukotriene A4 hydrolase
LTB4	� Leukotriene B4
MCP-1	� Monocyte chemoattractant protein-1
miPSCs	� Mouse induced pluripotent stem cells
miPS-LLCcm	� The model of CSCs prepared from miPSCs by the treatment with the conditioned medium 

of LLC cells
miPS-LLCcmP	� The primary cells from subcutaneously transplanted miPS-LLCcm cells
miPS-PGE2	� The cells from miPSCs by the treatment with PGE2
miPS-PGE2P	� The primary cells from subcutaneously transplanted miPS-PGE2 cells
PC	� Phosphatidylcholine
PE	� Phosphatidylethanolamine
PGES	� Prostaglandin E synthase
PGSEA	� Parametric gene set enrichment analysis
PGE2	� Prostaglandin E2
PI	� Phosphatidylinositol
PIP3	� Phosphatase of phosphatidyl inositol 3,4,5 phosphate
PS	� Phosphatidylserine
PTEN	� Phosphatase and tensin homologue
ROS	� Reactive oxygen species
Shh	� Sonic hedgehog
TNF-alpha	� Tumor necrosis factor alpha
VCL	� Vinculin

The number of patients and deaths of cancer is increasing year by year in the world, and it is the leading cause 
of death in Japan and the highest in the world. In recent years, the development of anti-cancer drugs including 
molecularly targeting drugs has progressed, and chemo- and radiation-therapy have become possible to tempo-
rarily treat many cancers. However, the population of the cells resistant to treatment will emerge as recurrence 
and/or metastasis so often that the number of cancer deaths should continue to increase1.

Cancer stem cells (CSCs) have been focused on recent years due to the contribution in cancer initiation2 and 
recurrence/metastasis3. Even if most of the tumor is removed by chemotherapy, recurrences are often found due 
to the drug resistance of CSCs. CSCs are the subpopulation within cancer tissues sharing similar characteristics 
of normal stem or progenitor cells such as self-renewal ability and multi-lineage differentiation to drive tumor 
growth and heterogeneity4. CSCs are hypothesized to be the top of the hierarchy of the cells and this idea is now 
being widely accepted5. Due to the heterogeneity, treatment of cancer seems to be difficult. Although the mecha-
nism of CSC development has not been clear yet, elucidation of the mechanism will significantly contribute to 
the prevention, diagnosis, and treatment of cancer.

Based on the hypothesis of cancer-inducing niche2, our group developed CSC models from mouse induced 
pluripotent stem cells (miPSCs), which were cultured in the presence of conditioned media of Lewis lung car-
cinoma (LLC) cells6 or exosomes derived from the conditioned media for 4 weeks7. miPS-LLCcm cells are the 
model of CSCs prepared from miPSCs by the treatment with the conditioned medium of LLC cells. miPS-LLCcm 
cells were confirmed tumorigenic when subcutaneously transplanted and the primary cells from the tumor 
were designated as miPS-LLCcmP cells. Both miPS-LLCcm and miPS-LLCcmP cells were used as the control 
of converted cells in this study. However, the factors responsible for the conversion of miPSCs to CSCs has not 
yet been clarified. The identification of the responsible factors in the conditioned media of LLC cells may lead 
to the elucidation of the molecular mechanism of cancer initiation.

Although the relationship between chronic inflammation and cancer development has historically been 
suggested2,8,9, the relationship is not so much uncovered. This is partly because chronic inflammation varies and 
has been diagnosed personally leading to the difficulty to explain in general terms. On the other hand, we know 
to date various inflammation-related substances such as cell growth factors, cytokines including interleukins, and 
chemokines have been reported to be overexpressed in many cancer cell lines. Taking these into consideration, 
the presence of responsible factors for the induction of CSCs could be identified as inflammation-related sub-
stances in the conditioned medium of LLC cells. In this study, we found that the differences in lipid compositions 
between miPSCs and the induced CSCs. Based on this finding, we started analyses to explore the mechanism of 
CSC development attributed to the activation of PI3 kinase signaling pathway, which we previously identified 
to be enhanced in the induced CSCs10,11.

Results
Cancer related cells appeared rich in a source of inflammatory eicosanoids.  LLC and miPS-
LLCcmP cells showed the composition of phosphatidylserine (PS) 14.3% and phosphatidylinositol (PI) 23.6 and 
16.5%, respectively, whereas PS was 9.6 and PI 10.7% in miPSCs. And the ratio of phosphatidylcholine (PC) is 
in LLC and miPS-LLCcmP cells were 30.7 and 29.0% whereas it was 52.7% in miPSCs (Fig. 1A). Thus, PS and 
PI were relatively higher, and PC was lower in the cancer related cells when compared with normal stem cells. 
The composition of glycerophospholipids such as PI, PS and PC in cancer cells is reported to significantly be 
different from that in normal cells12. The increased ratio of PI could be traced to the conversion of miPSCs into 
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Figure 1.   Comparison of the characters between miPSCs, miPS-LLCcmP cells and LLC cells. (A) 
Comparison of the glycerophospholipid composition ratio. (B) Comparison of PGE2 production by ELISA. 
a: miPSCs, b: miPS-LLCcmP, c: LLC. Data are obtained from three independent experiments and plotted as 
means ± SD.***p < 0.01. (C) Comparison of relative expression of gene related with PGE2 synthesis. a: miPSCs, 
b: miPS-LLCcmP, c: LLC. Data are obtained from three independent experiments and plotted as means ± SD. 
*p < 0.1, **p < 0.05, ***p < 0.01. (D) Comparison of the expression of cPLA2 and COX-2 by Western blotting. 
A representative blot is shown at left. Densitometric analysis of the blots from three independent experiments 
by ImageJ is shown at right. a: miPSCs, b: miPS-LLCcmP, c: LLC. Data are plotted as means ± SD. ***p < 0.01. 
(E) Comparison of the expression of EP-2 and EP-4 by Western blotting. A representative blot is shown at left. 
Densitometric analysis of the blots from three independent experiments by ImageJ is shown at right. a: miPSCs, 
b: miPS-LLCcmP, c: LLC. Data are plotted as means ± SD. (F) Time course change of the phosphorylation of Akt 
in miPSCs. A representative blot is shown at left. Densitometric analysis of the blots from three independent 
experiments by ImageJ is shown at right. Data are plotted as means ± SD. **p < 0.05, ***p < 0.01. (G) Comparison 
of the expression of Alox-5 and Lta4h by RT-qPCR. a: miPSCs, b: miPS-LLCcmP, c: LLC. Data are obtained 
from three independent experiments and plotted as means ± SD. *p < 0.1, **p < 0.05, ***p < 0.01. (H) Comparison 
of the production of LTB4 by ELISA. a: miPSCs, b: miPS-LLCcmP, c: LLC. Data are obtained from three 
independent experiments and plotted as means ± SD. *p < 0.1. See details in “Materials and methods” section.
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CSCs because the PI-metabolic system is involved in the development of cancer13. Furthermore, most of the 
fatty acids at the 2-position of PI are arachidonic acid14,15. Generally, arachidonic acid is used in vivo as a part of 
prostaglandins and leukotrienes, so-called eicosanoids, which are closely related to inflammation and cancer16. 
We hypothesized the composition ratio of PI in miPS-LLCcmP cells and LLC cells higher than in miPSCs should 
imply the involvement of inflammatory eicosanoids in the conversion of miPSCs into miPS-LLCcmP cells.

Presence of prostaglandin E2 in the conditioned medium of LLC cells.  Since the major candidate 
of prostaglandin involved in inflammation was prostaglandin E2 (PGE2), the amount of PGE2 in the condi-
tioned medium (CM) of LLC cells, which was supposed effective in the conversion of miPSCs into CSCs, was 
quantified by ELISA. As the result, LLC cells produced 16.9 ng/mL of PGE2, which was approximately 30 times 
higher than the amount of 0.5 ng/mL produced by miPSCs (Fig. 1B). miPS-LLCcmP cells produced 4.9 ng/mL 
of PGE2 implying that the converted cells acquired the ability to produce PGE2.

Further, we assessed the expression of cytoplasmic phospholipase A2 (cPLA2), which digests PI to excise ara-
chidonic acid, cyclooxygenase (COX-2), which is induced in inflammation and catalyses cyclization of C8–C12 
of arachidonic acid, and prostaglandin E synthase (PGES) 1 by RT-qPCR (Fig. 1C). As the results, LLC cells 
overexpressed 50, 11 and 8 folds of cPLA2, COX-2 and PGES1, respectively, more than miPSCs while those 
in miPS-LLCcmP cells were almost equivalent to those in miPSCs. The results of Western Blot for cPLA2 and 
COX-2 were consistent with those of rt-qPCR (Fig. 1D).

The expression of PGE2 receptors was then assessed in miPSCs in order to confirm that PGE2 could stimulates 
miPSCs to activate the cytoplasmic signalling. EP-2 and EP-4, which were closely related to cancer among PGE2 
receptors, were found expressed in miPSCs as well as miPS-LLCcmP cells and LLC cells (Fig. 1E).

Since PI3K/Akt pathway was reported to be activated through EP-2 or EP-4, both of which were subtypes of 
G-protein coupled receptor (GPCR) stimulated by PGE217–19, the phosphorylation of Akt was assessed in miPSCs 
by the stimulation of PGE2 (Fig. 1F). As the result, Akt was phosphorylated by 10 ng/mL of PGE2 in miPSCs 
showing the time course dependent manner with the peak at 60 min from the stimulation.

Leukotriene B4 (LTB4) is a biproduct of arachidonic acid and also known as one of the inflammatory eicosa-
noids like PGE2. The enzymes responsible for the synthesis are arachidonate 5-lipoxigenae (Alox-5) and leukot-
riene A4 hydrolase (LTA4h). Since LTB4 is considered closely related with cancer16, the expression of these two 
enzymes in the three cells was assessed by RT-qPCR. However, the expression level of Alox-5 was not detectable 
in LLC cells while LTA4h was detected indicating the synthesis of LTB4 should be difficult (Fig. 1G). Further, 
the quantity of LTB4 in the CM of LLC cells was not detectable by ELISA, of which sensitivity was lower than 
1 pg/mL (Fig. 1H). Taking all these data into consideration, PGE2 was supposed to be a factor responsible for 
the conversion of miPSCs into CSCs.

Evaluation of PGE2 to convert miPSCs to CSCs.  Since the concentration of PGE2 was almost 20 ng/
mL in the CM of LLC cells and the CM was diluted two-fold when miPSCs were previously converted into 
miPS-LLCcm cells, miPSCs were cultured in the presence of 10 ng/mL of PGE2 for 4 weeks without leukaemia 
inhibitory factor (LIF) which was required to maintain the stemness of miPSCs in the standard culture condition 
as described in the Materials and Methods section. As the result, miPSCs survived as those cultured in the pres-
ence of CM of LLC cells while they died within 1 week after culturing without LIF or PGE2 (Fig. 2A). These cells 
were designated as miPS-PGE2 cells, which kept GFP expressed under the control of Nanog promoter indicat-
ing undifferentiated condition of the cells in the same manner as demonstrated in miPS-LLCcm cells6 (Fig. 2A). 
Flow cytometric analysis showed that GFP+ population in miPS-PGE2 cells was 68% while that in miPS-LLCcm 
cells was 48% indicating the resultant cells of the conversion were the mixture of differentiated and undifferenti-
ated cells when they were cultured in adhesive condition (Fig. 2B). It was worthwhile noticing that miPS-PGE2 
cells acquired the expression of CSC markers such as CD44 and CD133 (Fig. 2C).

Since the sphere-forming assay was first introduced as a functional approach for studying adult stem cells20 
and has been widely used to evaluate the stem properties of proposed CSC populations21–23 miPS-PGE2 cells 
were assessed for the self-renewal potential by the sphere formation in a dish with low attachment surface. As 
the result, miPS-PGE2 cells formed spheres under non-serum condition indicating self-renewal potential in 
the same manner as demonstrated in miPS-LLCcm cells (Fig. 2D). The potential of differentiation into vascular 
endothelial cells (ECs) in miPS-PGE2 cells was assessed for the tube formation on Matrigel. The tube-forming 
capacity of the cells was quantified by the number of branching points (Fig. 2E). As the result, miPS-PGE2 
exhibited the potential of differentiation as well as that of miPS-LLCcm cells.

Subcutaneously transplanted miPS-PGE2 cells formed tumors in nude mice (Fig. 3A). It is worthwhile notic-
ing that the converted cells exhibited significantly rapid tumor growth when compared to miPSCs, which devel-
oped benign teratoma, and miPS-LLCcm cells, which developed malignant tumor. The volume of tumors from 
miPS-PGE2 cells reached to an average of 600 mm3 in less than 2 weeks while those from miPS-LLCcm cells 
required at least 3 weeks to reach to the same size (Fig. 3B). While histological features of teratoma derived from 
miPSCs showed no malignancy (Fig. 3C), the xenografts derived from miPS-PGE2 cells showed high mitotic 
figures and a high degree of atypia (Fig. 3D I, II), which were similar to those of the malignant tumors developed 
from miPS-LLCcm cells6. The secondary tumor by the injection of miPS-PGE2P cells showed infiltration into 
the surrounding muscular layer and high mitotic figures and nuclear atypia (Fig. 3D III, IV). Simultaneously, 
immunohistochemistry of the tumor derived from miPS-PGE2P cells showed strong immunoreactivity to anti-
E-cadherin, -Ki67, and -CD44 antibodies indicating high proliferation rate with CSC subpopulation as well as 
heterogeneous intercellular adherence while teratoma section did not show any of these immunoreactivities 
(Fig. 3E).
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Figure 2.   Evaluation of the effect of PGE2 on miPSCs. (A) Time course change of morphology during 4 weeks 
of treatment. The images of the cells before treatment are put at the left as the control of the start point with 
GFP positive cells. BF, bright field; GFP, green fluorescence. Scale bar 50 µm. (B) Flow cytometric analysis for 
the GFP+ population in miPSCs, miPS-LLCcm cells and miPS-PGE2 cells. (C) Comparison of the expression of 
CD44 and CD133 between miPSCs, miPS-LLCcm cells and miPS-PGE2 cells by RT-qPCR. a: miPSCs, b: miPS-
LLCcm, c: miPS-PGE2. Data are plotted as means ± SD. *p < 0.1, **p < 0.05, ***p < 0.01. (D) Comparison of the 
sphere formation of miPSCs, miPS-LLCcm cells and miPS-PGE2 cells. Scale bar 200 µm. (E) Tube formation 
assay on miPSCs, miPS-LLCcm cells and miPS-PGE2 cells (left). Scale bar 200 µm. Branching point analysis by 
ImageJ (right). a: miPS, b: miPS-LLCcm, c: miPS-PGE2. Data are plotted as means ± SD. ***p < 0.01.
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Primary culture of miPS‑PGE2 derived tumor showed characteristics of CSCs.  Primary culture 
of a tumor developed from miPS-PGE2 cells was designated as miPS-PGE2P. miPS-PGE2P cells colonized and 
proliferated on an adhesive culture dish in the same manner as miPS-LLCcm cells (Fig. 3F). miPS-PGE2P cells 
sustained the expression of GFP, which could be traced back to the injected miPS-PGE2 cells and showed two 
different subpopulations of GFP+ and GFP- cells representing the undifferentiated and differentiated subpopula-
tion, respectively. GFP- cells exhibited fibroblast-like morphology apparently supporting the microenvironment 
of the GFP+ cells that are CSCs. Regarding to the stemness, miPS-PGE2P cells sustained the expression of stem 
cell markers such as Nanog, Oct3/4 and SOX2 (Fig. 3G) while the level of KLF4 was significantly downregulated 
as it was in miPS-LLCcm cells. As for the markers of CSC, miPS-PGE2P cells showed the expression of CD44 
and CD133 whereas the expression of CD44 was as the same level as that in miPS-LLCcm cells but higher 
than that in miPSCs (Fig. 3H). miPS-PGE2P cells formed spheres in the serum free condition (Fig. 4A). The 
extreme limiting dilution assay showed that the self-renewal potential of miPS-PGE2 cells was significantly 
higher than that of miPS-LLCcmP cells (Fig. 4B). The potential of differentiation into ECs in miPS-PGE2P cells 
was assessed on Matrigel and evaluated by the tube formation (Fig. 4C). miPS-PGE2P cells were found sustain-
ing the differentiation potential as shown in miPS-PGE2 and miPS-LLCcmP cells. The tube structures were 
most extensive during 12–24 h after seeding. There was no significant difference in the number of tubes and 
branch lengths between miPS-PGE2 and miPS-LLCcm cells after 24 h. The differentiation was simultaneously 
assessed by immunofluorescence staining for CD31, which serves as phenotypic and functional markers of ECs 
(Fig. 4D). miPS-PGE2 cells expressed CD31 in the tubes together with GFP exhibiting different subpopulations 
of “CD31+/GFP- (red)”, and “CD31−/GFP+ (green)” and “CD31+/GFP+ (yellow)”. This result indicated that the 
tumor angiogenesis might occur by CSCs sequentially differentiating from undifferentiated phenotype (green) 
to differentiated phenotype (red) through mid-stage (yellow) and that the tube structures were finally composed 
of heterogeneous cells, which would partly explain the heterogeneity in a tumor tissue.

PI3K/Akt signalling in miPS‑PGE2 and miPS‑PGE2P cells.  Previously, our group reported that 
PI3K/Akt signaling was activated in miPS-LLCcm cells10. Following this information, we assessed the activa-
tion of PI3K/Akt signaling in miPS-PGE2 cells. As the results of RT-qPCR, the expression of Pik3cg was sig-
nificantly upregulated in miPS-PGE2 cells when compared to that in miPSCs as found in miPS-LLCcm cells 
(Fig. 5A). Regarding to the activation of PI3K/Akt signaling, the phosphorylation of Akt was assessed by West-
ern Blotting. As a result, the constitutive phosphorylation of Akt in miPS-PGE2 cells was recognized as found 
in miPS-LLCcm cells and higher than that in miPSCs without LIF (Fig. 5B,C). Among PI3K, oncogenic fre-
quent mutations in the Pik3ca gene have been reported in human cancer13. The typical amino acid changes 
due to the mutations are E542K, E545K, and H1047R. However, no mutations were found in the Pik3ca gene 
in miPS-PGE2 cells by the cDNA sequence analysis (Fig. 5D). It is conceivable that upregulation of PI3K level 
enhances the product of phosphatase of phosphatidyl inositol 3,4,5 phosphate (PIP3) triggerring PI3K/Akt 
pathway toward carcinogenesis24,25. Since PI3K/Akt pathway is negatively regulated by phosphatase and ten-
sin homologue (PTEN), which is a lipid hydrolytic enzyme specific to PIP3, PTEN is considered as the tumor 
suppressor gene. Three major mutations PTEN gene resulting in the amino acid changes of R130L, R173C and 
R233X, where X means anonymous, have been reported to inactivate PTEN in human cancers26–28. Accordingly, 
we assessed the expression of PTEN and cDNA sequence (Supplementary Fig. S1 and Fig. 5E). The expression of 
PTEN was lower in miPS-PGE2 cells than in miPSCs. And there were no mutations in the three mainly reported 
sites in the PTEN gene in miPS-PGE2 cells.

The RNA from converted miPS-PGE2 cells, primary cultured miPS-PGE2P cells and miPSCs were sub-
jected to the RNA-seq and the gene expression profiles were compared as a heat map using iDEP (Fig. 6A). The 
upregulated genes depicted in red when compared to miPSCs in the converted cells and the primary cells were 
respectively picked up and applied to Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway analysis. 
The analysis revealed that top enriched pathways in the converted cells and the primary cells were including 
those related to cancer, stemness, and cell-to-cell or cell-to-matrix interactions (Fig. 6B,C). The Parametric 
Gene Set Enrichment Analysis (PGSEA) showed commonly activated KEGG pathways between converted and 

Figure 3.   Analyses of tumorigenic potential in miPS-PGE2 cells. (A) Tumor derived from miPS-PGE2 cells 
in s.c. (left) and excised (right). Scale bar 5 mm. (B) Time course change of the tumor size. Data are plotted 
by means + SD. **p < 0.05 (C) Representative images from two different field of miPSCs derived teratoma after 
four weeks of injection as a control showing a phenotype with various normal germ layers, including squamous 
epithelium, skeletal muscle, cartilage, and benign glandular epithelium. (D) Representative images of miPS-
PGE2 derived malignant tumor after four weeks of injection (C,D) H&E staining. I, low magnification. II, 
maginification of the part squared in I. III and IV, Different fields of the section. Asterisks in II and IV depict 
severe nuclear atypia. Black arrows in II and IV depict mild nuclear atypia. Black arrow in III depicts invasion. 
White arrow in IV depicts necrosis. Scale bars 307 (top left), 64 (top right), 100 (bottom left), 50 (bottom right) 
µm. (E) Immunohistochemistry of the tumor in A. The tumor was stained with antibodies against E-cadherin, 
Ki67 and CD44. Sections from miPSC derived teratoma (left column) and those from miPS-PGE2 derived 
malignant tumor (right column) Scale bars 64 µm. (F) Adhesive culture of miPSCs and the primary cells derived 
from miPS-LLCcm and miPS-PGE2 cells. BF, bright field. GFP, fluorescence from GFP. Scale bar 100 µm. (G) 
Comparison of the expression of Stemness marker between miPSCs (a), miPS-LLCcmP cells (b) and miPS-
PGE2P cells (c) by RT-qPCR. Data were plotted as means ± SD. *p < 0.1, **p < 0.05, ***p < 0.01. (H) Comparison 
of the expression of CD44 and CD133 between miPSCs (a), miPS-LLCcmP cells (b) and miPS-PGE2P cells (c) 
by RT-qPCR. Data are plotted as means ± SD. **p < 0.05, ***p < 0.01.
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Figure 4.   Self-renewal and differentiation potential of miPS-PGE2P cells compared with miPS-LLCcmP cells. 
(A) Typical spheres of the cells in non-adherent condition. Scale bar 100 µm. (B) ELDA for sphere formation 
miPS-PGE2P cells (Green), miPS-LLCcmP cells (red) and miPSCs (black). (C) Tube formation assay. Branching 
point analysed by ImageJ. a: miPS, b: miPS-LLCcmP, c: miPS-PGE2P. Data are plotted as means ± SD. ***p < 0.01 
(D) Immunofluorescent analyses of tubes in (C). BF bright field, DAPI staining for nucleus, GFP fluorescence 
of GFP, CD31 staining with anti-CD31 antibody labelled with Alexa fluor 555. Scale bars 50 (top) and 10 µm 
(bottom).
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Figure 5.   Analyses of PI3K/Akt signalling potential of miPS-PGE2P cells. (A) RT-qPCR analyses of pik3 
related genes expression. a: miPSCs, b: miPS-LLCcm, c: miPS-PGE2, d: miPS-LLCcmP, e: miPS-PGE2P. Data 
are plotted as means ± SD. *p < 0.1, **p < 0.05, ***p < 0.01. (B,C) Western blotting analysis of the phosphorylation 
of Akt. (B) Cells after conversion of iPSCs. a: miPSCs -LIF, b: miPSCs + LIF, c: miPS-LLCcm, d: miPS-PGE2. (C) 
Primary cells derived from tumors of miPS-LLCcm and miPS-PGE2 cells. a: miPSCs -LIF, b: miPSCs + LIF, c: 
miPS-LLCcmP, d: miPS-PGE2P. (D,E) DNA sequence spots of oncogenic mutations in pik3ca and PTEN genes 
were analysed in miPS-PGE2P cells. The sequencing charts corresponding to each part of sequences are shown 
together with normal sequence and translated amino acids on the top. (D) pi3kca gene (E) PTEN gene. The 
ID numbers of the template sequences are BC089038.1 in EMBL and NM_008960.2 in GenBank. Each codon 
shown in red is the part subjected to occasional oncogenic mutation in cancer (COSMIC < https://​cancer.​sanger.​
ac.​uk/​cosmic >).

https://cancer.sanger.ac.uk/cosmic
https://cancer.sanger.ac.uk/cosmic
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primary cells when compared with miPSCs were “mmu05200: Pathways in cancer”, “mmu04510: Focal adhe-
sion”, “mmu04390: Hippo signaling pathway”, “mmu04512:ECM-receptor interaction”, “mmu04310:Wnt signal-
ing pathway”, and “mmu04151:PI3K-Akt signaling pathway”, which were apparently related with cancer. The 
genes categorized in the pathways were picked up and checked their normalized counts. The genes of which 
counts were upregulated in both miPS-PGE2 and miPS-PGE2P cells were further picked up and summarized 
in the supplementary Table S1. From the Table S1, the genes with extensive upregulation were collagen type I α1 
(COL1A1), collagen type IV α1 (COL4A1), collagen type IV α2 (COL4A2), filamin B (FLNB), GLI family zinc 

Figure 6.   Transcriptome analysis of miPS-PGE2 and miPS-PGE2P cells. (A) A heatmap of gene expression 
profiles between miPSCs, miPS-PGE2 and miPS-PGE2P cells. (B,C) The results of KEGG pathway analysis 
showing the top enriched pathways compared to miPSCs. (B) miPS-PGE2 cells. (C) miPS-PGE2P cells.



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15628  | https://doi.org/10.1038/s41598-022-19265-7

www.nature.com/scientificreports/

finger 2 (GLI2), insulin-like growth factor 1 receptor (IGF1R), integrin subunit αV (ITGAV), vinculin (VCL). 
VCL is considered as adaptor supporting integrin to connect with actin filament29. FLNB is known as an actin-
binding protein30. On the other hand, collagens appear to enhance the extracellular matrix (ECM). Especially, 
COL1A1 may play supportive function to cancer associated fibroblasts in vivo31. Collectively, the cancer stem 
cells appear to be strengthened by the cytoskeleton together with the ECM connected through integrin molecule.

miPS‑PGE2P cells maintain CSC characteristics without exogenous PGE2.  The dependency of 
CSC characters on PGE2 in the primary culture derived from tumor of miPS-PGE2 cells, miPS-PGE2P cells, was 
assessed. First of all, miPS-PGE2P cells were divided into two groups of culture with/without PGE2 and cultured 
for 2 weeks. As the result, miPS-PGE2P cells exhibited the growth in adhesive condition, sphere formation and 
differentiation into vascular endothelial cells in the manner independent of PGE2 (Fig. 7A–D) (Supplementary 
Fig. S7). Simultaneously, the phosphorylation of Akt was assessed in the presence or absence of PGE2 in miPS-
PGE2P cells. And Akt was found phosphorylated even without PGE2 (Fig. 7E). Collectively, miPS-PGE2P cells 
could be concluded to acquire the CSC signatures independent of exogenous PGE2. Although the Akt phospho-
rylation in miPS-PGE2P cells was independent of exogenous PGE2 stimulation, the autocrine dependency of 
the cells on PGE2 is still not ruled out. Therefore, the production of PGE2 in miPS-PGE2 and miPS-PGE2P cells 
was assessed by ELISA. The amount of PGE2 produced in the conditioned medium of both cells was estimated 
to be approximately 0.3 ng/mL which is almost at the same level as that in the conditioned medium of miPSCs 
(Supplementary Fig. S2). Since the level of PGE2 in the conditioned medium of LLC cells was approximately 
17 ng/mL (Fig. 1B), the level of PGE2 produced by miPS-PGE2P cells is almost 50 to 60 folds less than that by 
LLC cells. In this context, miPS-PGE2 cells could be independent of the exogenous PGE2 to maintain the CSC 
signatures.

Discussion
Cancer initiation is an important issue from the viewpoint of cancer prevention and therapy, but it is still con-
troversial. Chronic inflammation is sometimes tied to the development of cancer. Chronic inflammation could 
be traced to a lot of causes which have been suspected to raise the risk for certain cancers. Some infections can 
trigger inflammation affecting surrounding cells. If the inflammation continues for long period, it is considered 
to eventually lead to cancer. Autoimmune disorders such as collagen disease, ulcerative colitis, type II diabetes 
and so on will induce chronic inflammation. Obesity is forming fat tissue with angiogenesis expressing inflam-
matory factors such as tumor necrosis factor alpha (TNF-alpha), monocyte chemoattractant protein-1 (MCP-1), 
interleukin 6 (IL-6) and so on which enhance chronic inflammation and will lead to higher risks of cancer. Other 
factors such as poor sleep quality and heavy stress may also be elucidated to contribute to chronic inflammation. 
Considering these events, chronic inflammation always involves continued immune responses attacking invaders 
such as with interleukins, cytokines, chemokines, and reactive oxygen species (ROS) impairing tissues followed 
by tissue repairing with growth factors and metabolisms of sugars and fatty acids. The cells, which are exposed 
to these microenvironments so long period will get used to respond to change phenotypes initiating cancer, are 
so plastic enough that they should be a kind of stem like cells or progenitor cells with differentiation potential.

We are proposing the factors related with inflammation that induce CSCs from stem like cells might be an 
important clue in elucidating the mechanism of cancer initiation. In this study, we focused on lipid metabo-
lismand found the ratio of PS and PI in LLC cells and miPS-LLCcm cells were higher than that in miPSCs 
(Fig. 1). This information was a clue to link the lipid metabolism with arachidonic acid cascade, which is closely 
related with inflammation. Then we demonstrated PGE2 could convert miPSCs into CSCs. The resultant miPS-
PGE2 cells exhibited the CSC characters of self-renewal maintaining stemness, differentiation and malignant 
tumorigenesis (Figs. 4 and 5). Simultaneously, Akt was constitutively activated in miPS-PGE2 cells (Fig. 7). It 
is conceivable that the continuous stimulation of EP-2/4 with PGE2 on miPSCs lead to the constitutive activa-
tion of Akt in the conversion of miPSCs to CSCs. We previously reported that Akt was constitutively activated 
in miPS-LLCcm cells with epigenetically overexpressed pik3r5 and pik3cg genes10. In this study, we also found 
the over expression of pik3cg in miPS-PGE2 cells. However, the typical oncogenic mutations of the Pik3ca gene 
in miPS-PGE2 cells was not found (Fig. 5D). In this context, pik3cg could be responsible for the constitutive 
activation of PI3K/Akt signalling in miPS-PGE2 cells.

On the other hand, the expression level of PTEN was lower in miPS-PGE2 cells than in miPSCs (Sup-
plementary Fig. S1) and no typical mutation was found in the nucleotide sequence of PTEN in miPS-PGE2 
cells (Fig. 5E). Therefore, the constitutive activation of PI3K/Akt signalling pathway in miPS-PGE2 cells could 
possibly be elucidated by the autocrine stimulation of EP-2/4 by PGE produced by miPS-PGE2 cells. However, 
PGE2 was not detected in the conditioned medium of miPS-PGE2 cells and miPS-PGE2 cells maintained the 
properties of cancer stem cells in a PGE2-independent manner. And there was no autocrine loop of PGE2 found 
in miPS-pGE2 cells (Fig. 7, Supplementary Fig. S2). Collectively, constitutive activation of PI3K/Akt signalling 
pathway in miPS-PGE2 cells could be due to the hypomethylation of genes resulting in the overexpression of 
pik3cg coupled with the attenuated expression PTEN.

As the conclusion, chronic exposure of PGE2 to miPSCs will continuously stimulate EP-2/4 receptors acti-
vating PI3K resulting in the epigenetic upregulation of pik3 genes by hypomethylation of CpG islands leading 
the constitutive activation of PI3K/Akt signalling pathway in miPS-PGE2 cells. These results suggest that PGE2 
should be considered as one of the candidate factors related with inflammation which could initiate cancer con-
verting stem cells or progenitor cells. Although the detailed molecular mechanism remains unclear, the concept 
that PGE2 signal pathway could promote carcinogenesis has been described32. It has also been reported that 
PGE2 promotes colorectal cancer stem cell expansion and metastasis in mice33. Overexpression of COX-2 has 
been well known to induce colorectal cancer and, on the other hand, aspirin as a selective inhibitor of COX-2 has 
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Figure 7.   Characterization of miPS-PGE2P cells in the presence or absence of PGE2. (A) Adhesive culture. 
Scale bar 100 µm. (B) Non-adhesive culture. Scale bar 100 µm. (C) Tube formation assay (left). Scale bar 
100 µm. Branching point analysis by ImageJ. (right) Data are plotted as means ± SD. There was no significance 
between the data. (D) Immunofluorescent analyses of tubes in C. BF, bright field. DAPI, staining for nucleus. 
GFP, fluorescence of GFP. CD31, staining with anti-CD31 antibody labelled with Alexa fluor 555. Scale bars 
50 µm (top) and 10 µm (bottom). (E) Western blotting analysis of the phosphorylation of Akt. A representative 
blot is shown at left. Densitometric analysis of the blots from three independent experiments by ImageJ is shown 
at right. Data are plotted as means ± SD. *p < 0.1, **p < 0.05, ***p < 0.01.



13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15628  | https://doi.org/10.1038/s41598-022-19265-7

www.nature.com/scientificreports/

been expected to be effective for cancer prevention34. Actually, in the clinical cases aspirin doses have experienced 
significant reduce of cancer cases whereas the side effects should be taken care of35,36. In this context, the precise 
mechanism of conversion of stem cells into CSCs by PGE2 should be investigated further. The pathway analysis 
performed in this study showed that not only one but several pathways are found enriched in the cells exposed 
to PGE2. Moreover, it suggests that the crosstalk between these pathways is creating new cell phenotype where 
iPSCs maintain stemness and acquire malignancy. Although, the enriched pathways are well known for its roles 
in carcinogenesis and stemness maintenance, our data here shows a unique network of pathways upregulated in 
CSCs converted from normal cells. PI3K/Akt pathway appears to form cytoskeleton interacting with the extra-
cellular matrices37. It may be worthwhile noticing that GLI2, which is known as the mediator of Sonic hedgehog 
(Shh) signaling supporting the maintenance of CSCs38, and IGFR1, which is a tyrosine kinase activating the 
cytoplasmic signals closely related with the growth stimulation39, are found significantly upregulated from the 
bioinformatic analyses.

We previously reported that chronic exposure to FGF2 converts iPSCs into cancer stem cells with an enhanced 
integrin/focal adhesion/PI3K/AKT axis37. PGE2 may have a role of induction of inflammation while FGF2 may 
have the role of wound healing after inflammation. The functional roles of these two factors could be a comple-
ment each other enhancing the feed-back and -forward in chronic inflammation repeating tissue repair. Tak-
ing these into consideration, the CSC model established from miPSCs by the chronic exposure to PGE2 could 
provide the information helpful to understand the cancer initiation connected with the chronic inflammation.

Materials and methods
Cell culture.  Mouse induced pluripotent stem cells (miPSCs, iPS-MEF-Ng-20D-17; Lot.012) were provided 
by RIKEN Cell Bank (Japan). miPSCs were maintained under the humidified 5% CO2 atmosphere at 37 °C on 
feeder layer of mitomycin-C-treated mouse embryonic fibroblasts (Reprocell, Japan) in miPS medium (DMEM 
media (Wako, Tokyo, Japan) supplemented with 15% fetal bovine serum (FBS), 0.1 mM MEM non-essential 
amino acids (NEAA) (Gibco, Waltham, MA), 2 mM L-glutamine (Nacalai Tesque, Kyoto, Japan), 0.1 mM 2-mer-
captoethanol (Millipore, MA), leukemia inhibitory factor (LIF, Millipore, MA), 50 U/mL penicillin/streptomy-
cin). Then, miPSCs were transferred to 0.1% gelatin coated 60 mm-dishes in the same medium.

For primary cultured cells, the mouse allografts were excised just after euthanasia and cut into small pieces 
of approximately one mm3. After washed with Hanks’ balanced salt solution (HBSS) for 3 times, the pieces were 
transferred into a 15-mL tube containing 4 mL of dissociation buffer consisting of 0.25% trypsin, 0.1% colla-
genase, 20% KnockOut Serum Replacement (Thermo Fisher Scientific, MA) and 1 mM CaCl2 in PBS, and the 
tube was incubated at 37 °C for 40 min. Then the digestion was terminated by adding 5 mL of DMEM containing 
10% FBS. The suspension was centrifuged at 1000 rpm for 5 min and the cell pellet was suspended in 5 mL HBSS 
followed by centrifugation at 1000 rpm for 5 min. The cells were finally suspended in an appropriate volume of 
miPS medium without LIF and seeded at 5 × 105 cells per 60-mm dish. To remove the host derived cells in the 
primary cultures, the cells were treated with puromycin for 24 h.

Comprehensive phospholipids analysis.  Comprehensive phospholipids analysis was described 
previously40,41. Briefly, total PLs were extracted from the exosome of LLC cells with the Bligh-Dyer method42. 
An aliquot of the lower/organic phase was evaporated to dryness under N2, and the residue was dissolved in 
methanol for LC/MS/MS measurements of PC and PE. To analyze PS and PI, another aliquot of the same lipid 
extract was added with an equal volume of methanol before being loaded onto a DEAE-cellulose column (Santa 
Cruz Biotechnology) pre-equilibrated with chloroform. After successive washes with chloroform/methanol (1:1, 
v/v), the acidic PLs were eluted with chloroform/methanol/HCl/water (12:12:1:1, v/v), followed by evaporation 
to dryness to give a residue, which was resolved in methanol. The resultant fraction was subjected to a methyla-
tion reaction with TMS-diazomethane before LC/MS/MS analysis43.

Mass spectrometric analyses.  LC-electrospray ionization-MS/MS analysis was performed with an Ulti-
Mate 3000 LC system (Thermo-Fisher Scientific, MA) equipped with HTC PAL autosampler (CTC Analytics). 
A 10 µL aliquot of the lipid samples was injected and the lipids were separated on Waters X-Bridge C18 column 
(3.5 µm, 1.0 mm × 150 mm i.d.) at room temperature (25 °C) using a gradient solvent system as follows: mobile 
phase A (isopropanol/methanol/water (5/1/4 v/v/v) supplemented with 5 mM ammonium formate and 0.05% 
ammonium hydroxide)/mobile phase B (isopropanol supplemented with 5 mM ammonium formate and 0.05% 
ammonium hydroxide) ratios of 70%/30% (0 min), 50%/50% (0–2 min), 20%/80% (2–13 min), 5%/95% (13–
15 min), 5%/95% (15–30 min), 95%/5% (30–31 min), 95%/5% (31–35 min) and 70%/30% (35–45 min). Flow 
rate was 20 µL/min. PLs species was measured by the selected reaction monitoring (SRM) in positive ion mode 
with a triple-stage quadrupole mass spectrometer (TSQ Vantage AM, Thermo-Fisher Scientific, MA). The char-
acteristic fragments of individual PLs were detected by the product ion scan (MS/MS mode). Chromatographic 
peak areas were used for comparative quantitation of each molecular species (e.g., 32:0, 34:1) in a given class of 
the phospholipids (e.g., PC, PE, PS, PI).

Quantification of PGE2 and LTB4.  The quantification of PGE2 was measured with the Prostaglandin E2 
ELISA Kit (Cayman, MI). LTB4 quantification was quantified with the LTB4 ELISA Kit (Enzo, Switzerland). The 
developed colour of reaction was detected by the absorbance at 405 nm using a plate reader EnSpire2300 (Perki-
nElmer, MA), and PGE2 or LTB4 was quantified with a 4-parameter logistics curve of the standard.

Conversion miPSCs in the presence PGE2.  The miPSCs was feeder less and cultured in LIF-free miPS 
medium for 1 day, replaced with new miPS medium, and then PGE2 was added to a final concentration of 10 ng/



14

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15628  | https://doi.org/10.1038/s41598-022-19265-7

www.nature.com/scientificreports/

mL. After replacement with fresh medium daily, PGE2 was added to a final concentration of 10 ng/mL. When 
the cells became confluent in the dish, they were passaged and seeded into a new dish. This process was repeated, 
and the cells were cultured for 4 weeks. Conversion of miPSCs into CSC in the presence of conditioned medium 
(CM) of Lewis lung carcinoma cells was basically carried out as a positive control following the method devel-
oped by our group6,44.

Flow cytometric analysis.  Cells were seeded in a gelatin-coated 60-mm dish. After 3 days, the cells were 
trypsinized and washed 3 times with PBS. The cells were analyzed on an Accuri C6 Plus flow cytometer (BD Bio-
science, San Jose, CA) and then analyzed by FlowJo software excluding the patterns of cell debris and aggregates 
based on scatter signals.

Protein extraction and Western blotting.  The culture medium of the cells in 100-mm dish was removed 
and the cells were washed with PBS (–). Then sample buffer containing SDS and 2-mercaptoethanol was added, 
and the cells were lysed by pipetting. After brief sonication on ice, protein amount was quantified by MicroBCA 
(Thermo-Fischer, MA) following manufacturer’s protocol.

Each sample of 20 μg protein per lane was applied to 12.5% polyacrylamide gel, electrophoresed and blotted 
onto polyvinylidene fluoride (PVDF) membrane (Thermo-Fischer, MA). After blocking with 5% bovine serum 
albumin for 1 h, the membrane was incubated with each primary antibody overnight in a refrigerator followed 
by the incubation with a secondary antibody labelled with horseradish peroxidase (HRP) at room temperature 
for 1 h. Bound antibody was detected by substrate reagent ECL Prime (GE Healthcare, CA). The blots were cut 
prior to hybridization with antibodies during blotting. The protein bands in the Western blotting were subjected 
to densitometric quantification by ImageJ (https://​imagej.​nih.​gov/​ij/). Each quantification was made from three 
experiments. The whole images of the blots are listed in the supplementary Figs. S4, S5, and S6. Primary antibod-
ies against β-Actin, p-Akt(Ser473) and Akt were from Cell Signaling Technology (MA). Those against EP-2, EP-4, 
cPLA2 and COX-2 were from Abcam (MA), Proteintech (IL), GeneTex (CA) and Cayman (MI), respectively. 
HRP labelled anti-rabbit secondary antibodies were frome Merck (Darmstadt, Germany).

RNA extraction, real‑time qPCR and mutation analysis.  RNA was extracted from the collected cells 
in a 100-mm dish with RNAiso Plus (Takara Bio, Japan), treated with DNase I (Invitrogen, MA) and then reverse 
transcribed using PrimeScript RT Master Mix (Takara Bio, Japan). Afterwards, RT-qPCR was performed using 
Brilliant III Ultra-Fast SYBR Green QPCR Master Mix with Low ROX (Agilent Technologies, CA) and each 
appropriate primer set. The expression level of each gene was measured with a real-time PCR device Mx3000P 
(Agilent Technologies, CA). The cDNA of interest was sequenced to assess mutations with Genetic Analyzer 
3130 (Applied Systems, UK) following manufacturer’s instruction. The primer sequences are listed in the Sup-
plementary Table S2. Relative expression levels were compared with miPSCs value as one. miPSCs were cultured 
in miPS medium with LIF.

RNA sequencing and bioinformatic analysis.  The 150-bp paired sequencing was performed with 
Novaseq6000 (Illumina, CA) via (Veritas company, CA, USA). The RNA-seq data was further analyzed using the 
Galaxy platform (http://​usega​laxy.​org). The Tophat, Cuffquant, and Cuffnrorm tools were used to map, quantity, 
and normalize expression reads as HT-seq counts, respectively. The Cuffdiff tool was used to identify differ-
entially expressed genes which further used as input for Kyoto Encyclopaedia of Gene and Genome (KEGG) 
pathway enrichment analysis at Database for Annotation45, Visualization and Integrated Discovery (DAVID) 
database http://​david.​ncifc​rf.​gov46. The integrated Differential Expression and Pathway analysis (iDEP) (http://​
bioin​forma​tics.​sdsta​te.​edu/​idep93/) was used to generate the heat map and for Parametric Gene Set Enrichment 
Analysis (PGSEA) (Bioconductor—PGSEA (riken.jp))47.

Sphere formation and extreme limiting dilution analysis.  miPS-PGE2 cells were cultured in a 
60-mm low adsorption dish (Corning, NY). Serum-free DMEM containing NEAA, L-Glutamine, 2-mercap-
toethanol and Insulin-transferrin-selenium-X supplemented with Pen/Strep was used for culture. For extreme 
limiting dilution analysis (ELDA)48, cells were seeded on a low-adsorption 96-well plate (IWAKI, Japan) at 1–200 
cells/ well, and sphere formation was confirmed at day 5. The results were analysed with the software provided 
at http://​bioinf.​wehi.​edu.​au/​softw​are/​elda/​index.​html.

Transplantation of cells into nude mice.  miPS-LLCcmP, miPS-PGE2 and miPS-PGE2P cells were pel-
leted by centrifugation, resuspended in 100 µl of PBS and counted with trypan blue exclusion method. Then 
1X106 cells were reconstituted in 100 µl of PBS and subcutaneously transplanted into 5-week-old Balb/c nu/nu 
female nude mice (Charles River Labs., Japan). The major axis and minor axis of tumors were measured over 
time, and the tumor volume was calculated by (major axis)  ×  (minor axis)2 × 1/2. At the end of the experiments, 
the mice were euthanized by the isoflurane-euthanasia method. Five percent of isoflurane (WAKO Fujifilm, 
Japan) was exposed to the mice and the exposure was continued until one minute after their breathing stopped. 
Finally, euthanasia was confirmed by cervical dislocation.

Hematoxylin and eosin staining and immunohistochemistry.  Eighteen days after transplanting the 
cells, developed tumors were excised, fixed in 10% formaldehyde solution (WAKO Fujifilm, Japan) for 24–48 h, 
and embedded in paraffin (WAKO Fujifilm, Japan). Then, the paraffin embedded tissues were sectioned by 5 μm 
thickness with a microtome RM2255 (LEICA, Germany) and put on slides (Plutinum Pro-11, Matsunami Glass, 
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Japan). The tissue sections on slides were stained with 5% hematoxylin and 5% eosin (H&E) (WAKO Fujifilm, 
Japan). After drying, stained slides were observed and photographed under an inverted microscope CKX41 
(Olympus, Japan) equipped with a digital camera.

Tube formations assay in vitro.  Matrigel (Corning, NY) was dissolved at 4 °C overnight. A sterilized 
cover glass (Matsunami Glass, Japan) was placed in a 12-well plate (TPP, Switzerland). Then 100 µL of Matrigel 
was placed on the glass and incubated at 37 °C for 30  min to gel. miPS-PGE2 cells suspended in the basic 
endothelial medium EGM-2 medium (Lonza Japan) were seeded on the gelled Matrigel at 2 × 106 cells/well and 
incubated at 37 °C in 5% CO2 for 24 h. The formed luminal structure was observed and photographed under 
an inverted microscope CKX41 (Olympus, Japan) equipped with a digital camera. All of the formed tubes and 
networks were imaged by inverted phase-contrast microscopy. The tube branching points were counted using 
Image J software and statistically analyzed.

Immunofluorescent staining.  Cells were cultured on cover slip coated with Matrigel placed in 12-well 
plates. After 24 h tubes were photographed, washed with cold PBS and immobilized with 3.7% formaldehyde. 
Then the cells were washed with 0.05% Tween 20-containing phosphate buffered saline (PBS-T) and blocked 
with 10% FBS in PBS. Cells were incubated with the primary antibody (anti-CD31 rabbit antibody, Abcam, UK) 
followed by the secondary antibody (Alexa fluor 555 coupled anti-rabbit IgG goat antibody, Invitrogen, MA), 
fixed with soft Mont containing DAPI (Wako, Japan) and photographed under an inverted microscope equipped 
with fluorescent device and digital camera (CKX41 and IX70 Olympus). CD31 staining was confirmed by com-
paring the sample without anti-CD31 antibody treatment (Supplementary Fig. S3).

Statistical analysis.  The data were analyzed using two-tailed student’s t-test and were presented as the 
mean ± standard deviation (SD) at least three-time determinations. A p-value less than 0.1 was considered stati-
cally significant, while less than 0.01 was highly significant. In each figure where it is available, asterisks depict as 
* for p < 0.1, ** for p < 0.05 and *** for p < 0.01.

Ethics approval and consent to participate.  The plan of animal experiments in this study was reviewed 
and approved by the ethics committee for animal experiments of Okayama University under the IDs: OKU-
2019496 (2019) and OKU-2020382 (2020). All methods in the current study were conducted in accordance with 
relevant guidelines and regulations and reported in accordance with ARRIVE guidelines.
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