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Abstract
The COVID-19 pandemic due to the novel coronavirus SARS CoV-2 has inspired
remarkable breakthroughs in the development of vaccines against the virus and
the launch of several phase 3 vaccine trials in Summer 2020 to evaluate vaccine
efficacy (VE). Trials of vaccine candidates using mRNA delivery systems devel-
oped by Pfizer-BioNTech and Moderna have shown substantial VEs of 94–95%,
leading the US Food and Drug Administration to issue Emergency Use Autho-
rizations and subsequentwidespread administration of the vaccines. As the trials
continue, a key issue is the possibility that VE may wane over time. Ethical con-
siderations dictate that trial participants be unblinded and those randomized to
placebo be offered study vaccine, leading to trial protocol amendments specify-
ing unblinding strategies. Crossover of placebo subjects to vaccine complicates
inference on waning of VE. We focus on the particular features of the Moderna
trial and propose a statistical framework based on a potential outcomes formu-
lation within which we develop methods for inference on potential waning of
VE over time and estimation of VE at any postvaccination time. The framework
clarifies assumptions made regarding individual- and population-level phenom-
ena and acknowledges the possibility that subjects who are more or less likely
to become infected may be crossed over to vaccine differentially over time. The
principles of the framework can be adapted straightforwardly to other trials.

KEYWORDS
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1 INTRODUCTION

The primary objective of a vaccine trial is to estimate vac-
cine efficacy (VE). Typically, these trials are double-blind,
placebo-controlled studies in which participants are ran-
domized to either vaccine or placebo and followed for
the primary endpoint. This endpoint is often time to viral
infection, on which inference on VE is based, where VE is
defined as a measure of reduction in infection risk for vac-
cine relative to placebo, expressed as a percentage.

Vaccine trials have become the focus of immense global
interest as a result of the COVID-19 disease pandemic
due to the novel coronavirus SARS-CoV-2 (COVID-19 Vac-
cine Tracker). The pandemic inspired unprecedented sci-
entific breakthroughs in the rapid development of vaccines
against SARS-CoV-2, culminating in the launch of sev-
eral large phase 3 vaccine trials in Summer 2020. Trials
in the United States studying the vaccine candidates using
messenger RNA (mRNA) delivery systems developed by
Pfizer-BioNTech and Moderna began in July 2020 and
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demonstrated substantial evidence of VEs of 94–95% at
interim analyses, leading the US Food and Drug Admin-
istration (FDA) to issue Emergency Use Authorizations
(EUAs) for both vaccines in December 2020 and to the roll-
out of vaccination programs shortly thereafter.
Implicit in the primary analysis in these trials is the

assumption that VE is constant over the study period, and,
with primary endpoint time to infection, VE is represented
by (1 − the ratio of the hazard rate for vaccine to that for
placebo), estimated based on a Cox proportional hazards
model. As the trials continue following the EUAs, among
the many issues to be addressed is the possibility that VE
may wane over time. Principled evaluation of the nature
and extent of waning of VE is of critical public health
importance, as waning has implications for measures to
control the pandemic. Were all participants in the trials to
continue on their randomized assignments (study vaccine
or placebo), evaluation of potential waning of VE would
be straightforward. However, once efficacy is established,
ethical considerations dictate the possibility of unblinding
all participants and offering the study vaccine to those ran-
domized to placebo. After consultation with stakeholders,
Pfizer and Moderna issued amendments to their trial pro-
tocols specifying unblinding strategies and modifications
to planned analyses.
Crossover of placebo subjects to the study vaccine of

necessity complicates inference on waning of VE and has
inspired recent research (Follmann et al., 2020; Fintzi and
Follmann, 2021; Lin et al. 2021). We propose a statistical
framework within which we develop methods for infer-
ence on whether or not VE wanes over time based on
data where subjects are unblinded and those on placebo
may cross over to study vaccine and in which assump-
tions made regarding individual and population phenom-
ena are made transparent. It is possible that subjects
who are more or less likely to become infected could be
unblinded and cross over to vaccine differentially over
time, which could lead to biased inferences due to con-
founding; accordingly, this possibility is addressed explic-
itly in the framework. The first author (AAT) has the
privilege of serving on the Data and Safety Monitoring
Board for all U.S. government-sponsored COVID-19 vac-
cine trials and is thus well acquainted with the unblind-
ing approach for the Moderna trial. Accordingly, the
development is based on the specifics of this trial, but
the principles can be adapted to the features of other
trials.
In Section 2, we review theModerna trial and the result-

ing data. We present a conceptual framework in which we
define VE precisely as a function of time postvaccination
in Section 3. In Section 4, we develop a formal statistical
frameworkwithinwhichwe proposemethodology for esti-
mation of VE and describe its practical implementation in

Section 5. Simulations demonstrating performance are pre-
sented in Section 6.

2 CLINICAL TRIAL STRUCTURE
AND DATA

We first describe the timeline of the Moderna Coronavirus
Efficacy (COVE) trial (Baden et al., 2020) on the scale of
calendar time. The trial opened on July 27, 2020 (time 0),
and reached full accrual at time 𝐴 (October 23, 2020).
On December 11, 2020, denoted by 𝑃, the FDA issued
an EUA for the Pfizer vaccine, followed by an EUA for
the Moderna mRNA-1273 vaccine on 𝑀 = December 18,
2020. Amendment 6 of the study protocol was issued on
December 23, 2020 and specified the unblinding strategy
(see figure 2 of the protocol) under which, starting on 𝑈 =

December 24, 2020, study participants are scheduled on
a rolling basis over several months for Participant Deci-
sion clinic visits (PDCVs) at which they will be unblinded.
If originally randomized to vaccine, participants continue
to be followed; if randomized to placebo, participants can
receive the Moderna vaccine at the PDCV or refuse and
either seek another vaccine outside the study or remain
unvaccinated. Let 𝐶 denote the time at which all PDCVs
have taken place. The study will continue until time 𝐹 at
which all participants will have completed full follow up
at 24 months after initial treatment assignment. Assume
that the analysis of VE using the methods in Sections 4.4
and 5 takes place at time 𝐶 ≤ 𝐿 ≤ 𝐹 , where all partici-
pants have achieved the primary endpoint, requested to be
unblinded, or attended the PDCV by 𝐿. The Moderna vac-
cine is administered in two doses, ideally 4 weeks apart,
and is not thought to achieve full efficacy until 2 weeks fol-
lowing the second dose. Accordingly, the primary endpoint
is defined as symptomatic viral infection occurring after a
lag of 𝓁 = 6 weeks following the initial dose.
Under this scheme, we characterize the data on a given

participant as follows. Let 0 ≤ 𝐸 ≤ 𝐴 denote the calendar
time at which the subject entered the trial, 𝑿 denote base-
line covariates, and 𝐴 = 0 (1) if assigned to placebo (vac-
cine). Denote observed time to infection on the scale of
calendar time as 𝑈, and Δ = I(𝑈 ≤ 𝐿), where I(𝐵) = 1 if
𝐵 is true and 0 otherwise. At 𝑃, availability of the Pfizer
vaccine commenced, at which point some subjects not yet
infected requested to be unblinded. Denote by 𝑅 (calen-
dar time) the minimum of (i) time to such an unblinding,
in which case 𝑃 ≤ 𝑅 < 𝑈 , and define Γ = 1; (ii) time of
PDCV, so 𝑈 ≤ 𝑅 < 𝐶 , and let Γ = 2; or (iii) time to infec-
tion, in which case 𝑅 = 𝑈 and Γ = 0. If Γ ≥ 1 and𝐴 = 1, so
that the subject was randomized to vaccine, she/he contin-
ues to be followed; if𝐴 = 0, she/he can agree to receive the
Moderna vaccine, Ψ = 1 or refuse, Ψ = 0. We distinguish
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TABLE 1 Summary of notation. All times are on the scale of
calendar time, where time 0 is the start of the trial

Variable Definition
Trial Milestones
𝐴 Full accrual reached, October 23, 2020
𝑃 Pfizer granted EUA, December 11, 2020
𝑀 Moderna granted EUA, December 18, 2020
𝑈 Participant Decision clinic visits (PDCVs)

commence, December 24, 2020
𝐶 PDCVs conclude
𝐹 Follow-up concludes, trial ends
𝓁 Lag between initial vaccine dose and full efficacy, 6

weeks, 𝑃 − 𝐴 > 𝓁

𝐿 Time of analysis of vaccine efficacy using the
proposed methods; 𝐿 > time at which all subjects
have achieved the endpoint, requested
unblinding, or attended the PDCV, 𝐿 ≤ 𝐹

Observed Data on a Trial Participant
𝐸 Study entry time, 0 ≤ 𝐸 ≤ 𝐴
𝑿 Baseline information
𝐴 Treatment assignment, placebo, 𝐴 = 0, or vaccine,

𝐴 = 1

𝑈,Δ Time to symptomatic infection, indicator of
infection by time 𝐿, Δ = I(𝑈 ≤ 𝐿)

𝑅, Γ Time to requested unblinding, PDCV/requested
unblinding, or infection, whichever comes first
Γ = 0: 𝑅 = 𝑈, infection occurs before
requested/offered unblinding
Γ = 1: 𝑅 = time to requested unblinding,
𝑃 ≤ 𝑅 < 𝑈
Γ = 2: 𝑅 = time to PDCV or requested unblinding,
𝑈 ≤ 𝑅 < 𝐶

Ψ If 𝐴 = 0, Γ ≥ 1, indicator or whether subject
receives Moderna vaccine, Ψ = 1, or refuses and
seeks another vaccine outside the study or
remains unvaccinated, Ψ = 0

the cases Γ = 1 and 2 to acknowledge different unblind-
ing dynamics before and after 𝑈 . Because a very small
number of participants requested unblinding before 𝑃,
and although the protocol allows participants to refuse
unblinding at PDCV, all subjects are strongly encouraged
to unblind, we do not include these possibilities in the for-
mulation.
Table 1 summarizes the timeline and observed data. The

trial data are thus

𝑖 = {𝐸𝑖, 𝑿𝑖, 𝐴𝑖, 𝑈𝑖, Δ𝑖, 𝑅𝑖,

Γ𝑖, I(Γ𝑖 ≥ 1, 𝐴𝑖 = 0)Ψ𝑖}, 𝑖 = 1, … , 𝑛, (1)

independent and identically distributed (iid) across 𝑖.

3 CONCEPTUALIZATION OF VACCINE
EFFICACY

Similar to Halloran et al. (1996) and Longini and Hallo-
ran (1996), we consider the following framework in which
to conceptualize VE. The study population, comprising
individuals for which inference on VE is of interest, is
that of individuals susceptible to infection, represented by
the trial participants. There is a population of individu-
als outside the trial with which trial participants interact,
assumed to be much larger than the number of partici-
pants, so that interactions among participants are much
less likely than interactions with the outside population.
The probability that a trial participantwill become infected
at calendar time 𝑡 depends on three factors: 𝑐(𝑡), the con-
tact rate, the number of contacts with the outside popula-
tion per unit time; 𝑝(𝑡), the prevalence of infections in the
outside population at 𝑡; and 𝜋(𝑡), the transmission prob-
ability at 𝑡, the probability a susceptible individual in the
study population will become infected per contact with an
infected individual from the outside population. Depen-
dence of 𝜋(𝑡) on time acknowledges the emergence of new
variants of the virus, which may be more or less virulent,
as in the COVID-19 pandemic. Assuming random mixing,
𝑝(𝑡)𝑐(𝑡) is the contact rate at time 𝑡 with infected individu-
als, and the infection rate at time 𝑡 is 𝑝(𝑡)𝑐(𝑡)𝜋(𝑡).
We adapt this framework to the COVID-19 pandemic.

The prevalence rate in the pandemic can vary substantially
in time and space, so denote by 𝑆 the trial site at which
a participant is enrolled, and let 𝑝(𝑡, 𝑠) be the prevalence
at time 𝑡 at site 𝑆 = 𝑠. Although 𝑝(𝑡, 𝑠) varies by 𝑡 and 𝑠,
assume that it is unaffected by the individuals in the trial
and thus represents an external force. We view the con-
tact rate as individual specific; accordingly, for an arbi-
trary individual in the study population, let the random
variables {𝑐𝑏0 (𝑡), 𝑐

𝑏
1
(𝑡), 𝑐𝑢

0
(𝑡), 𝑐𝑢

01𝓁
(𝑡), 𝑐𝑢

1
(𝑡)} denote potential

contact rates. These potential outcomes can be regarded as
individual-specific behavioral characteristics of trial par-
ticipants, where somemay bemore careful andmake fewer
contacts while others take more risks, and behavior can
vary over time and by vaccination and blinding status.
Here, 𝑐𝑏𝑎(𝑡) is the contact rate at time 𝑡 if the individualwere
to receive vaccine, 𝑎 = 1, or placebo, 𝑎 = 0, and be blinded
to this assignment; by virtue of blinding, it is reasonable to
take 𝑐𝑏1(𝑡) = 𝑐𝑏0(𝑡) = 𝑐𝑏(𝑡).
As in Table 1, letting 𝓁 denote the lag between initial

dose and full efficacy, 𝑐𝑢
01𝓁

(𝑡) reflects behavior of a placebo
subject who is unblinded, receives the Moderna vaccine,
and is within 𝓁 weeks of vaccination. Likewise, 𝑐𝑢1 (𝑡)
reflects behavior of any unblinded Moderna vaccine recip-
ient after 𝓁, both those originally randomized to placebo
and crossed over to the vaccine and those originally ran-
domized to vaccine. Thus, 𝑐𝑢

01𝓁
(𝑡) allows for more cautious
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behavior before full efficacy is achieved for recently vac-
cinated placebo subjects; in the trial, all subjects random-
ized to vaccine were past the full efficacy lag at the time of
unblinding (as in Table 1, 𝑃 − 𝐴 ≥ 𝓁). Similar to the sta-
ble unit treatment value assumption (Rubin, 1980), assume
that 𝑐𝑢

1
(𝑡) is the same if the individual was randomized

to vaccine and unblinded before 𝑡 or was randomized to
placebo and subsequently unblinded and crossed over to
theModerna vaccine before 𝑡. The rate 𝑐𝑢0 (𝑡) reflects behav-
ior of an unblinded placebo subject who does not cross
over to the Moderna vaccine and does not play a role in
the development, and, as demonstrated in Section 4.4, such
subjects do not contribute to the analysis of VE.
Finally, for an arbitrary participant, let the random vari-

able 𝜋0(𝑡) be the potential individual-specific transmis-
sion probability per contact at 𝑡 if she/he were to receive
placebo, and let 𝜋1(𝑡, 𝜏) be the same if she/he were to
receive study vaccine and have been vaccinated for 𝜏 ≥ 0

units of time. As we now demonstrate, this formulation
allows us to represent VE as a function of 𝜏 and thus con-
siderwhether or not VEwanes over time since vaccination.
With the set of potential outcomes for an arbitrary indi-

vidual in the study population who enrolls at site 𝑆 thus
given by {𝑐𝑏(𝑡), 𝑐𝑢0 (𝑡), 𝑐

𝑢
01𝓁

(𝑡), 𝑐𝑢1 (𝑡) 𝑡 > 0, 𝜋0(𝑡), 𝜋1(𝑡, 𝜏), 𝜏 ≥
0}, the infection rate in the study population at calendar
time 𝑡 if all individuals were to receive placebo and be
blinded to that assignment is 𝑏

0
(𝑡) = 𝐸{𝑝(𝑡, 𝑆)𝑐𝑏(𝑡)𝜋0(𝑡)};

likewise, the infection rate at 𝑡 if all individuals were
to receive vaccine at time 𝑡 − 𝜏 and be blinded to that
assignment is 𝑏

1 (𝑡, 𝜏) = 𝐸{𝑝(𝑡, 𝑆)𝑐𝑏(𝑡)𝜋1(𝑡, 𝜏)}. The rela-
tive infection rate at 𝑡 is then

𝑏(𝑡, 𝜏) =
𝑏
1 (𝑡, 𝜏)

𝑏
0 (𝑡)

=
𝐸{𝑝(𝑡, 𝑆)𝑐𝑏(𝑡)𝜋1(𝑡, 𝜏)}

𝐸{𝑝(𝑡, 𝑆)𝑐𝑏(𝑡)𝜋0(𝑡)}
. (2)

Accordingly, VE at time 𝑡 after vaccination at 𝑡 − 𝜏 is
𝑉𝐸(𝑡, 𝜏) = 1 −𝑏(𝑡, 𝜏), reflecting the proportion of infec-
tions at 𝑡 that would be prevented if the study population
were vaccinated and on study vaccine for 𝜏 units of time
during the blinded phase of the study.
In the sequel, we assume that𝑏(𝑡, 𝜏) and thus 𝑉𝐸(𝑡, 𝜏)

depend only on 𝜏 and write𝑏(𝜏) and𝑉𝐸(𝜏) = 1 −𝑏(𝜏).
This assumption embodies the belief that, although infec-
tion rates may change over time, the relative effect of
vaccine to placebo remains approximately constant and
holds if (i) {𝜋1(𝑡, 𝜏), 𝜋0(𝑡)} ⟂ {𝑆, 𝑐𝑏(𝑡)}|𝑿, where ⟂ means
“independent of” and this independence is conditional on
𝑿; and (ii) 𝐸{𝜋1(𝑡, 𝜏)|𝑿}∕𝐸{𝜋0(𝑡)|𝑿} = 𝑞(𝜏), so does not
depend on 𝑡 and 𝑿. Condition (i) reflects the interpreta-
tion of 𝜋1(𝑡, 𝜏) and 𝜋0(𝑡) as inherent biological character-
istics of an individual, whereas 𝑆 and 𝑐𝑏(𝑡) are external and
behavioral characteristics, respectively; thus, once com-

mon individual and external baseline covariates are taken
into account, biological and geographic/behavioral charac-
teristics are unrelated. Condition (ii) implies that, although
new viral variants may change transmission probabilities
under both vaccine and placebo over time, this change
stays in constant proportion, and this proportion is similar
for individuals with different characteristics. Further dis-
cussion is given in Section 7 and Web Appendix B of the
Supporting Information.
Within this framework, the goal of inference on waning

of VE based on the data from the trial can be stated
precisely as inference on 𝑉𝐸(𝜏) = 1 −𝑏(𝜏), 𝜏 ≥ 𝓁, so
reflecting VE after full efficacy is achieved. It is critical to
recognize that, like estimands of interest in most clinical
trials, 𝑉𝐸(𝜏) represents VE at time since vaccination 𝜏

under the original conditions of the trial, under which
all participants are blinded. The challenge we address in
subsequent sections is how to achieve valid inference on
𝑉𝐸(𝜏), 𝜏 ≥ 𝓁, using data from the modified trial in which
blinded participants are unblinded in a staggered fashion,
with placebo subjects offered the option to receive the
study vaccine.
We propose a semiparametric model within which we

cast this objective. Let 𝑢
01𝓁

(𝑡, 𝜏) = 𝐸{𝑝(𝑡, 𝑆)𝑐𝑢
01𝓁

(𝑡)𝜋1(𝑡, 𝜏)},
𝜏 < 𝓁, and 𝑢

1 (𝑡, 𝜏) = 𝐸{𝑝(𝑡, 𝑆)𝑐𝑢1 (𝑡)𝜋1(𝑡, 𝜏)}, 𝜏 ≥ 𝓁, be the
infection rates in the study population at 𝑡 if all indi-
viduals were to receive vaccine at time 𝑡 − 𝜏 and be
unblinded to that fact. Analogous to (i) above, assume
that {𝜋1(𝑡, 𝜏), 𝜋0(𝑡)} ⟂ {𝑆, 𝑐𝑢

01𝓁
(𝑡), 𝑐𝑢1 (𝑡)}|𝑿, and continue to

assume condition (ii). Then, for two values 𝜏1, 𝜏2 of 𝜏, it is
straightforward that (see Web Appendix A of the Support-
ing Information)

𝑢
01𝓁

(𝑡, 𝜏1)

𝑢
01𝓁

(𝑡, 𝜏2)
=

𝑏(𝜏1)

𝑏(𝜏2)
, 𝜏1, 𝜏2 < 𝓁;

𝑢
1 (𝑡, 𝜏1)

𝑢
1 (𝑡, 𝜏2)

=
𝑏(𝜏1)

𝑏(𝜏2)
, 𝜏1, 𝜏2 ≥ 𝓁. (3)

Defining 𝑢
01𝓁

(𝑡) = 𝑢
01𝓁

(𝑡, 0) = 𝐸{𝑝(𝑡, 𝑆)𝑐𝑢
01𝓁

(𝑡)𝜋1(𝑡, 0)}

and 𝑢
1 (𝑡) = 𝑢

1 (𝑡, 𝓁) = 𝐸{𝑝(𝑡, 𝑆)𝑐𝑢1 (𝑡)𝜋1(𝑡, 𝓁)}, by (3) with
𝜏1 = 𝜏 and 𝜏2 = 0 (𝓁) on the left (right) hand side, the
infection rates at 𝑡 if all individuals in the study population
were unblinded and to receive vaccine at time 𝑡 − 𝜏 are

𝑢
01𝓁

(𝑡, 𝜏) = 𝑢
01𝓁

(𝑡)
𝑏(𝜏)

𝑏(0)
, 𝜏 < 𝓁;

𝑢
1 (𝑡, 𝜏) = 𝑢

1 (𝑡)
𝑏(𝜏)

𝑏(𝓁)
, 𝜏 ≥ 𝓁. (4)

Likewise, from (2), the infection rate at 𝑡 if all individuals in
the study population were blinded and to receive vaccine
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at time 𝑡 − 𝜏 is

𝑏
1 (𝑡, 𝜏) = 𝑏

0 (𝑡)𝑏(𝜏). (5)

We now represent the infection rate ratio𝑏(𝜏) as

𝑏(𝜏; 𝜽) = exp{𝜁(𝜏)}I(𝜏 < 𝓁)

+ exp{𝜃0 + 𝑔(𝜏 − 𝓁; 𝜽1)}I(𝜏 ≥ 𝓁),

𝜽 = (𝜃0, 𝜽
𝑇
1 )

𝑇, (6)

where 𝜁(𝜏) is a function of 𝜏; 𝜃0 and 𝜽1 are real- and
vector-valued parameters, respectively; and 𝑔(𝑢; 𝜽1) is a
real-valued function of such that 𝑔(0; 𝜽1) = 0 for all 𝜽1
and 𝑔(𝑢; 0) = 0. For example, taking 𝑔(𝑢; 𝜽1) = 𝜃1𝑢 yields𝑏(𝜏; 𝜽) = exp{𝜃0 + 𝜃1(𝜏 − 𝓁)}, 𝜏 ≥ 𝓁, in which case 𝜃1 =
0 implies that 𝑉𝐸(𝜏) = 1 −𝑏(𝜏), 𝜏 ≥ 𝓁, does not change
with time since vaccination, and 𝜃1 > 0 indicates that
𝑉𝐸(𝜏) decreaseswith increasing 𝜏; that is, exhibits waning.
More complex specifications of 𝑔(𝑢; 𝜽1) using splines (e.g.,
Fintzi andFollmann, 2021) or piecewise constant functions
could be made; for example, for 𝑣1 < 𝑣2 ≤ 𝐿,

𝑔(𝑢; 𝜽1) = 𝜃11I(𝑣1 < 𝑢 ≤ 𝑣2) + 𝜃12I(𝑢 > 𝑣2),

𝜽1 = (𝜃11, 𝜃12)
𝑇. (7)

Because interest focuses only on 𝜏 ≥ 𝓁, we leave
𝜁(𝜏) unspecified.
Under this model, (5) and (4) can be written as

𝑏
1 (𝑡, 𝜏) = 𝑏

0 (𝑡) [exp{𝜁(𝜏)}I(𝜏 < 𝓁)

+ exp{𝜃0 + 𝑔(𝜏 − 𝓁; 𝜽1)}I(𝜏 ≥ 𝓁)] ,

𝑢
01𝓁

(𝑡, 𝜏) = 𝑢
01𝓁

(𝑡) exp{𝜁(𝜏)}, 𝜏 < 𝓁,

𝑢
1 (𝑡, 𝜏) = 𝑢

1 (𝑡) exp{𝑔(𝜏 − 𝓁; 𝜽1)}, 𝜏 ≥ 𝓁. (8)

Thus, to estimate 𝑉𝐸(𝜏) for any 𝜏 ≥ 𝓁 and make infer-
ence on potential waning of VE, we develop a principled
approach to estimation of 𝜽 based on the data from the
modified trial in which participants are unblinded and
those on placebo may cross over to study vaccine.

4 STATISTICAL FRAMEWORK

4.1 Motivation

Estimation of 𝑉𝐸(𝜏), equivalently 𝑏(𝜏), would be
straightforward for any 𝜏 ≥ 𝓁 over the entire follow-up
period if all participants remained blinded and on their

assigned treatments throughout the trial. However, sub-
jects randomized to placebo, when unblinded, have the
option to receive the study vaccine on or after 𝑃. For
𝜏 < 𝑃, it is possible to estimate𝑏(𝜏) because, due to ran-
domization, for 𝑡 < 𝑃 we have representative samples of
blinded subjects on vaccine and placebo and thus informa-
tion on 𝑏

1
(𝑡, 𝜏) and 𝑏

0
(𝑡), so can estimate 𝜃0 and compo-

nents of 𝜽1 identified for such 𝜏; for example, in (7) depend-
ing on the values of 𝑣1 and 𝑣2. At 𝑃 ≤ 𝑡 < 𝐶 , the data
comprise a mixture of blinded and unblinded participants,
where, within the latter group, those on placebo may have
opted to receive study vaccine or refuse. Here, information,
albeit diminishing during [𝑃, 𝐶), on 𝑏

1 (𝑡, 𝜏) and 𝑏
0 (𝑡) is

available from participants not yet unblinded, which con-
tributes to estimation of 𝜃0 and components of 𝜽1. Informa-
tion is also available on 𝑢

1 (𝑡, 𝜏) from individuals who were
originally randomized to vaccine and provide information
on longer 𝜏 and from individuals who recently crossed over
to study vaccine and provide information on shorter 𝜏. For
𝑡 ≥ 𝐶 , there are no longer blinded subjects, so that infor-
mation is available only on 𝑢

1 (𝑡, 𝜏). For these latter groups,
for longer 𝜏1 ≥ 𝓁 and shorter 𝜏2 ≥ 𝓁, 𝑢

1 (𝑡, 𝜏1)∕𝑢
1 (𝑡, 𝜏2) =

exp[𝑔{𝜏1 − 𝓁; 𝜽1} − 𝑔{𝜏2 − 𝓁; 𝜽1}], and, because of the mix-
ture of times since vaccination, 𝜽1 can be fully estimated.
Through the following potential outcomes formulation

and under suitable assumptions, in the next several sec-
tions, we develop an approach to estimation of 𝜽 based
on the observed data (1) that embodies the foregoing intu-
itive principles.

4.2 Potential outcomes formulation

Denote by 𝑇∗
0(𝑒, 𝑟) the potential time to infection on the

scale of patient time for an arbitrary individual in the study
population if she/he were to enter the trial at calendar
time 𝑒, receive placebo and be blinded to that fact, and,
if not infected by calendar time 𝑟, be unblinded and cross
over to study vaccine at 𝑟. Let 𝑇∗

0(𝑒) = 𝑇∗
0(𝑒,∞), if she/he

is never crossed over to receive vaccine. Similarly, define
𝑇∗
1(𝑒, 𝑟) to be the potential time to infection (patient time

scale) for an arbitrary individual if she/he were to enter
the trial at 𝑒, receive vaccine and be blinded to that fact,
and, if not infected by 𝑟, be unblinded at 𝑟; and define
𝑇∗
1(𝑒) = 𝑇∗

1(𝑒,∞). We make the consistency assumptions
that 𝑇∗

0(𝑒, 𝑟) = 𝑇∗
0(𝑒) if 𝑇

∗
0(𝑒) < 𝑟 and 𝑇∗

1(𝑒, 𝑟) = 𝑇∗
1(𝑒) if

𝑇∗
1(𝑒) < 𝑟. For 𝑎 = 0, 1, denote the hazard at calendar time

𝑡, 𝑡 > 𝑒, by

𝜆𝑎(𝑡, 𝑒, 𝑟) = lim
𝑑𝑡→0

𝑑𝑡−1pr{𝑡 ≤ 𝑇∗
𝑎(𝑒, 𝑟) + 𝑒 < 𝑡 + 𝑑𝑡

|𝑇∗
𝑎(𝑒, 𝑟) + 𝑒 ≥ 𝑡}, 𝑎 = 0, 1, (9)
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where the addition of 𝑒 induces a shift from patient to cal-
endar time. Denote the set of all potential outcomes as
∗ = {𝑇∗

0(𝑒, 𝑟), 𝑇
∗
1 (𝑒, 𝑟); 𝑒 > 0, 𝑟 > 𝑒}.

The development in Section 3 is in terms of infec-
tion rates at the individual-specific and population levels.
Population-level hazard rates such as (9) are not equiva-
lent to population-level infection rates. However, we argue
in Web Appendix C of the Supporting Information that,
because the probabilities of infection under vaccine and
placebo during the course of the trial are small, population-
level hazard rates and population-level infection rates are
approximately equivalent; this assumption is implicit in
the standard primary analysis noted in Section 1. Thus,
to reflect this, we use familiar notation and write 𝜆𝑏(𝑡) =
𝑏
0 (𝑡), 𝜆

𝑢
𝓁
(𝑡) = 𝑢

01𝓁
(𝑡), and 𝜆𝑢(𝑡) = 𝑢

1 (𝑡). Under these con-
ditions, using (8), we can write for 𝑡 > 𝑒

𝜆0(𝑡, 𝑒, 𝑟) = 𝜆𝑏(𝑡)I(𝑡 < 𝑟) + 𝜆𝑢
𝓁
(𝑡) exp{𝜁(𝑡 − 𝑟)}

× I(0 ≤ 𝑡 − 𝑟 < 𝓁) +

𝜆𝑢(𝑡) exp{𝑔(𝑡 − 𝑟 − 𝓁; 𝜽1)}I(𝑡 − 𝑟 ≥ 𝓁),(10)

𝜆1(𝑡, 𝑒, 𝑟) = 𝜆𝑏(𝑡) [exp{𝜁(𝑡 − 𝑒)}I(𝑡 − 𝑒 < 𝓁) + exp{𝜃0 +

𝑔(𝑡 − 𝑒 − 𝓁; 𝜽1)}I(𝑡 − 𝑒 ≥ 𝓁)] I(𝑡 < 𝑟)

+ 𝜆𝑢(𝑡) exp{𝑔(𝑡 − 𝑒 − 𝓁; 𝜽1)}I(𝑡 ≥ 𝑟), (11)

where (11) follows because 𝑟 ≥ 𝑃, 𝑒 ≤ 𝐴, 𝑃 − 𝐴 > 𝓁.
Define the counting processes for infection by
𝑁∗
𝑎(𝑡, 𝑒, 𝑟) = I{𝑇∗

𝑎(𝑒, 𝑟) + 𝑒 ≤ 𝑡} and 𝑁∗
𝑎(𝑡, 𝑒) = 𝑁∗

𝑎(𝑡, 𝑒,∞),
and the at-risk processes by 𝑌∗

𝑎(𝑡, 𝑒, 𝑟) = I{𝑇∗
𝑎(𝑒, 𝑟) + 𝑒 ≥ 𝑡}

and 𝑌∗
𝑎(𝑡, 𝑒) = 𝑌∗

𝑎(𝑡, 𝑒,∞), 𝑎 = 0, 1 (Fleming and
Harrington, 2005). From the above consistency
assumptions, if 𝑡 < 𝑟, then 𝑁∗

𝑎(𝑡, 𝑒, 𝑟) = 𝑁∗
𝑎(𝑡, 𝑒),

𝑌∗
𝑎(𝑡, 𝑒, 𝑟) = 𝑌∗

𝑎(𝑡, 𝑒), 𝑎 = 0, 1. For 𝑎 = 0, 1, let Λ𝑎(𝑡, 𝑒, 𝑟) =

∫ 𝑡

0
𝜆𝑎(𝑢, 𝑒, 𝑟) 𝑑𝑢 be the cumulative hazard. Because

𝐸{𝑑𝑁∗
𝑎(𝑡, 𝑒, 𝑟)|𝑌∗

𝑎(𝑡, 𝑒, 𝑟)} = 𝑑Λ𝑎(𝑡, 𝑒, 𝑟)𝑌
∗
𝑎(𝑡, 𝑒, 𝑟), 𝑎 = 0, 1,

it follows that {𝑑𝑁∗
𝑎(𝑡, 𝑒, 𝑟) − 𝑑Λ𝑎(𝑡, 𝑒, 𝑟)𝑌

∗
𝑎(𝑡, 𝑒, 𝑟)},

𝑎 = 0, 1, are mean-zero counting process increments.
Thus, any linear combination of these increments over
𝑡, 𝑒, 𝑟 can be used to define unbiased estimating functions
in ∗ of quantities of interest. In Web Appendix D of
the Supporting Information, we formulate a particular
set of estimating functions that, based on iid poten-
tial outcomes ∗

𝑖
, 𝑖 = 1, … , 𝑛, lead to consistent and

asymptotically normal estimators for {Λ𝑏(𝑡), Λ𝑢(𝑡), 𝜽
𝑇
}𝑇 ,

Λ𝑘(𝑡) = ∫ 𝑡

0
𝜆𝑘(𝑢) 𝑑𝑢, 𝑘 = 𝑏, 𝑢. Because interest focuses on

𝑉𝐸(𝜏) for 𝜏 ≥ 𝓁, estimation of Λ𝑢
𝓁
(𝑡) = ∫ 𝑡

0
𝜆𝑢
𝓁
(𝑢) 𝑑𝑢 and

𝜁(⋅) is not considered and is reflected in the specification
of the linear combinations; see Web Appendix D.

For fixed 𝑡, 0 ≤ 𝑡 ≤ 𝐿, the estimating functions for Λ𝑏(𝑡)

and Λ𝑢(𝑡) are, respectively,

∗
Λ𝑏
{∗; Λ𝑏(𝑡), 𝜽} = I(𝑡 < 𝐶)

(
∫

min(𝑡,𝐴)

0

{𝑑𝑁∗
0 (𝑡, 𝑒)

− 𝑑Λ𝑏(𝑡)𝑌∗
0 (𝑡, 𝑒)}𝑤0(𝑡, 𝑒) 𝑑𝑒 + I(𝑡 ≥ 𝓁)∫

min(𝑡−𝓁,𝐴)

0[
𝑑𝑁∗

1 (𝑡, 𝑒) − 𝑑Λ𝑏(𝑡) exp{𝜃0 + 𝑔(𝑡 − 𝑒 − 𝓁; 𝜽1)

× I(𝑡 − 𝑒 ≥ 𝓁)}𝑌∗
1 (𝑡, 𝑒)

]
𝑤1(𝑡, 𝑒) 𝑑𝑒

)
, (12)

∗
Λ𝑢 {∗; Λ𝑢(𝑡), 𝜽}

= I(𝑡 ≥ 𝑃 + 𝓁)

(
∫

𝐴
0

∫
min(𝑡−𝓁,𝐶)

𝑃

[
𝑑𝑁∗

0 (𝑡, 𝑒, 𝑟)

− 𝑑Λ𝑢(𝑡) exp{𝑔(𝑡 − 𝑟 −𝓁; 𝜽1)I(𝑡 − 𝑟 ≥ 𝓁)}𝑌∗
0
(𝑡, 𝑒, 𝑟)

]

×𝑤0(𝑡, 𝑒, 𝑟) 𝑑𝑟 𝑑𝑒

)
+ I(𝑡 ≥ 𝑃)

(
∫

𝐴
0

∫
min(𝑡,𝐶)

𝑃[
𝑑𝑁∗

1 (𝑡, 𝑒, 𝑟) − 𝑑Λ𝑢(𝑡) exp{𝑔(𝑡 − 𝑒 − 𝓁; 𝜽1)}

× 𝑌∗
1 (𝑡, 𝑒, 𝑟)

]
𝑤1(𝑡, 𝑒, 𝑟)I(𝑡 ≥ 𝑟) 𝑑𝑟 𝑑𝑒

)
, (13)

where 𝑤𝑎(𝑡, 𝑒) and 𝑤𝑎(𝑡, 𝑒, 𝑟), 𝑎 = 0, 1, are arbitrary non-
negative weight functions, specification of which is dis-
cussed later. The estimating function for 𝜽 is given by


∗
𝜃{∗; Λ𝑏(⋅), Λ𝑢(⋅), 𝜽}

= ∫
𝐶

𝓁
∫

min(𝑡−𝓁,𝐴)

0

(
1

𝒈𝜃(𝑡 − 𝑒 − 𝓁)

)

×

[
𝑑𝑁∗

1 (𝑡, 𝑒) − 𝑑Λ𝑏(𝑡) exp{𝜃0 + 𝑔(𝑡 − 𝑒 − 𝓁; 𝜽1)

× I(𝑡 − 𝑒 ≥ 𝓁)}𝑌∗
1 (𝑡, 𝑒)

]
𝑤1(𝑡, 𝑒) 𝑑𝑒

+ ∫
𝐿

𝑃+𝓁 ∫
𝐴

0
∫

min(𝑡−𝓁,𝐶)

𝑃

(
0

𝒈𝜃(𝑡 − 𝑟 − 𝓁)

)

×

[
𝑑𝑁∗

0 (𝑡, 𝑒, 𝑟) − 𝑑Λ𝑢(𝑡) exp{𝑔(𝑡 − 𝑟 − 𝓁; 𝜽1)



TSIATIS and DAVIDIAN 7

× I(𝑡 − 𝑟 ≥ 𝓁)}𝑌∗
0 (𝑡, 𝑒, 𝑟)

]
𝑤0(𝑡, 𝑒, 𝑟) 𝑑𝑟 𝑑𝑒

+ ∫
𝐿

𝑃 ∫
𝐴

0
∫

min(𝑡,𝐶)

𝑃

(
0

𝒈𝜃(𝑡 − 𝑒 − 𝓁)

)

×

[
𝑑𝑁∗

1 (𝑡, 𝑒, 𝑟) − 𝑑Λ𝑢(𝑡) exp{𝑔(𝑡 − 𝑒 − 𝓁; 𝜽1)}

× 𝑌∗
1 (𝑡, 𝑒, 𝑟)

]
𝑤1(𝑡, 𝑒, 𝑟)I(𝑡 ≥ 𝑟) 𝑑𝑟 𝑑𝑒, (14)

where 𝒈𝜃(𝑢) = 𝜕∕𝜕𝜽1{𝑔(𝑢; 𝜽1)}. Analogous to Yang et al.
(2018), envisioning (12)–(14) as characterizing a sys-
tem of estimating functions 

∗
{∗; Λ𝑏(⋅), Λ𝑢(⋅), 𝜽} =

[∗
Λ𝑏
{∗; Λ𝑏(𝑡), 𝜽}, ∗

Λ𝑢 {∗; Λ𝑢(𝑡), 𝜽}, 0 ≤ 𝑡 ≤ 𝐿,
∗
𝜃{∗;

Λ𝑏(⋅), Λ𝑢(⋅), 𝜽}𝑇]𝑇 , if we could observe∗
𝑖
, 𝑖 = 1… , 𝑛, we

would estimate 𝑑Λ𝑏(⋅), 𝑑Λ𝑢(⋅), 𝜽 by solving the estimating
equations

∑𝑛

𝑖=1

∗
(∗

𝑖
; Λ𝑏(⋅), Λ𝑢(⋅), 𝜽)} = 𝟎.

4.3 Identifiability assumptions

Of course, the potential outcomes∗
𝑖
, 𝑖 = 1, … , 𝑛, are not

observed. However, we now present assumptions under
which we can exploit the developments in the last section
to derive estimating equations yielding estimators based
on the observed data (1).
Define the indicator that a participant is observed to be

infected at time 𝑡 by 𝑑𝑁(𝑡) = I(𝑈 = 𝑡, Δ = 1), the observed
at-risk indicator at 𝑡 by 𝑌(𝑡) = I(𝐸 < 𝑡 ≤ 𝑈), and

𝐼0(𝑡, 𝑒) = (1 − 𝐴)I(𝐸 = 𝑒)I(𝑅 ≥ 𝑡),

𝐼1(𝑡, 𝑒) = 𝐴 I(𝐸 = 𝑒)I(𝑅 ≥ 𝑡),

𝐼01(𝑡, 𝑒, 𝑟) = (1 − 𝐴)I(𝐸 = 𝑒){I(𝑅 = 𝑟, Γ = 1,Ψ = 1)

+ I(𝑅 = 𝑟, Γ = 2,Ψ = 1)},

𝐼11(𝑡, 𝑒, 𝑟) = 𝐴 I(𝐸 = 𝑒){I(𝑅 = 𝑟, Γ = 1) + I(𝑅 = 𝑟, Γ = 2)}.

(15)

𝐼𝑎(𝑡, 𝑒) = 1 indicates that a subject entering the trial at
time 𝑒 and randomized to placebo (𝑎 = 0) or vaccine (𝑎 =

1) has not yet been infected or unblinded by 𝑡. For 𝑡 >
𝑟, 𝐼01(𝑡, 𝑒, 𝑟) = 1 indicates that a subject randomized to
placebo at time 𝑒 is unblinded (either by request or at a
PDCV) at time 𝑟 and crosses over to study vaccine at 𝑟, and
𝐼11(𝑡, 𝑒, 𝑟) = 1 if a subject randomized to vaccine at time 𝑒

is unblinded at 𝑟. Make the consistency assumptions

𝐼𝑎(𝑡, 𝑒)𝑑𝑁(𝑡) = 𝐼𝑎(𝑡, 𝑒)𝑑𝑁
∗
𝑎(𝑡, 𝑒),

𝐼𝑎(𝑡, 𝑒)𝑌(𝑡) = 𝐼𝑎(𝑡, 𝑒)𝑌
∗
𝑎(𝑡, 𝑒),

𝑎 = 0, 1,

𝐼01(𝑡, 𝑒, 𝑟)𝑑𝑁(𝑡) = 𝐼01(𝑡, 𝑒, 𝑟)𝑑𝑁
∗
0 (𝑡, 𝑒, 𝑟),

𝐼01(𝑡, 𝑒, 𝑟)𝑌(𝑡) = 𝐼01(𝑡, 𝑒, 𝑟)𝑌
∗
0 (𝑡, 𝑒, 𝑟),

𝐼11(𝑡, 𝑒, 𝑟)𝑑𝑁(𝑡) = 𝐼11(𝑡, 𝑒, 𝑟)𝑑𝑁
∗
1 (𝑡, 𝑒, 𝑟),

𝐼11(𝑡, 𝑒, 𝑟)𝑌(𝑡) = 𝐼11(𝑡, 𝑒, 𝑟)𝑌
∗
1 (𝑡, 𝑒, 𝑟). (16)

We now make assumptions similar in spirit to those
adopted in observational studies. By randomization,

𝐴 ⟂ (𝑿, 𝐸,∗), (17)

where we subsume the site indicator 𝑆 in 𝑿, and let 𝑝𝐴 =

pr(𝐴 = 1). It is realistic to assume that the mix of baseline
covariates changes over the accrual period; for example,
during the trial, because of lagging accrual of elderly sub-
jects and subjects from underrepresented groups, an effort
was made to increase participation of these groups in the
latter part of the accrual period. Accordingly, we allow the
distribution of entry time 𝐸 to depend on𝑿, and denote its
conditional density as 𝑓𝐸|𝑋(𝑒|𝒙). We make the no unmea-
sured confounders assumption

𝐸 ⟂ ∗ |𝑿. (18)

Define the hazard functions of unblinding in the periods
between the Pfizer EUA and the start of PDCVs and after
the start of PDCVs, respectively, as

𝜆𝑅,1(𝑟|𝑿,𝐴, 𝐸,∗)

= lim
𝑑𝑟→0

pr(𝑟 ≤ 𝑅 < 𝑟 + 𝑑𝑟, Γ = 1|
𝑅 ≥ 𝑟, 𝑿, 𝐴, 𝐸,∗), 𝑃 ≤ 𝑟 < 𝑈,

𝜆𝑅,2(𝑟|𝑿,𝐴, 𝐸,∗)

= lim
𝑑𝑟→0

pr(𝑟 ≤ 𝑅 < 𝑟 + 𝑑𝑟, Γ = 2|
𝑅 ≥ 𝑟, 𝑿, 𝐴, 𝐸,∗), 𝑈 ≤ 𝑟 < 𝐶,

where 𝜆𝑅,𝑗(𝑟|𝑿,𝐴, 𝐸,∗) = 0 for 𝑟 ≥ 𝑈 (𝑗 = 1) and 𝑟 ≥
𝐶 (𝑗 = 2). Because the accrual period was short relative
to the length of follow-up, we take these unblinding haz-
ard functions to not depend on 𝐸, although including such
dependence is straightforward; and, similar to a noninfor-
mative censoring assumption, to not depend on ∗ and
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write

𝜆𝑅,𝑗(𝑟|𝑿,𝐴, 𝐸,∗) = 𝜆𝑅,𝑗(𝑟|𝑿,𝐴), 𝑗 = 1, 2. (19)

Define𝑅(𝑟|𝑿,𝐴) = exp[−{Λ𝑅,1(𝑟|𝑿,𝐴) + Λ𝑅,2(𝑟|𝑿,𝐴)}],
Λ𝑅,𝑗(𝑟|𝑿, 𝐴) = ∫ 𝑟

𝑗 𝜆𝑅,𝑗(𝑢|𝑿, 𝐴) 𝑑𝑢, 𝑗 = 𝑃 (𝑗 = 1), or
𝑗 = 𝑈 (𝑗 = 2). Because 𝜆𝑅,1(𝑟|𝑿,𝐴) and 𝜆𝑅,2(𝑟|𝑿,𝐴)
are defined on the nonoverlapping intervals [𝑃, 𝑈) and
[𝑈, 𝐶), respectively, with 𝑅,𝑗(𝑟|𝑿,𝐴) = exp{−Λ𝑅,𝑗

(𝑟|𝑿,𝐴)}, 𝑗 = 1, 2,

𝑅(𝑟|𝑿,𝐴) = 1, 𝑟 < 𝑃,
= 𝑅,1(𝑟|𝑿,𝐴), 𝑃 ≤ 𝑟 < 𝑈,
= 𝑅,1(𝑈|𝑿,𝐴)𝑅,2(𝑟|𝑿,𝐴), 𝑈 ≤ 𝑟 < 𝐶,
= 0, 𝑟 ≥ 𝐶.

Finally, define 𝑓𝑅,𝑗(𝑟|𝑿,𝐴) = 𝑅(𝑟|𝑿,𝐴)𝜆𝑅,𝑗(𝑟|𝑿,𝐴), 𝑗 =
1, 2.
Let pr(Ψ = 1|𝑿, 𝐸, Γ, 𝑅,∗) be the probability that a

placebo participant unblinded at 𝑅 agrees to receive the
Moderna vaccine. Similar to (19), we assume that this prob-
ability does not depend on 𝐸,∗; moreover, because the
unblinding interval [𝑃, 𝐶) is short relative to the length of
follow-up, we assume that it does not depend on𝑅 but does
depend on the unblinding dynamics at 𝑅. Thus, write

pr(Ψ = 1|𝑿, 𝐸, Γ, 𝑅,∗) = pr(Ψ = 1|𝑿, Γ) = 𝑝Ψ(𝑿, Γ).

(20)

4.4 Observed data estimating equations

We now outline, under the assumptions (16)–(20), which
we take to hold henceforth, how we can develop unbiased
estimating equations based on the observed data yield-
ing consistent and asymptotically normal estimators for
𝑑Λ𝑏(⋅), 𝑑Λ𝑢(⋅), 𝜽. The basic premise is to use inverse proba-
bility weighting (IPW) to probabilistically represent poten-
tial outcomes in terms of the observed data to mimic the
estimating functions (12)–(14).
Considering (15), define the inverse probability weights

ℎ0(𝑡, 𝑒|𝑿) = (1 − 𝑝𝐴)𝑓𝐸|𝑋(𝑒|𝑿)𝑅(𝑡|𝑿,𝐴 = 0),

ℎ1(𝑡, 𝑒|𝑿) = 𝑝𝐴 𝑓𝐸|𝑋(𝑒|𝑿)𝑅(𝑡|𝑿,𝐴 = 1),

ℎ01(𝑒, 𝑟|𝑿) = (1 − 𝑝𝐴)𝑓𝐸|𝑋(𝑒|𝑿)
× {𝑓𝑅,1(𝑟|𝑿,𝐴 = 0)𝑝Ψ(𝑿, Γ = 1)

+ 𝑓𝑅,2(𝑟|𝑿,𝐴 = 0)𝑝Ψ(𝑿, Γ = 2)},

ℎ11(𝑒, 𝑟|𝑿) = 𝑝𝐴 𝑓𝐸|𝑋(𝑒|𝑿){𝑓𝑅,1(𝑟|𝑿,𝐴 = 1)

+ 𝑓𝑅,2(𝑟|𝑿,𝐴 = 1)}.

We show in Web Appendix E of the Supporting Informa-
tion that

𝐸

{
𝐼0(𝑡, 𝑒)𝑑𝑁(𝑡)

ℎ0(𝑡, 𝑒|𝑿) ||𝑿,∗

}
= 𝑑𝑁∗

0 (𝑡, 𝑒),

𝐸

{
𝐼0(𝑡, 𝑒)𝑌(𝑡)

ℎ0(𝑡, 𝑒|𝑿) ||𝑿,∗

}
= 𝑌∗

0 (𝑡, 𝑒), (21)

𝐸

{
𝐼1(𝑡, 𝑒)𝑑𝑁(𝑡)

ℎ1(𝑡, 𝑒|𝑿) ||𝑿,∗

}
= 𝑑𝑁∗

1 (𝑡, 𝑒),

𝐸

{
𝐼1(𝑡, 𝑒)𝑌(𝑡)

ℎ1(𝑡, 𝑒|𝑿) ||𝑿,∗

}
= 𝑌∗

1 (𝑡, 𝑒), (22)

𝐸

{
𝐼01(𝑡, 𝑒, 𝑟)𝑑𝑁(𝑡)

ℎ01(𝑒, 𝑟|𝑿) ||𝑿,∗

}
= 𝑑𝑁∗

0 (𝑡, 𝑒, 𝑟),

𝐸

{
𝐼01(𝑡, 𝑒, 𝑟)𝑌(𝑡)

ℎ01(𝑒, 𝑟|𝑿) ||𝑿,∗

}
= 𝑌∗

0 (𝑡, 𝑒, 𝑟), (23)

𝐸

{
𝐼11(𝑡, 𝑒, 𝑟)𝑑𝑁(𝑡)

ℎ11(𝑒, 𝑟|𝑿) ||𝑿,∗

}
= 𝑑𝑁∗

1 (𝑡, 𝑒, 𝑟),

𝐸

{
𝐼11(𝑡, 𝑒, 𝑟)𝑌(𝑡)

ℎ11(𝑒, 𝑟|𝑿) ||𝑿,∗

}
= 𝑌∗

1
(𝑡, 𝑒, 𝑟). (24)

To obtain observed data analogs to the estimating func-
tions (12)–(14), based on the equalities in (21)–(24), we sub-
stitute the IPW expressions in the conditional expectations
on the left-hand sides. Using (15) and (21)–(22), the analog
to (12) is given by

Λ𝑏 {; Λ𝑏(𝑡), 𝜽}

= I(𝑡 < 𝐶)
(
∫

min(𝑡,𝐴)

0

𝐼0(𝑡, 𝑒)

ℎ0(𝑡, 𝑒|𝑿){𝑑𝑁(𝑡) − 𝑑Λ𝑏(𝑡)𝑌(𝑡)}

𝑤0(𝑡, 𝑒) 𝑑𝑒 + I(𝑡 ≥ 𝓁)∫
min(𝑡−𝓁,𝐴)

0

𝐼1(𝑡, 𝑒)

ℎ1(𝑡, 𝑒|𝑿)
×

[
𝑑𝑁(𝑡) − 𝑑Λ𝑏(𝑡) exp{𝜃0 + 𝑔(𝑡 − 𝑒 − 𝓁; 𝜽1)

× I(𝑡 − 𝑒 ≥ 𝓁)}𝑌(𝑡)

]
𝑤1(𝑡, 𝑒) 𝑑𝑒

)
= I(𝑡 < 𝐶)

×

(
(1 − 𝐴)I(𝑅 ≥ 𝑡)

ℎ0(𝑡, 𝐸|𝑿) {𝑑𝑁(𝑡) − 𝑑Λ𝑏(𝑡)𝑌(𝑡)}𝑤0(𝑡, 𝐸)

+
𝐴I(𝐸 + 𝓁 ≤ 𝑡 ≤ 𝑅)

ℎ1(𝑡, 𝐸|𝑿)
[
𝑑𝑁(𝑡) − 𝑑Λ𝑏(𝑡)

× exp{𝜃0 + 𝑔(𝑡 − 𝐸 − 𝓁; 𝜽1)}𝑌(𝑡)

]
𝑤1(𝑡, 𝐸)

)
. (25)
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Likewise, using (23)–(24), the analog to (13) is

Λ𝑢 {; Λ𝑢(𝑡), 𝜽}

= I(𝑡 ≥ 𝑃 + 𝓁)

(
∫

𝐴

0
∫

min(𝑡−𝓁,𝐶)

𝑃
𝐼01(𝑡, 𝑒, 𝑟)

ℎ01(𝑒, 𝑟|𝑿)
×

[
𝑑𝑁(𝑡) − 𝑑Λ𝑢(𝑡) exp{𝑔(𝑡 − 𝑟 − 𝓁; 𝜽1)I(𝑡 − 𝑟 ≥ 𝓁)}𝑌(𝑡)

]

× 𝑤0(𝑡, 𝑒, 𝑟) 𝑑𝑟 𝑑𝑒

)
+ I(𝑡 ≥ 𝑃)

(
∫

𝐴

0
∫

min(𝑡,𝐶)

𝑃

𝐼11(𝑡, 𝑒, 𝑟)

ℎ11(𝑒, 𝑟|𝑿)
[
𝑑𝑁(𝑡) − 𝑑Λ𝑢(𝑡) exp{𝑔(𝑡 − 𝑒 − 𝓁; 𝜽1)}𝑌(𝑡)

]

× 𝑤1(𝑡, 𝑒, 𝑟)I(𝑡 ≥ 𝑟) 𝑑𝑟 𝑑𝑒

)

= I(𝑡 ≥ 𝑃 + 𝓁)

×

(
(1 − 𝐴)I(𝑡 − 𝑅 ≥ 𝓁){I(Γ = 1, Ψ = 1) + I(Γ = 2,Ψ = 1)}

ℎ01(𝐸, 𝑅|𝑿)
×

[
𝑑𝑁(𝑡) − 𝑑Λ𝑢(𝑡) exp{𝑔(𝑡 − 𝑅 − 𝓁; 𝜽1)}𝑌(𝑡)

]
𝑤0(𝑡, 𝐸, 𝑅)

)

+ I(𝑡 ≥ 𝑃)
(
𝐴I(𝑡 > 𝑅){I(Γ = 1) + I(Γ = 2)}

ℎ11(𝐸, 𝑅|𝑿)
×

[
𝑑𝑁(𝑡) − 𝑑Λ𝑢(𝑡) exp{𝑔(𝑡 − 𝐸 − 𝓁; 𝜽1)}𝑌(𝑡)

]
𝑤1(𝑡, 𝐸, 𝑅)

)
.

(26)

A entirely similar representation 𝜃{; Λ𝑏(⋅)Λ𝑢(⋅), 𝜽} of
(14) in terms of the observed data can be deduced and is
suppressed for brevity.
To simplify notation, based on (25), (26), and the analo-

gous expression for (14), define

𝑑�̃�𝑏(𝑡) = 𝑑𝑁(𝑡)

{
(1 − 𝐴)I(𝑅 ≥ 𝑡)𝑤0(𝑡, 𝐸)

ℎ0(𝑡, 𝐸|𝑿)
+
𝐴I(𝐸 + 𝓁 ≤ 𝑡 ≤ 𝑅)𝑤1(𝑡, 𝐸)

ℎ1(𝑡, 𝐸|𝑿)
}

,

𝑌𝑏(𝑡) = 𝑌(𝑡)

[
(1 − 𝐴)I(𝑅 ≥ 𝑡)𝑤0(𝑡, 𝐸)

ℎ0(𝑡, 𝐸|𝑿) +
𝐴I(𝐸 + 𝓁 ≤ 𝑡 ≤ 𝑅)𝑤1(𝑡, 𝐸)

ℎ1(𝑡, 𝐸|𝑿)
× exp{𝜃0 + 𝑔(𝑡 − 𝐸 − 𝓁; 𝜽1)}

]
,

𝑑�̃�𝑢(𝑡) = 𝑑𝑁(𝑡)

×

[
(1 − 𝐴)I(𝑡 − 𝑅 ≥ 𝓁){I(Γ = 1,Ψ = 1) + I(Γ = 2,Ψ = 1)}𝑤0(𝑡, 𝐸, 𝑅)

ℎ01(𝐸, 𝑅|𝑿)
+

𝐴I(𝑡 > 𝑅){I(Γ = 1) + I(Γ = 2)}𝑤1(𝑡, 𝐸, 𝑅)

ℎ11(𝐸, 𝑅|𝑿)
]
,

𝑌𝑢(𝑡) = 𝑌(𝑡)

×

[
(1−𝐴)I(𝑡 −𝑅 ≥ 𝓁){I(Γ= 1,Ψ=1) + I(Γ = 2,Ψ = 1)}𝑤0(𝑡, 𝐸, 𝑅)

ℎ01(𝐸, 𝑅|𝑿)
× exp{𝑔(𝑡 − 𝑅 − 𝓁; 𝜽1)

+
𝐴I(𝑡 > 𝑅){I(Γ = 1) + I(Γ = 2)}𝑤1(𝑡, 𝐸, 𝑅)

ℎ11(𝐸, 𝑅|𝑿) exp{𝑔(𝑡 − 𝐸 − 𝓁; 𝜽1)

]
.

It is important to recognize that these expressions are equal
to zero for an unblinded placebo participant who is at risk
at time 𝑡, 𝑌(𝑡) = 1, and who has refused study vaccine,
Ψ = 0, which is equivalent to censoring such a subject, as
she/he cannot provide information on study vaccine after
𝑡. These expressions are also equal to zero at time 𝑡 for an
at-risk unblinded placebo participant who receives study
vaccine but has been vaccinated for less than 𝓁 weeks at
𝑡 and for an at-risk blinded vaccine participant vaccinated
for less than 𝓁weeks at 𝑡, reflecting the fact that such indi-
viduals do not contribute information onVE for 𝜏 ≥ 𝓁until
times 𝑡 at which they have reached full efficacy, in which
case the expressions are ≥ 0. Moreover, by excluding the
at-risk unblinded placebo participants vaccinated for less
than 𝓁 weeks at 𝑡, the behavior reflected by 𝑐𝑢

01𝓁
(𝑡) does

not play a role.
Define also

𝒁𝑏(𝑡) = 𝐴

(
1

𝒈𝜃(𝑡 − 𝐸 − 𝓁)

)
,

𝒁𝑢(𝑡) = 𝐴

(
0

𝒈𝜃(𝑡 − 𝐸 − 𝓁)

)
+ (1 − 𝐴)

(
0

𝒈𝜃(𝑡 − 𝑅 − 𝓁)

)
.

Then, it is straightforward that the observed-data estimat-
ing functions are

Λ𝑏 {; Λ𝑏(𝑡), 𝜽} = 𝑑�̃�𝑏(𝑡) − 𝑑Λ𝑏(𝑡)𝑌𝑏(𝑡),

Λ𝑢{; Λ𝑢(𝑡), 𝜽} = 𝑑�̃�𝑢(𝑡) − 𝑑Λ𝑢(𝑡)𝑌𝑢(𝑡),

𝜃{; Λ𝑏(⋅)Λ𝑢(⋅), 𝜽} = ∫
𝐶

0

𝒁𝑏(𝑡){𝑑�̃�𝑏(𝑡) − 𝑑Λ𝑏(𝑡)𝑌𝑏(𝑡)}

+ ∫
𝐿

𝑃
𝒁𝑢(𝑡){𝑑�̃�𝑢(𝑡) − 𝑑Λ𝑢(𝑡)𝑌𝑢(𝑡)}.

Letting �̃�𝑏
𝑖
(𝑡), �̃�𝑢

𝑖
(𝑡), 𝑌𝑏

𝑖
(𝑡), 𝑌𝑢

𝑖
(𝑡), 𝒁𝑏

𝑖 (𝑡), and 𝒁𝑢
𝑖 (𝑡)

denote evaluation at 𝑖 in (1), the foregoing developments
lead to the set of observed-data estimating equations

𝑛∑
𝑖=1

{𝑑�̃�𝑏
𝑖
(𝑡) − 𝑑Λ𝑏(𝑡)𝑌𝑏

𝑖
(𝑡) = 0,

𝑛∑
𝑖=1

{𝑑�̃�𝑢
𝑖
(𝑡) − 𝑑Λ𝑢(𝑡)𝑌𝑢

𝑖
(𝑡) = 0, (27)
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𝑛∑
𝑖=1

[
∫

𝐶
0

𝒁𝑏
𝑖 (𝑡){𝑑�̃�

𝑏
𝑖
(𝑡) − 𝑑Λ𝑏(𝑡)𝑌𝑏

𝑖
(𝑡)}

+ ∫
𝐿

𝑃
𝒁𝑢
𝑖 (𝑡){𝑑�̃�

𝑢
𝑖
(𝑡) − 𝑑Λ𝑢(𝑡)𝑌𝑢

𝑖
(𝑡)}

]
= 0. (28)

For fixed 𝜽, the estimators for 𝑑Λ𝑏(𝑡) and 𝑑Λ𝑢(𝑡) are the
solutions to the equations in (27) given by

𝑑Λ̂𝑏(𝑡) =

{
𝑛∑
𝑖=1

𝑌𝑏
𝑖
(𝑡)

}−1 𝑛∑
𝑖=1

𝑑�̃�𝑏
𝑖
(𝑡),

𝑑Λ̂𝑢(𝑡) =

{
𝑛∑
𝑖=1

𝑌𝑢
𝑖
(𝑡)

}−1 𝑛∑
𝑖=1

𝑑�̃�𝑢
𝑖
(𝑡). (29)

Substituting these expressions in (28) yields the estimating
equation in 𝜽 given by

𝑛∑
𝑖=1

[
∫

𝐶
0

{𝒁𝑏
𝑖 (𝑡) − 𝒁

𝑏
(𝑡)}𝑑�̃�𝑏

𝑖
(𝑡)

+ ∫
𝐿

𝑃
{𝒁𝑢

𝑖 (𝑡) − 𝒁
𝑢
(𝑡)}𝑑�̃�𝑢

𝑖
(𝑡)

]
= 𝟎, (30)

𝒁
𝑏
(𝑡) =

{
𝑛∑
𝑖=1

𝑌𝑏
𝑖
(𝑡)

}−1 𝑛∑
𝑖=1

𝒁𝑏
𝑖 (𝑡)𝑌

𝑏
𝑖
(𝑡),

𝒁
𝑢
(𝑡) =

{
𝑛∑
𝑖=1

𝑌𝑢
𝑖
(𝑡)

}−1 𝑛∑
𝑖=1

𝒁𝑢
𝑖 (𝑡)𝑌

𝑢
𝑖
(𝑡),

which can be solved in 𝜽 to yield the estimator 𝜽.

5 PRACTICAL IMPLEMENTATION
AND INFERENCE

Choice of the weight functions𝑤0(𝑡, 𝑒),𝑤1(𝑡, 𝑒),𝑤0(𝑡, 𝑒, 𝑟),
and 𝑤1(𝑡, 𝑒, 𝑟) is arbitrary but can play an important
role in the performance of the resulting estimators. We
recommend taking a fixed value �̃� of 𝑿, for example,
the sample mean, and setting 𝑤𝑎(𝑡, 𝑒) = ℎ𝑎(𝑡, 𝑒|�̃�) and
𝑤𝑎(𝑡, 𝑒, 𝑟) = ℎ𝑎1(𝑒, 𝑟|�̃�), 𝑎 = 0, 1, where the latter does not
depend on 𝑡. The resulting weights ℎ𝑎(𝑡, 𝑒|�̃�)∕ℎ𝑎(𝑡, 𝑒|𝑿)
and ℎ𝑎1(𝑒, 𝑟|�̃�)∕ℎ𝑎1(𝑒, 𝑟|𝑿), 𝑎 = 0, 1, are referred to as sta-
bilized weights (Robins et al., 2000), as they mitigate the
effect of small inverse probability weights that can give
undue influence to a few observations. Note that depen-
dence of the inverse probability weights on 𝑝𝐴 cancels
in construction of stabilized weights. Moreover, if there
is no confounding, in that 𝜆𝑅,𝑗(𝑟|𝑿,𝐴), 𝑗 = 1, 2 in (19),
𝑓𝐸|𝑋(𝑒|𝑿), and 𝑝Ψ(𝑿, Γ) do not depend on 𝑿, the stabi-

lized weights are equal to 1. Interpretation of the stabilized
weights is discussed further in Web Appendix F.
If the “survival probabilities” for 𝑅, 𝑅,𝑗(𝑟|𝑿,𝐴), and

the densities 𝑓𝑅,𝑗(𝑟|𝑿,𝐴), 𝑗 = 1, 2, and 𝑓𝐸|𝑋(𝑒|𝑿) in the
inverse probability weights, which appear in the expres-
sions in the estimating equation (30), were known, (30)
could be solved to yield an estimator for 𝜽 and in par-
ticular 𝜽1 characterizing VE waning. As these quantities
are unknown, models must be posited for them, lead-
ing to estimators that can be substituted in (30). We
propose the use of Cox proportional hazards models for
𝜆𝑅,𝑗(𝑟|𝑿,𝐴), 𝑗 = 1, 2, in (19), which can be fitted using
the data {𝑿𝑖, 𝐴𝑖, 𝑅𝑖, I(Γ𝑖 = 𝑗)}, 𝑖 = 1… , 𝑛; and for the haz-
ard of entry time 𝐸 given 𝑿, which can be fitted using
(𝐸𝑖, 𝑿𝑖), 𝑖 = 1, … , 𝑛. A binary, for example, logistic, regres-
sion model can be used to represent 𝑝Ψ(𝑿, Γ) and fitted
using (𝑿𝑖, Γ𝑖, Ψ𝑖) for 𝑖 such that 𝐴𝑖 = 0.
For individual 𝑖, the stabilized weights involve the

quantities 𝑓𝑅,𝑗(𝑅𝑖|�̃�, 𝑎)∕𝑓𝑅,𝑗(𝑅𝑖|𝑿𝑖, 𝑎), 𝑗 = 1, 2, 𝑎 = 0, 1,
and 𝑓𝐸|𝑋(𝐸𝑖|�̃�)∕𝑓𝐸|𝑋(𝐸𝑖|𝑿𝑖). With proportional haz-
ards models as above with predictors 𝜙𝑗(𝑿, 𝜷𝑗), say,
it is straightforward that 𝑓𝑅,𝑗(𝑅𝑖|�̃�, 𝑎)∕𝑓𝑅,𝑗(𝑅𝑖|𝑿𝑖, 𝑎) =

[exp{𝜙𝑗(�̃�, 𝜷𝑗)}𝑅(𝑅𝑖|�̃�, 𝑎)]∕[exp{𝜙𝑗(𝑿𝑖, 𝜷𝑗)}𝑅(𝑅𝑖|𝑿𝑖, 𝑎)],
where the baseline hazard cancels from numerator and
denominator, and similarly for 𝑓𝐸|𝑋(𝐸𝑖|�̃�)∕𝑓𝐸|𝑋(𝐸𝑖|𝑿𝑖).
Thus, the estimated stabilized weights involve only the
estimated cumulative hazard functions and estima-
tors for the 𝜷𝑗 , each of which is root-𝑛 consistent and
asymptotically normal.
As sketched inWebAppendix G, with stabilized weights

set equal to one or estimated, (30) can be solved easily in
𝜽 via a Newton–Raphson algorithm. A heuristic argument
demonstrating that 𝜽 is asymptotically normal leading to
an expression for its approximate sampling variance using
the sandwich technique is given in Web Appendix G.

6 SIMULATIONS

We report on simulation studies demonstrating perfor-
mance of the methods, each involving 1000 Monte Carlo
replications, based roughly on the Moderna trial. We took
𝑝𝐴 = 0.5 and 𝐴 = 12, 𝑃 = 19, 𝑈 = 21, and 𝐶 = 31,
where all times are in weeks, and consider an analysis
at calendar time 𝐿 = 52 weeks, with 𝑛 = 30,000. In all
cases, 𝑔(𝑢, 𝜃1) = 𝜃1I(𝑢 > 𝑣) where 𝑣 = 20 weeks and 𝜃0 =
log(0.05), corresponding to VE = 95% prior to time 𝑣, so
that, depending on 𝜃1, VE potentially wanes following 𝑣.
We consider 𝜃1 = log(7), corresponding to VE = 65% after
time 𝑣, and 𝜃1 = 0, corresponding to no waning.
Because the trial and unblinding process are ongoing,

we were not able to base our generative scenarios on data
from the trial. Owing to the complexity of the trial and
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multiple potential sources of confounding, to facilitate
exploration of a range of conditions while controlling com-
putational complexity and intensity, we focused on sev-
eral basic scenarios meant to represent varying degrees of
confounding consistent with our expectations for the most
likely sources of such confounding in the trial. Specifically,
we took 𝑓𝐸|𝑋(𝑒|𝑿) and 𝜆𝑅,2(𝑟|𝑿,𝐴) to not depend on𝑿 (or
𝐴 in the latter case) in any scenario, reflecting mostly ran-
dom entry and PDCV unblinding processes. In scenarios
involving confounding, we took 𝜆𝑅,1(𝑟|𝑿,𝐴), correspond-
ing to the period [𝑃, 𝑈) in which “requested unblind-
ing” occurred, and the “agreement process” 𝑝Ψ(𝑿, Γ) to
depend on 𝑿, as described below, reflecting our belief
that these processes could be associated with participant
characteristics.
In the first set of simulations, we consider two cases:

(i) no confounding, where all of 𝜆𝑅,𝑗(𝑟|𝑿,𝐴), 𝑗 = 1, 2,
𝑓𝐸|𝑋(𝑒|𝑿), and 𝑝Ψ(𝑿, Γ) do not depend on 𝑿; and (ii) con-
founding, where 𝜆𝑅,1(𝑟|𝑿,𝐴) and 𝑝Ψ(𝑿, Γ) depend on𝑿 as
above. In both (i) and (ii), the entry process 𝐸 ∼  (0, 𝐴),
that is, uniform on [0, 𝐴], and the unblinding process
during PDCVs was  (𝑈, 𝐶); see below. In each sim-
ulation experiment, for each participant in each Monte
Carlo data set, we first generated 𝐴 ∼ Bernoulli(𝑝𝐴),
two baseline covariates 𝑋1 ∼ Bernoulli(𝑝𝑋1

= 0.5) and
𝑋2 ∼  (𝜇𝑋2

= 45, 𝜎2𝑋2
= 102), and 𝐸 as above. To

obtain 𝑅, we generated 𝐺1 to be exponential with haz-
ard 𝜆𝑅,1(𝑟|𝑿, 𝐴) = exp[𝛽10 + {𝛽11(𝑋1 − 𝑝𝑋1

) + 𝛽12(𝑋2 −

𝜇𝑋2
)}(1 − 𝐴) + {𝛽13(𝑋1 − 𝑝𝑋1

) + 𝛽14(𝑋2 − 𝜇𝑋2
)}𝐴], where

𝛽10 = log(0.036), corresponding to roughly 7% unblinding
during [𝑃, 𝑈), and (𝛽11, 𝛽12, 𝛽13, 𝛽14) = (0, 0, 0, 0, 0) for
(i), no confounding, and (−0.8, −0.08, 0.8, 0.08) for (ii),
confounding. With 𝑅1 = 𝑃 + 𝐺1 and 𝑅2 ∼  (𝑈, 𝐶), we
let Γ̃ = 1 + I(𝑅1 ≥ 𝑈) and 𝑅 = 𝑅1I(Γ̃ = 1) + 𝑅2I(Γ̃ = 2).
We generated Ψ as Bernoulli{𝑝Ψ(𝑿, Γ̃)}, 𝑝Ψ(𝑿, Γ̃) =

expit {𝛾0 + 𝛾1(𝑋1 − 𝑝𝑋1
) + 𝛾2(𝑋2 − 𝜇𝑋2

) + 𝛾3Γ̃}, expit
(𝑢) = (1 + 𝑒−𝑢)−1, where 𝛾0 = 1.4, corresponding to
approximately 80% agreement to receive the study vac-
cine by unblinded placebo participants, and (𝛾1, 𝛾2,
𝛾3) = (0, 0, −0.1) for (i) and = (−0.8, −0.08, −0.1) for (ii).
To generate 𝑈,Δ, we first generated 𝑇∗

0(𝐸, 𝑅)

and 𝑇∗
1(𝐸, 𝑅) based on (10)–(11), with 𝜆𝑏(𝑡) = 𝜆𝑏 =

exp{𝛿0 + 𝛿1(𝑋1 − 𝑝𝑋1
) + 𝛿2(𝑋2 − 𝜇𝑋2

) +}, where (𝛿0,

𝛿1, 𝛿2) = {log(0.0006), 0.4, 0.04}, leading to approx-
imately a 3% infection rate for placebo partici-
pants over 𝐿, and  ∼  (0, 0.04); 𝜆𝑢

𝓁
(𝑡) = 𝜆𝑢

𝓁
= 𝜆𝑏;

𝜁(𝑡) = 0; and 𝜆𝑢(𝑡) = 𝜆𝑢 = 1.25𝜆𝑏, so that 𝜆𝑎(𝑡, 𝑒, 𝑟)

in (10)–(11), 𝑎 = 0, 1, are piecewise constant haz-
ards. 𝑇∗

0(𝐸, 𝑅) and 𝑇∗
1(𝐸, 𝑅) were obtained via inverse

transform sampling. We then generated 𝑈 (calendar
time) as 𝑈 = 𝐸 + 𝐴𝑇∗

1(𝐸, 𝑅) + (1 − 𝐴)[I{𝑇∗
0 (𝐸, 𝑅) <

𝑅}𝑇∗
0(𝐸, 𝑅) + I{𝑇∗

0 (𝐸, 𝑅) ≥ 𝑅}{Ψ𝑇∗
0(𝐸, 𝑅) + (1 − Ψ)𝑇∗

𝑟 },

where 𝑇∗
𝑟 = 𝑅 + 𝐺2 for 𝐺2 exponential with hazard 𝜆𝑏;

infection times for unblinded placebo participants who
decline vaccine are not used in the analysis. Finally, we set
Δ = I(𝑈 < 𝐿), and defined 𝑅 = 𝑈I(𝑈 ≤ 𝑅) + 𝑅I(𝑈 > 𝑅)

and Γ = Γ̃I(𝑈 > 𝑅). Although we obtained Ψ for all 𝑛
participants, Ψ is used only when 𝐴 = 0, Γ ≥ 1.
For each combination of (i) and (ii) and (a) 𝜃1 = log(7)

and (b) 𝜃1 = 0, we estimated 𝜽 and thus 𝑉𝐸(𝜏) for 𝜏 ≤ 𝑣

and 𝜏 > 𝑣 two ways: taking the stabilized weights equal
to 1, so disregarding possible confounding, and with esti-
mated stabilized weights. The latter were obtained by fit-
ting proportional hazards models for entry time 𝐸 with
linear predictor 𝜈1𝑋1 + 𝜈2𝑋2 and for 𝜆𝑅,𝑗(𝑟|𝑿,𝐴), 𝑗 = 1, 2,
with linear predictors 𝛽11𝑋1 + 𝛽12𝑋2 + 𝛽13𝐴 + 𝛽14𝑋1𝐴 +

𝛽15𝑋2𝐴 and 𝛽21𝑋1 + 𝛽22𝑋2, respectively; and a logis-
tic regression model for 𝑝Ψ(𝑿, Γ) = expit{(𝛾10 + 𝛾11𝑋1 +

𝛾12𝑋2)I(Γ = 1) + (𝛾20 + 𝛾21𝑋1 + 𝛾22𝑋2)I(Γ = 2)}.
Table 2 presents the results for estimation of 𝜃1, dic-

tating waning; 𝑉𝐸≤20 = 1 − exp(𝜃0), VE prior to 𝑣 = 20

weeks; and 𝑉𝐸>20 = 1 − exp(𝜃0 + 𝜃1), VE after 𝑣 = 20

weeks. Because the Monte Carlo distribution of some of
these quantities exhibited slight skewness, those for the
VE quantities likely due to the exponentiation, we report
both Monte Carlo mean and median. Estimation of 𝑉𝐸≤20
shows virtually no bias for both (a) and (b); that for 𝑉𝐸>20
in case (a) showsminimal bias and virtually none for (b). In
all cases, standard errors obtained via the sandwich tech-
nique as outlined in Web Appendix G along with the delta
method for the VEs track the Monte Carlo standard devi-
ations. Under both (i) no confounding and (ii) confound-
ing, estimation of the stabilizedweights appears to have lit-
tle consequence for precision of the estimators relative to
setting them to equal to 1. Wald 95% confidence intervals,
exponentiated for the VEs, achieve nominal coverage. For
(b) and each combination of stabilized weights set equal to
1 or estimated and (i), no confounding, and (ii), confound-
ing, we also calculated the empirical Type I error achieved
by a Wald test at level of significance 0.05 for VE waning
addressing the null and alternative hypotheses𝐻0 ∶ 𝜃1 ≤ 0

versus 𝐻1 ∶ 𝜃1 > 0. These values are 0.04 and 0.06 when
using stabilized weights set equal to 1 under (i) and (ii),
respectively; the analogous values with estimated weights
are 0.05 and 0.05 under (i) and (ii).
In the first set of simulations, the confounding induced

by our generative choices led to little to no bias in the esti-
mators for 𝜃1 and the VEs prior to and after 20 weeks.
Notably, modeling and fitting of the stabilized weights to
adjust for potential confounding shows little effect relative
to setting the stabilized weights to 1. To the extent that this
scenario is a plausible approximation to actual conditions
of the trial, it may be that confounding will not be a serious
challenge for the analysis of VE waning.
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TABLE 2 Simulation results based on 1000 Monte Carlo replications, first scenario. Mean =mean of Monte Carlo estimates, Med =
median of Monte Carlo estimates, SD = standard deviation of Monte Carlo estimates, SE = average of standard errors obtained via the
sandwich technique/delta method, Cov = empirical coverage of nominal 95% Wald confidence interval (transformed for 𝑉𝐸).
𝑉𝐸≤20 = 1 − exp(𝜃0), VE prior to 𝑣 = 20 weeks; 𝑉𝐸>20 = 1 − exp(𝜃0 + 𝜃1), VE after 𝑣 = 20 weeks. True values: (a) 𝜃1 = log(7) = 1.946,
𝑉𝐸≤20 = 0.95, 𝑉𝐸>20 = 0.65; (b) 𝜃1 = 0, 𝑉𝐸≤20 = 𝑉𝐸>20 = 0.95

Stabilized weights = 1 Stabilized weights estimated
Mean Med SD SE Cov Mean Med SD SE Cov

(i), no confounding; (a) 𝜃1 = log(7)

𝜃1 1.961 1.935 0.310 0.308 0.95 1.983 1.959 0.303 0.310 0.96
𝑉𝐸≤20 0.950 0.953 0.019 0.019 0.95 0.950 0.952 0.019 0.019 0.95
𝑉𝐸>20 0.634 0.663 0.183 0.174 0.96 0.626 0.662 0.188 0.177 0.96
(ii), confounding; (a) 𝜃1 = log(7)

𝜃1 2.030 2.013 0.325 0.320 0.95 1.990 1.973 0.346 0.335 0.95
𝑉𝐸≤20 0.951 0.953 0.019 0.018 0.96 0.951 0.952 0.019 0.019 0.95
𝑉𝐸>20 0.614 0.647 0.199 0.185 0.95 0.619 0.665 0.201 0.186 0.94
(i), no confounding; (b) 𝜃1 = 0

𝜃1 −0.020 −0.019 0.433 0.422 0.95 0.007 0.019 0.421 0.424 0.96
𝑉𝐸≤20 0.950 0.952 0.020 0.019 0.95 0.950 0.952 0.020 0.019 0.96
𝑉𝐸>20 0.947 0.954 0.032 0.030 0.96 0.946 0.953 0.033 0.031 0.95
(ii), confounding; (b) 𝜃1 = 0

𝜃1 0.053 0.045 0.446 0.436 0.95 0.011 −0.004 0.452 0.450 0.96
𝑉𝐸≤20 0.951 0.952 0.019 0.019 0.96 0.950 0.952 0.020 0.019 0.95
𝑉𝐸>20 0.944 0.951 0.035 0.032 0.96 0.945 0.954 0.036 0.033 0.95

TABLE 3 Simulation results based on 1000 Monte Carlo replications, second scenario. Entries are as in Table 2. True values: (a)
𝜃1 = log(7) = 1.946, 𝑉𝐸≤20 = 0.95, 𝑉𝐸>20 = 0.65; (b) 𝜃1 = 0, 𝑉𝐸≤20 = 𝑉𝐸>20 = 0.95

Stabilized weights = 1 Stabilized weights estimated
Mean Med SD SE Cov Mean Med SD SE Cov

(ii), confounding; (a) 𝜃1 = log(7)

𝜃1 2.125 2.100 0.315 0.299 0.93 2.009 2.008 0.346 0.325 0.94
𝑉𝐸≤20 0.952 0.953 0.017 0.016 0.97 0.950 0.952 0.017 0.017 0.96
𝑉𝐸>20 0.581 0.611 0.191 0.182 0.95 0.613 0.640 0.179 0.175 0.96
(ii), confounding; (b) 𝜃1 = 0

𝜃1 0.171 0.149 0.436 0.403 0.92 0.050 0.053 0.447 0.426 0.95
𝑉𝐸≤20 0.951 0.953 0.017 0.017 0.97 0.950 0.952 0.018 0.017 0.96
𝑉𝐸>20 0.937 0.945 0.038 0.034 0.95 0.942 0.949 0.034 0.032 0.95

To examine the ability of the methods with estimated
stabilized weights to adjust for confounding that poten-
tially could be sufficiently strong to bias results, we car-
ried out additional simulations under settings (a) 𝜃1 =
log(7) and (b) 𝜃1 = 0 with (ii) confounding in which
our choices of generative parameters induce a stronger
association between the potential infection times and
the agreement process. Specifically, we took instead
(𝛿0, 𝛿1, 𝛿2) = {log(0.0006), 0.7, 0.07} and (𝛾0, 𝛾1, 𝛾2, 𝛾3) =

(1.4, −1.0, −0.1, −0.1), with all other settings identical to
those above.

Table 3 shows the results. The estimators for 𝜃1 and
𝑉𝐸>20 are slightly biased when stabilized weights are set
equal to 1, although coverage probability for the latter is
at the nominal level. This feature is mitigated by use of
estimated stabilized weights. Coverage probability for 𝜃1
is somewhat lower than nominal. Under (b), empirical
Type I error achieved by aWald test at level of significance
0.05 of 𝐻0 ∶ 𝜃1 ≤ 0 versus 𝐻1 ∶ 𝜃1 > 0 is 0.12 when stabi-
lized weights are equal to 1, demonstrating the potential
for biased inference; Type I error is 0.06 using estimated
stabilized weights, leading to a more reliable test.
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Overall, we speculate that, because the Moderna study
is a randomized, double-blind trial, the unblinding period
is finite and eventually all participants are unblinded, the
refusal rate is likely to be low, and infection rates are low,
confoundingmay not lead to substantial bias in estimation
of VE waning.

7 DISCUSSION

We have proposed a conceptual framework based on
potential outcomes for study of VE in which assump-
tions on biological, behavioral, and other phenomena are
made transparent. The methods provide a mechanism
to account for possible confounding. The corresponding
statistical framework combines information from blinded
and unblinded participants over time. We focus on the set-
ting of the Moderna phase 3 trial, but the principles can be
adapted to other settings, including the blinded crossover
design of Follmann et al. (2020), and apply to ongoing and
future vaccine trials in which unblinding may well occur
throughout and some participants may refuse the study
vaccine in favor of already-licensed products. Extension
of the methods to the setting where time between doses
varies across vaccinated participants due to either devia-
tions from the protocol or by design would require modifi-
cation of the framework presented here to represent VE as
a function of both time between doses and time since vac-
cination.
Our approach and those of Lin et al. (2021) (LZG), Foll-

mann et al. (2020), and Fintzi and Follmann (2021) for
estimation of VE waning use a calendar time formulation
and Cox hazard models. As do we, Follmann et al. (2020)
and Fintzi and Follmann (2021) include data from placebo
participants who cross over to study vaccine, whereas
LZG censor such subjects and propose a sensitivity anal-
ysis. Because the approach of Follmann et al. (2020) and
Fintzi and Follmann (2021) is based on a randomized
crossover design that maintains the blind, confounding
is not addressed, while LZG adjust for confounding via
regression modeling. In our methodology, confounding is
addressed through a potential outcomes formulation and
IPW. As we do, Follmann et al. (2020) and Fintzi and Foll-
mann (2021) represent 𝑉𝐸(𝜏) using parametric or flexible
spline models; LZG model 𝑉𝐸(𝜏) nonparametrically.
Through condition (ii) in Section 3, (ii)

𝐸{𝜋1(𝑡, 𝜏)|𝑿}∕𝐸{𝜋0(𝑡)|𝑿} = 𝑞(𝜏), the methods embed
the assumption that VE is similar across current and
emerging viral variants. If the analyst is unwilling to adopt
an assumption like condition (ii), then it is not possible
to rule out that the data from the blinded (prior to 𝑃)
and unblinded (starting at 𝑃) phases of the trial reflect
very different variant mixtures. In this case, calendar time

and time since vaccination cannot be disentangled, and
thus, it is not possible to evaluate VE solely as a function
of time since vaccination. However, it may be possible
to evaluate the ratio of infection rates under vaccine at
any time 𝑡 (and thus variant mixture in force at 𝑡) after
different times since vaccination 𝜏1 and 𝜏2, say, during the
unblinded phase of the trial, namely, 𝑢

1
(𝑡, 𝜏1)∕𝑢

1
(𝑡, 𝜏2),

𝑡 ≥ 𝑃. The infection rates can be estimated based on the
infection status data at time 𝑡 from vaccinated individuals
who received vaccine at times 𝑡 − 𝜏1 and 𝑡 − 𝜏2, respec-
tively. These infection rates and their ratio will reflect
information about the waning of the vaccine itself under
the conditions at time 𝑡, and, in fact, this infection rate
ratio can be viewed as the ratio of vaccine efficacies at 𝜏1
and 𝜏2. However, because after 𝐶 information on 𝑢

0 (𝑡)

will no longer be available, it is not possible to deduce VE
itself for 𝑡 ≥ 𝐶 . But if data external to the trial became
available that provide information on VE at 𝑡, even for
small 𝜏, it may be possible to integrate this information
with that from the infection rates to gain insight into VE
as a function of 𝜏.
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web/packages/VEwaning/index.html.
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