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Abstract
Murine polyomavirus (MuPyV) causes tumors of various origins in newborn mice and ham-

sters. Infection is initiated by attachment of the virus to ganglioside receptors at the cell sur-

face. Single amino acid exchanges in the receptor-binding pocket of the major capsid

protein VP1 are known to drastically alter tumorigenicity and spread in closely related

MuPyV strains. The virus represents a rare example of differential receptor recognition

directly influencing viral pathogenicity, although the factors underlying these differences

remain unclear. We performed structural and functional analyses of three MuPyV strains

with strikingly different pathogenicities: the low-tumorigenicity strain RA, the high-pathoge-

nicity strain PTA, and the rapidly growing, lethal laboratory isolate strain LID. Using ganglio-

side deficient mouse embryo fibroblasts, we show that addition of specific gangliosides

restores infectability for all strains, and we uncover a complex relationship between virus

attachment and infection. We identify a new infectious ganglioside receptor that carries an

additional linear [α-2,8]-linked sialic acid. Crystal structures of all three strains complexed

with representative oligosaccharides from the three main pathways of ganglioside biosyn-

thesis provide the molecular basis of receptor recognition. All strains bind to a range of sialy-

lated glycans featuring the central [α-2,3]-linked sialic acid present in the established

receptors GD1a and GT1b, but the presence of additional sialic acids modulates binding.

An extra [α-2,8]-linked sialic acid engages a protein pocket that is conserved among the

three strains, while another, [α-2,6]-linked branching sialic acid lies near the strain-defining

amino acids but can be accommodated by all strains. By comparing electron density of the

oligosaccharides within the binding pockets at various concentrations, we show that the [α-

2,8]-linked sialic acid increases the strength of binding. Moreover, the amino acid
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exchanges have subtle effects on their affinity for the validated receptor GD1a. Our results

indicate that both receptor specificity and affinity influence MuPyV pathogenesis.

Author Summary

Viruses are obligate intracellular pathogens, and all of them share one crucial step in their
life cycle—the attachment to their host cell via cellular receptors, which are usually pro-
teins or carbohydrates. This step is decisive for the selection of target cells and virus entry.
In this study, we investigated murine polyomavirus (MuPyV), which attaches to host gan-
gliosides with its major capsid protein, VP1. We have solved the crystal structures of VP1
in complex with previously known interaction partners as well as with the ganglioside
GT1a, which we have identified as a novel functional receptor for MuPyV. Earlier studies
have shown that different strains with singular amino acid exchanges in the receptor bind-
ing pocket of VP1 display altered pathogenicity and viral spread. Our investigations show
that, while these exchanges do not abolish binding or significantly alter interaction modes
to our investigated carbohydrates, they have subtle effects on glycan affinity. The combina-
tion of receptor specificity, abundance, and affinity reveals a much more intricate regula-
tion of pathogenicity than previously believed. Our results exemplify how delicate changes
to the receptor binding pocket of MuPyV VP1 are able to drastically alter virus behavior.
This system provides a unique example to study how the first step in the life cycle of a
virus can dictate its biological properties.

Introduction
The engagement of one or several host cell receptors is the first step in the infectious cycle of a
virus. A large number of viruses, including many human pathogens, depend on carbohydrate
recognition for initial attachment to the cell surface. Viral tropism and the internalization path-
way are usually determined by the specificity and affinity of the receptor interaction as well as
the glycan distribution on different cell surfaces (reviewed in [1]). Many viruses use glycopro-
teins, glycolipids, or both as receptors for cell entry [2]. Gangliosides are ubiquitous glycolipids
on the outer leaflet of mammalian cell membranes that serve as receptors for a number of
viruses. They are composed of a membrane-embedded ceramide moiety linked to a complex
carbohydrate structure that projects away from the cell. Gangliosides almost always contain α-
5-N-acetyl-neuraminic acid (sialic acid, Neu5Ac) that can be attached to the core of the mole-
cule with [α-2,3], [α-2,6], or [α-2,8] linkages (Fig 1). Gangliosides exist on cell surfaces in com-
plex and poorly understood patterns that are cell type-, age-, and tissue-dependent ([3,4],
reviewed in [5]).

Murine Polyomavirus (MuPyV) is a double-stranded DNA virus that can induce tumors in
newborn animals. It was long known to engage glycan receptors that contain a minimal motif
of sialic acid [α-2,3]-linked to galactose [6,7], and more recently gangliosides GD1a and GT1b
were identified as MuPyV receptors [8]. Viral attachment is mediated by the major capsid pro-
tein, VP1, which forms pentameric capsomers that assemble into the T = 7d icosahedral capsid
of the virus [9,10]. Sialylated oligosaccharide receptors are engaged in a shallow groove on top
of VP1 formed by loop structures on the protein surface [11–13], similar to other polyomavi-
ruses [1].
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MuPyV displays striking differences in pathogenicity and spread among three closely
related prototype strains upon infection of newborn virus-free mice. The laboratory-derived
RA strain [14] shows limited spread and induces few tumors of strictly mesenchymal origin
after a long latency period, while the naturally occurring PTA strain [15,16] has disseminated
infection and causes multiple tumors of epithelial and mesenchymal origin within a short time.

Fig 1. Overview and biosynthetic pathway of the four most prominent ganglioside series. The glycan parts of important members are shown for each
series. The downstream biosynthetic steps are identical for all members of a row, although they may vary in linkage orientation. The six-membered pyranose
rings are numbered counterclockwise, starting from the bottom (C1, except for C2 in Neu5Ac), and the ring oxygen is symbolized with a black dot. Neu5Ac
moieties are rearranged for clarity, and all linkages are mediated by O2 or O8. Most of the gangliosides (e.g. LM1) can be further modified, e.g. by
fucosylation. Linkages involving Neu5Ac are present in the α conformation, all other linkages are in the β conformation. Boxes represent three
distinguishable sialoglycotopes that contain linkages found in GT1a (blue, representative for [α-2,8]), GD1a (green, [α-2,3]), and 3’-6’-iso-LD1 (also referred
to as DSLNT, orange, [α-2,6]). The naming is according to the corresponding gangliosides; if possible, the Svennerholm shorthand is used [64–66] All
biosynthetic routes were verified using the KEGGmetabolic pathway database [67]. A prototype glycan that exemplifies the different positions of Gal and
Neu5Ac moieties is depicted on the lower right. The glycan portions investigated in this study are highlighted by purple boxes.

doi:10.1371/journal.ppat.1005104.g001
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LID [17,18], another laboratory isolate MuPyV strain, spreads most rapidly, causing early
death by damaging host tissues, leading to brain hemorrhages and kidney failure [19]. The dif-
ferences among the three strains have been mapped to amino acid variations at two positions,
91 and 296, within the receptor-binding region of VP1 [20–24]. While RA bears a glycine resi-
due at position 91, this residue is replaced with a glutamate in both PTA and LID. An addi-
tional valine-to-alanine exchange at position 296 is present in LID (Table 1). The pathogenicity
profile of one strain can be introduced into the other strains by mutating these two residues,
confirming that these substitutions are necessary and sufficient to generate a specific pheno-
type [25]. The same substitutions have also been observed for other strains of MuPyV [21,22].
MuPyV found in feral mice has the VP1 sequence of PTA [26], but the virus is controlled by an
intact immune system. As studies of viral spread can be conducted in vivo and virus infectivity
can be tested in vitro using ganglioside deficient mouse cells, MuPyV represents an attractive
and rare model system to define the relationships between receptor binding and viral spread
and tropism.

Crystal structures of the low pathogenicity strain RA have shown how this virus engages 3’-
sialyllactose, a short, linear trisaccharide terminating in [α-2,3]-linked sialic acid, as well as an
oligosaccharide that additionally contains a second, branching [α-2,6]-linked sialic acid
[11,12]. These structures also identified the location of residues 91 and 296 in the carbohy-
drate-binding region, suggesting that they might modulate interactions of VP1 with its recep-
tors in the higher pathogenicity strains PTA and LID. Modelling suggested that a glutamate
side chain at position 91 would lead to electrostatic repulsion of the [α-2,6]-branched sialic
acid, thereby preventing binding of such branched structures by either LID or PTA. Branched
sugars carrying an [α-2,6]-linked sialic acid could thus act as pseudoreceptors that will not
facilitate productive infection but hamper the spread of RA within the host, in contrast to PTA
and LID [8,12]. In line with this hypothesis, gangliosides GD1a and GT1b, which do not con-
tain an [α-2,6]-branched sialic acid, have been identified as entry receptors for the PTA [8,16]
and RA strain [27] of MuPyV. However, the molecular determinants of GD1a or GT1b recep-
tor interactions with PTA and LID are not understood, because all structural information is
limited to date to RAMuPyV.

To define the interactions of the three MuPyV strains with receptors on the cell surface, we
have solved high-resolution structures of RA, PTA, and LID VP1 pentamers in complex with
three ganglioside glycans that represent common motifs found in members of the four most
prominent ganglioside biosynthesis series and that feature [α-2,3]-, [α-2,6]-, and [α-2,8]-linked
sialic acids (for carbohydrate structures, nomenclature, and annotations see Fig 1). We have
also conducted crystallographic soaking experiments at different ligand concentrations to com-
pare the relative affinities of each of the three strains for their interaction partners. We find
that expanding the well-characterized Neu5Ac-[α-2,3]-Gal epitope with a linear [α-2,8]-linked
sialic acid (as found for example in GT1a vs. GD1a) leads to additional interactions between
carbohydrate and VP1 in all three strains. Consequently, we identify ganglioside GT1a as an
infectious receptor for all three strains. Moreover, the branching [α-2,6]-linked sialic acid is

Table 1. Description of the investigated MuPyV strains.

RA Strain PTA Strain LID Strain

Distinctive amino
acids

G91, V296 E91, V296 E91, A296

Pathogenicity No or only singular tumors,
mesenchymal origin.

High tumor density of epithelial and
mesenchymal origin.

Virulent. Damage of host tissues, early death due to
brain hemorrhages and kidney failure.

Latency Long Short Very short

doi:10.1371/journal.ppat.1005104.t001
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close to the strain-defining amino acids, but can be accommodated by all strains, in contrast to
the earlier model. However, the amino acid exchanges defining each strain have subtle effects
on their affinity for the validated receptor GD1a. Our results exemplify the effect of minimal
changes in a binding pocket on the receptor binding properties of a virus.

Results

GT1a, GD1a, and GT1b gangliosides are infectious receptors for MuPyV
Previous efforts to identify receptors for MuPyV used immortalized cell lines, such as Vero or
C6 glioma cells that were supplemented with candidate gangliosides before infection [8,28].
We utilized a mouse embryo knock-out fibroblast cell line (Gang-/- MEFs) specifically defi-
cient in ganglioside synthesis and completely resistant to MuPyV infection (S1A Fig and [29])
to test the ability of ganglioside receptors to rescue infection by different strains of MuPyV.
Gang-/- MEFs were supplemented with individual gangliosides followed by infection with RA,
PTA, and LID MuPyV (Fig 2). Importantly, it should be noted that the three MuPyV strains
we used do not have the same particle to PFU ratio. The viruses have been normalized to simi-
lar MOIs, but they cannot be quantitatively compared to one another. However, each strain
has been normalized to its own infection rate of WTMEFs; therefore, infection rates upon sup-
plementation of gangliosides can be compared within a strain. The previously identified gangli-
oside receptors GD1a and GT1b [8] rescued RA, PTA, and LID infection of Gang-/- MEFs in a
dose-responsive manner. We also analyzed the GT1a ganglioside that had not been previously
investigated as a candidate infectious receptor for MuPyV. We found that GT1a, a member of
the ganglio-series synthesized from GD1a (Fig 1), also rescued RA, PTA, and LID infection in
a dose responsive manner (Fig 2). Moreover, GT1a supplementation of Gang-/- MEFs con-
ferred higher levels of RA, PTA, and LID MuPyV infection than the previously identified
receptors GD1a and GT1b. Finally, we tested the ability of the gangliosides GD1b and GM1 to
rescue MuPyV infection of Gang-/- MEFs. GD1b and GT1b supplementation has previously
been shown to restore BK polyomavirus infection of ganglioside deficient cells [30]; however,
GD1b restored little to no MuPyV infection of Gang-/- MEFs. GM1 supplementation has pre-
viously been shown to restore infection by SV40 [8]; however, GM1 did not rescue MuPyV
infection of Gang-/- MEFs. These data confirm that GT1a is an infectious receptor for all
strains of MuPyV.

Fig 2. GT1a, GT1b, and GD1a supplementation rescues MuPyV infection of Gang-/- MEFs.Ganglioside knock-out (Gang-/-) MEFs were completely
resistant to infection of all strains of MuPyV as shown by the absence of T-antigen positive nuclei at 24 hours post infection (DMSO control). GD1a, GT1b,
and GT1a ganglioside supplementation of Gang-/- MEFs restored RA (A), PTA (B), and LID MuPyV (C) infection, while GD1b and GM1 supplementation
resulted in little to no infection by any virus strain. Infection levels were quantified at both 2 μM and 4 μM ganglioside supplementation (blue and green bars,
respectively). Infection levels are normalized to MuPyV infection of WTMEFs, and error bars correspond to standard error.

doi:10.1371/journal.ppat.1005104.g002
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We also investigated whether MuPyV cell surface binding to infectious or non-infectious
ganglioside receptors correlated with infection. To this end, we measured the levels of free
(unbound) virus in each ganglioside supplemented sample at 4 hours post infection. We did
not detect significant differences in MuPyV cell surface binding to different ganglioside recep-
tors or WTMEFs, indicating that cell surface binding alone does not determine infection (S1B
Fig). Instead, a considerable amount of virus binds to Gang-/- MEFs even in the absence of
ganglioside supplementation (S1A Fig). MuPyV is also endocytosed in Gang-/- MEFs, which
however does not lead to infection [29]. Taken together, these data confirm that gangliosides
are not required for cell surface binding. They are, however, required for infection, and GT1a
appears to be more efficient than GD1a and GT1b.

Structure of MuPyV VP1 bound to GT1a
In order to define the mode of recognition of GT1a, particularly to the naturally occurring
PTA strain of MuPyV, we have soaked VP1 crystals with the glycan portion of GT1a and
solved the structure of the complex (Table 2). While the receptor interaction pocket of RA VP1
has been described [11–13], no structural information for the pathogenicity-defining amino
acids at positions 91 and 296 in the pockets of PTA and LID has been available. PTA and LID
both carry a glutamate at position 91, and this side chain is being held in a characteristic posi-
tion with the carboxyl group facing away from the glycan receptor due to a salt bridge formed
with K186 (Fig 3), as previously predicted [12]. The GT1a glycan is a branched structure with a
long disialylated arm, which has the sequence Neu5Acb-[α-2,8]-Neu5Aca-[α-2,3]-Gala-[β-
1,3]-GalNAc, and a second short arm, which consists of a single Neu5Acd [α-2,3]-linked to
Galb (for carbohydrate structures, nomenclature, and moiety indexing see Fig 1). The disialy-
lated arm of GT1a is clearly visible in the crystal structure of PTA VP1; it is well defined by
electron density and makes extensive contacts with the protein (Fig 4B–4D). Overall, the GT1a
glycan adopts a twisted horseshoe-like shape, with Neu5Aca and Neu5Acb wrapping around
the side chains of Y72 and R77 of VP1. Its longer, disialylated arm contains a Neu5Aca-[α-
2,3]-Gala sequence that is also present in GD1a and simpler compounds such as 3’-sialyllactose
(3SL), and the interactions of this motif with VP1 are essentially identical to those seen in pre-
vious structures [11–13]. However, our structure visualizes an additional network of contacts
made by the terminal [α-2,8]-linked Neu5Acb (Fig 4C and 4D). Its carboxyl group engages Y72
and forms water-mediated hydrogen bonds with Q71, Y72, as well as D85 of the neighboring
monomer (D85�). In addition, the N-acetyl nitrogen of Neu5Acb forms a hydrogen bond with
the backbone carbonyl of T67, and O8 and O9 in the glycerol chain of the sugar are hydrogen-
bonded with the R77 side chain. The carboxyl groups of Neu5Aca and Neu5Acb are about 4 Å
apart, and the positively charged side chain of R77 counteracts their negative charges (Fig 4C
and 4D). Neu5Aca and Neu5Acb contribute binding interfaces of approximately 160 Å2 and
190 Å2, respectively (calculated using the PISA server [31]). The remaining Gala-GalNAc-Galb
stem of GT1a forms fewer contacts with the protein, which include a hydrogen bond between
G78 and the Gala O4 hydroxyl group (Fig 4) as well as several van der Waals interactions.
Notably, the Cβ and Cγ atoms of E91 are within van-der-Waals range of O6 and C6 of Gala,
and the E91 carboxylate group is close to C6 of GalNAc. The total contact surface for this por-
tion of the glycan is 142 Å2.

Because the differences in tumorigenicity and host spread among strains have been mapped
to the glycan binding pocket of VP1, and because GT1a appears to be particularly efficient in
facilitating productive infection, we set out to determine how the three strains engage GT1a. By
solving the crystal structures of RA and LID VP1 complexed with GT1a using the identical
strategy used for the PTA-GT1a complex, we found that the overall binding mode of GT1a is
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very similar across the three strains (Fig 5A), with a conserved binding mode of the [α-2,8]-
linked Neu5Acb. Although the replacement of glutamate with glycine at position 91 leads to a
contact area decrease of 33 Å2 in RA, the orientation of GT1a in this strain is not altered (com-
pare Fig 5B and 5C). Likewise, the substitution of valine with alanine at position 296 in LID
removes a hydrophobic contact but does not affect the conformation of GT1a (Fig 5E; S2 Fig).

The Neu5Aca-Gala-GalNAc linkages in the long arm of GT1a adopt conformations that
have been reported in numerous structures (for example [32–34]). While the [α-2,3] linkage
between Neu5Aca and Gala adopts the conformation that has been reported for DSLNT and
3SL, the branching Neu5Acd-[α-2,3]-Galb linkage adopts a different conformation, which has
been reported for structures containing O-4-substituted galactoses (as in [35,36]). While a
higher variability is observed for Neu5Ac-[α-2,8]-Neu5Ac linkages (S2E Fig), this linkage
adopts torsion angles that are in agreement with other, related structures such as in the

Table 2. Data collection and refinement statistics.

PTA VP1 Native PTA VP1 + GT1a PTA VP1 + GD1a PTA VP1 + DSLNT RA VP1 + GT1a RA VP1 + GD1a

Data Collection

Beamline SLS, X06DA SLS, X06DA SLS, X06DA ESRF, ID 14–1 SLS, X06DA SLS, X06DA

Space Group P3121 P3121 P3121 P3121 P3121 P3121

Cell Dimensions

a = b, c [Å] 219.61, 99.82 219.60, 99.74 220.45, 99.71 219.73, 100.00 219.55, 99.60 219.06, 99.40

α = β, γ [°] 90, 120 90, 120 90, 120 90, 120 90, 120 90, 120

Resolution [Å] 50–1.64 (1.68–
1.64)

50–1.75 (1.79–
1.75)

50–1.93 (1.98–
1.93)

50–1.87 (1.92–
1.87)

50–1.71 (1.75–
1.71)

50–1.90 (1.95–
1.90)

Rmeas [%] 10.5 (68.7) 13.3 (68.3) 11.3 (68.8) 15.2 (69.1) 7.4 (74.1) 11.1 (71.7)

I/σ(I) 10.5 (2.3) 7.08 (1.51) 12.8 (3.0) 7.6 (3.0) 15.71 (2.17) 11.3 (1.9)

Completeness [%] 99.9 (99.9) 97.6 (96.6) 96.0 (98.1) 99.8 (99.8) 99.8 (99.9) 99.0 (99.1)

Redundancy 5.0 (4.8) 3.4 (3.2) 5.4 (5.5) 3.7 (3.7) 4.3 (3.9) 2.9 (2.8)

Wilson B-Factor
[Å2]

23.1 25.3 25.7 23.1 26.0 23.3

Refinement

Resolution [Å] 48.2–1.64 47.6–1.75 47.8–1.93 48.4–1.83 50–1.71 48.1–1.90

No. of Reflections 324,802 261,253 192,327 220,105 285,887 205,733

Rwork / Rfree [%] 15.85 / 17.30 16.0 / 18.13 15.27 / 17.42 15.38 / 17.56 15.27 / 16.98 15.46 / 17.84

No. of Atoms

Protein 11,117 11,088 11,150 10,996 11,323 11,225

Solvent 1,840 1,827 1,884 1,632 2,059 1,971

Carbohydrate - 425 285 202 385 285

B-Factors [Å2]

Protein 19.3 20.7 21.4 20.1 21.1 19.9

Solvent 29.6 30.9 31.5 30.5 32.6 31.1

Carbohydrate - 30.3 35.1 34.2 36.0 38.2

R. m. s. Deviations

Bond Lengths [Å] 0.007 0.007 0.006 0.008 0.007 0.008

Bond Angles [°] 1.16 1.17 1.06 1.20 1.13 1.19

Ramachandran Plot

Favored 1,340 (97.2%) 1,336 (97.0%) 1,335 (96.9%) 1,334 (96.9%) 1,342 (97.0%) 1,340 (97.0%)

Allowed 38 (2.8%) 41 (3.0%) 42 (3.2%) 42 (3.1%) 42 (3.0%) 42 (3.0%)

Disallowed 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

PDB ID 5CPU 5CPW 5CPY 5CPX 5CPZ 5CQ0

doi:10.1371/journal.ppat.1005104.t002
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structure of human liver fructose-1,6-bisphosphatase in complex with an allosteric inhibitor
[37] or in the complex of tetanus toxin with a GT1b analog [38]. The overall structure is in
good agreement with a molecular dynamics simulation using an AMBER force field in an aque-
ous environment [39]. A well-defined set of water molecules mediates bridged hydrogen bonds
between the pyranose moieties, especially between Neu5Acb and Neu5Acd (S3 Fig). Due to
these steric constraints, the GT1a complexes feature well-defined electron density not only for
the binding epitope, but also for the non-binding, branching NeuNAcd in its preferred solution
conformation [40], which brings this moiety to about 5 Å near the end of the long arm and
gives the glycan the characteristic, horseshoe-like topology that is observable in all complex
structures.

Structures of MuPyV VP1 strains bound to other sialylated glycans
As RA, PTA, and LID VP1 all bind GT1a in a highly similar conformation, we hypothesized
that the differences in pathogenicity and spread among the three strains might be due to the
recognition of additional carbohydrates by only a subset of MuPyV strains. As shown in Fig 1,
the many different gangliosides share a relatively small set of common sialoglycotopes. We
therefore investigated the ability of all three VP1 proteins to bind other glycan structures that
are representative for these epitopes. We solved structures of VP1 bound to the glycan portions
of two of these gangliosides: The GD1a glycan is an established infectious receptor and essen-
tially a truncated version of GT1a lacking the [α-2,8]-linked Neu5Acb in the long arm. The
human milk hexasaccharide DSLNT is the glycan portion of the lacto-series ganglioside 3’-6’-
isoLD1 (Fig 1) [41], which is overexpressed in the central nervous system. In contrast to GT1a
and GD1a, DSLNT does not contain an [α-2,3]-linked Neu5Acd as a short arm but instead a

Fig 3. The MuPyV binding pocket. Top view on the receptor-binding region of PTA, which is shown with E91 and V296 highlighted in salmon. Residues that
are known to participate in receptor binding are contributed by the BC and HI loops and are highlighted as stick models. One monomer is shaded in green
and the other monomers are alternatingly shaded light and dark grey for better distinction.

doi:10.1371/journal.ppat.1005104.g003
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Fig 4. Binding of GT1a to PTA. A The PTA binding pocket and the GT1a conformation upon binding are shown from an angle parallel to the fivefold axis. A
scheme of the glycan is shown in the inset, and the sugar rings are filled according to the coloring scheme from Fig 1. B Simulated annealing Fobs-Fcalc omit
map (resolution 1.71 Å, calculated at 3.5 σ, carved 2.3 Å around the glycan).C Possible binding interactions of GT1a and PTA. E91 and V296 are highlighted
in salmon. Hydrogen bonds are shown in black, the hydrophobic contact mediated by V296 in gold, and the van-der-Waals contacts of E91 are shown in
cyan. Waters that mediate key hydrogen bonds are shown as red spheres. Unique interactions mediated by the novel GT1a-like binding motif are shown in
red. D Zoomed view of the binding to the two terminal Neu5Ac moieties. The rest of the glycan is omitted for clarity. Residues except Y72 and R77 as well as
waters involved in contacts with these two glycan moieties are pale grey and salmon, respectively.

doi:10.1371/journal.ppat.1005104.g004
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branching [α-2,6]-linked Neu5Acc. This structure is similar to a very common epitope on O-
linked glycoproteins [42–44]. DSLNT was used in previous studies of MuPyV as a model
“pseudoreceptor” [12] and was investigated here to help rationalize these earlier data, to facili-
tate a comparison among strains, and to establish a binding profile for glycans containing an
[α-2,6]-linked sialic acid.

GD1a. The previously identified MuPyV receptor GD1a is similar to a truncated GT1a
structure, containing only a Neu5Aca-[α-2,3]-Gala motif instead of Neu5Acb-[α-2,8]-
Neu5Aca-[α-2,3]-Gal. The disaccharide engages all three strains in a very similar manner (Fig
6A). Neither the longer E91 side chain (in PTA and LID) nor the shorter A296 side chain (in
LID) result in an altered conformation of the ligand.

DSLNT. The DSLNT glycan terminates in a Neu5Aca-[α-2,3]-Gala motif, which is the
part of the molecule best defined by electron density in all complexes. DSLNT also contains an
additional [α-2,6]-linked, branched Neu5Acc residue, which is not present in either GT1a or
GD1a. There is weak electron density for Neu5Acc in one of the five binding pockets of the RA
strain, but it only engages in few interactions [12]. While PTA and LID do bind DSLNT, the
complex structures do not show any electron density for the Neu5Acc, indicating that this
sugar is conformationally flexible and does not contribute contacts. When bound to the PTA
strain, the stem of DSLNT is moderately rearranged (Fig 6B). In comparison to GalNAc in
GT1a, the GlcNAc moiety is slightly tilted away from E91 due to a ~20° rotation of the psi
angle in the Gala-[β-1,3]-GlcNAc linkage (Fig 6B and 6C, assessed using CARP) that propa-
gates throughout the sugar. In addition, there is no visible electron density for the GlcNAc O6
that is engaged in the [α-2,6]-branching as well as an increased B-Factor variance within the

Fig 5. Bindingmodes of GT1a to the different MuPyV strains. A Superposition of the GT1a-binding mode of RA (GT1a in sky blue), PTA (dark blue), and
LID (pale blue). The Neu5Acb-[α-2,8]-Neu5Aca-[α-2,3]-Gala motif is shown in solid sticks, together with the adjacent GalNAc moiety. All superpositionings
were carried out in PyMOL [61] using ‘align’ for the protein chains only. Surface, E91 and V296 are from PTA/GT1a. All ‘align’ rmsd values are below 0.16 Å.
B & C Close view of the van-der-Waals contacts introduced by the E91 side chain present in PTA and LID (C), but not in RA (B). Hydrogen bonds are shown
in grey, van-der-Waals contacts in cyan.D & E Close view of the hydrophobic contact mediated by V296 in RA and PTA (D), but not by A296 in LID (E). The
4.0 Å hydrophobic contact is not present in the LID strain, whose pocket is opened to the right. Hydrogen bonds are shown in grey, hydrophobic contacts are
shown in gold.

doi:10.1371/journal.ppat.1005104.g005
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Fig 6. Differences in receptor binding patterns across glycans. A Superposition of the binding modes of GD1a to RA (light green), PTA (dark green), and
LID (pale green). The sequence of GD1a is shown in the inset. The Neu5Aca-[α-2,3]-Gala motif is shown in solid sticks, together with the adjacent GalNAc
moiety. In all figures, GT1a bound to PTA is overlaid as a grey ghost for comparison, with Neu5Acb omitted for clarity. Deviations exceeding the atomic error
of the structure and alignment rmsd values are only found in the stem region of the sugar, starting at Galb. All superpositionings were carried out in PyMOL
[61] using ‘align’ for the protein chains only. Surface, E91 and V296 are from PTA/GT1a. All ‘align’ rmsd values are below 0.16 Å. B & C Comparison of the
DSLNT binding modes to RA (red), PTA (orange), and LID (violet). In PTA-DSLNT, [α-2,6]-branching causes a 15–20° psi angle shift of the GlcNAc moiety
compared to GD1a and GT1a, resulting in a 1 Å sideward twist movement of the stem. In RA-DSLNT, combination of this shift with a 15° shift in the phi angle
results in a downward movement of GlcNAc and its branching Neu5Acc compared to PTA-DSLNT. In LID, the shift is already observable for Gala and results
in the loss of ordered density for GlcNAc. All angles were analyzed with CARP. The sequence of DSLNT is shown in the inset of panel C.

doi:10.1371/journal.ppat.1005104.g006
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glycan (S4 Fig). The reason for the sideward twist and the missing electron density for Neu5Acc
observed in PTA is probably the electrostatic repulsion between the carboxyl groups of
Neu5Acc and E91. While the charge of E91 is compensated by K186 (Fig 3), as was hypothe-
sized before [12], the two carboxylate groups would come within about 2 Å of one another if
DSLNT bound to PTA in the same way as observed in RA. This hypothesis is confirmed by a
PTA E91Q mutant that rescued binding of Neu5Acc (S5 Fig). In turn, when bound to RA,
DSLNT exhibits a stronger conformational rearrangement (Fig 6B and 6C). Due to the missing
side chain at position 91, the psi angle rotation between Gala and GlcNAc is accompanied by
an additional 15° rotation of the phi angle, bringing the GlcNAc moiety and the attached
Neu5Acc closer to the protein surface [12]. In LID, the valine to alanine mutation at position
296 reduces its van-der-Waals radius. This change results in a broader binding pocket com-
pared to the other strains and the loss of a hydrophobic interaction between position 296 in
VP1 and C3 of Neu5Aca for all glycans. This gives room for a stark alteration in the binding
mode of DSLNT that starts with a slight tilt of Neu5Aca and propagates through the sugar (Fig
6C), ultimately resulting in a prominent sideward shift of the whole glycan stem. The resulting
increased conformational freedom of DSLNT is reflected by a lack of electron density in its
stem region as well as by an elevated temperature factor variance (S4 Fig). This alteration of the
binding mode in LID is likely to be observed for other glycans that are not conformationally
restrained by the [α-2,3]-linked Neu5Acd.

Relative affinities of MuPyV strains for sialylated glycans
Since all three MuPyV strains are able to engage the three different glycan structures in a
largely identical manner, we reasoned that the differences in pathogenicity and spread might
be attributable to subtle differences in affinity, rather than specificity, among the strains. The
affinities of RA VP1 for 3’-sialyllactose and DSLNT were estimated to be in the low mM range
[11]. Coupled with the high costs of glycans and the high amount required due to their low
binding affinity, weak binding poses technical challenges for classical affinity measurements.
We therefore utilized a crystallographic approach to quantitatively compare ligand binding.
We crystallized all three VP1 pentamers in the same condition, and soaked each with the oligo-
saccharide portions of GT1a, GD1a, and DSLNT at different concentrations in parallel. X-ray
data of all crystals were collected in the same manner, and the data sets were processed using
the same protocol and integrated as described previously [45]. All data sets were processed in
the same unit cell, scaled, and the bias-reduced difference electron density around the central
Neu5Aca-[α-2,3]-Gala motif was quantified for each data set (see the Methods section for
details). Our crystallization condition contains a high amount of ammonium sulfate, which
competes with the carboxyl group of Neu5Aca and has to be displaced by the carbohydrates.
Therefore, our observed binding is weaker than in a physiological setting. However, while not
yielding dissociation constants in the traditional sense, this method enables us to compare rela-
tive levels of binding across our three different strains and three different glycans.

The GT1a glycan exhibits the strongest binding in all three VP1 variants compared with
DSLNT or GD1a (Fig 7A–7C), with no detectable difference between the strains (Fig 7D). This
finding is in accord with our ganglioside add-back experiments in cell culture (Fig 2), which
consistently showed higher levels of infection mediated by GT1a compared to GD1a. The
stronger overall binding of GT1a can be attributed to the additional [α-2,8]-linked sialic acid
present in GT1a (Neu5Acb), which contributes several interactions and an increased buried
surface area. These contacts seem to outweigh the differences in van der Waals contacts with
the side chains of E91 or V296, at least to the extent discernable in our assay.
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GD1a binds less well to all strains compared to GT1a. In addition, there are differences in
binding strength among the three strains. PTA and LID VP1 appear to bind GD1a at the same
level and better compared with RA (Fig 7A–7C and 7E) because these two strains gain addi-
tional interaction surface and van-der-Waals contacts from their E91 side chain. This effect is
more pronounced than in GT1a, because in GD1a it cannot be masked by the additional con-
tacts of the [α-2,8]-linked Neu5Acb.

DSLNT displays the lowest overall affinity to all strains, with levels comparable to GD1a in
RA for all three strains (Fig 7A–7C) despite the DSLNT conformation being slightly different
in each VP1 complex (Fig 7F). Neither the blocking of Neu5Acc binding by E91, nor the
increased conformational freedom in LID appears to alter binding affinity. It is possible that
Neu5Acc in RA adopts a conformation that might not be favorable and therefore not heavily
contribute to affinity, in spite of the added contact surface. Combined with the fact that elec-
tron density for Neu5Acc could only be observed in one binding pocket of RA VP1 [12], we
believe that this conformation is possible but not probable in solution. Instead, an increased
number of conformational options might make up for a loss of binding contacts.

Discussion
Many viruses engage cell-surface glycans to mount an infection, and subtle differences in the
recognition of such receptors can be linked with altered tropism and pathogenicity. Examples
include the canine parvovirus and feline panleukopenia virus [46,47], the human BK polyoma-
virus [48], B-lymphotropic polyomavirus [49,50] as well as avian and human influenzaviruses

Fig 7. Binding of ligands to MuPyV VP1. The average simulated annealing Fobs-Fcalc electron density for the Neu5Aca-[α-2,3]-Gala in GT1a, GD1a, and
DSLNT is plotted against ligand concentration. RA VP1 is colored blue, PTA VP1, is colored red, and LID VP1 is colored green. GT1a is displayed in a dotted
line with triangles, GD1a in a dashed line with circles, and DSLNT in a solid line with squares. The error bars correspond to the standard deviation of the
mean electron density observed in the five chains of VP1.A Electron density of GT1a, GD1a, and DSLNT in RA VP1. B Same as inA, but for PTA VP1.C
Same as inA, but for LID VP1. D Comparison of GT1a-derived electron density in RA VP1, PTA VP1, and LID VP1. E Same as in D, but for GD1a. F Same
as in D, but for DSLNT.

doi:10.1371/journal.ppat.1005104.g007
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[51,52]. However, MuPyV is a rare example of a virus in which drastic differences in pathoge-
nicity directly correlate with single amino acid substitutions in the viral capsid.

In order to provide a structural basis for understanding the profoundly different pathoge-
nicities of the three MuPyV strains RA, PTA and LID, we have solved structures of their VP1
proteins and characterized their receptor-binding properties. We show that the ganglioside
GT1a serves as a MuPyV receptor and promotes infection with higher potency than the previ-
ously identified receptors GD1a and GT1b. Structurally, the increased potency of GT1a can be
directly explained by a set of additional contacts involving the [α-2,8]-linked Neu5Acb that is
only present in this glycan and that gives it a characteristic horseshoe-like shape. It had previ-
ously been suggested that the G91E mutation present in PTA and LID abolishes binding to
branched glycans containing [α-2,6]-linked Neu5Ac and thus allows the virus to spread more
efficiently in the host [8,11]. However, our analyses show that the presence of a glutamate at
position 91 still allows binding of the branched oligosaccharides GT1a, GD1a, or DSLNT to all
three strains, albeit with subtle differences in binding affinity. While all three strains bind
GT1a with comparable affinity, PTA and LID bind GD1a better than RA. The DSLNT glycan
binds similarly to all three strains, with the lowest overall affinity. This is again in line with the
structures, which show that the branched Neu5Acc of DSLNT does not engage in any specific
contacts. The limited contacts between Neu5Acc and RA observed in an earlier structure [12]
have to be considered a crystallization artifact as they were only observed in one out of five
binding sites, and this visible Neu5Acc moiety was located near a crystal contact.

The ligand binding promiscuity of MuPyV is surprisingly high. Binding mostly requires a
ubiquitous minimal Neu5Ac-[α-2,3]-Gal motif, in agreement with earlier findings [6,7]. It
therefore seems plausible that the virus also recognizes other glycans bearing this motif, result-
ing in differences in pathogenicity and spread. Preliminary studies show that glycans with an
N-acetyllactose core (Neu5Ac-[α-2,3]-Gal-[β-1,4]-GlcNAc), as found in neolacto gangliosides
such as the predominant ganglioside of peripheral nerve cells, LM1 [53,54], can also be bound
in a manner similar to DSLNT and with higher flexibility than GT1a or GD1a (S6 Fig).

Based on our structures, certain requirements that contribute to receptor specificity can be
established. For example, branches at Gal-O4 within the minimal motif produce clashes and
cannot be tolerated. Therefore, although the GD1a glycan possesses two Neu5Ac-[α-2,3]-Gal
motifs, it prefers the one on its longer arm for complex formation. For the same reason, glycans
such as GM1 or GM2 that only possess such a branched Neu5Ac-[α-2,3]-Gal epitope cannot
engage MuPyV productively. In support of this, the GM1 ganglioside is not able to rescue
MuPyV infection of Gang-/- MEFs (Fig 2, [29]), although low-level and probably non-specific
interactions with cells can be detected (S1B Fig). GT1b possesses a disialylated arm at Galb and
is monosialylated at Gala. We predict that GT1b engages VP1 with its monosialylated arm. The
second, disialylated arm is likely to be accommodated in such a binding mode, and the [α-2,8]-
linked sialic acid might contribute additional contacts. Binding via the monosialylated arm is
in line with our findings that supplementation of Gang-/- cells with GT1b rescues infection at a
level between GD1a and GT1a. Some gangliosides whose glycan epitopes are capable of engag-
ing VP1 in vitromight not be infectious receptors in vivo, mainly because of steric complica-
tions in the context of the cell membrane. For example, while the crystal structure of PTA with
the glycan portion of GD3 shows an identical binding mechanism to GT1a (S7 Fig), supple-
mentation of Gang-/- MEFs with GD3 does not restore infectivity [29]. We reason that the gly-
can stem of GD3 (and of gangliosides with a similar length such as GM3) is too short to allow
efficient attachment of the MuPyV capsid to the cell membrane.

The discrepancy in pathogenicity in MuPyV strains that differ only at one single position is
stark. In sharp contrast, the differences among receptor binding between the three strains
investigated here are subtle, and a correlation of the structural data with the observed

Novel Glycan Receptors for Three Murine Polyomavirus Strains

PLOS Pathogens | DOI:10.1371/journal.ppat.1005104 October 16, 2015 14 / 22



pathogenicity profiles remains challenging. One reason for this is that avidity effects in the
virus capsid, which can engage many ligands simultaneously, multiply subtle changes in the
affinity of capsomers for single glycans. It was shown for influenza viruses that small changes
between millimolar binding affinities of single binding sites can result in dramatically altered
viral binding properties [52]. As discussed above, we found the main difference between RA
and PTA/LID to be a differing affinity for GD1a, which appears to bind better to the latter
strains due to the larger E91 side chain. This might facilitate attachment and productive infec-
tion by these strains to cells that display GD1a, and may thus give them an advantage over RA.
While we could not show differences between the PTA and LID strain in terms of glycan affin-
ity to isolated VP1 pentamers, it is unclear how this translates to avidity effects. As such, it is
possible that capsid avidities differ enough to explain the more limited spread of PTA.
Although direct correlations cannot be made, it becomes increasingly clear that the virus needs
to uphold a delicate equilibrium between efficient infection and release from infected and lysed
cells as well as selective affinity for productive receptors. The absence of the RA and LID strains
outside the laboratory [26] emphasizes that this equilibrium is affected by minute changes in
the receptor binding properties.

The MuPyV receptor pocket can clearly accommodate several related but distinct glycan
structures (Figs 1 and 4–6). These structures also decorate glycoproteins on many cell surfaces.
It therefore seems likely that MuPyV can also engage glycans that are not attached to ganglio-
sides. For instance, the glycan stem of GD1α, which is very similar to DSLNT and prominent
on glycoproteins [42–44], is a likely receptor candidate. The different cell-surface distribution
patterns of glycoproteins and gangliosides may likewise influence MuPyV spread [8]. Glyco-
protein receptors with unknown identity have in fact been shown to promote non-productive
internalization of MuPyV, which in turn elicits innate immune responses by the host [29].
Along these lines, our results suggest that virus particles adhere to and enter ganglioside defi-
cient MEFs to levels that are not significantly lower than for wild-type and ganglioside supple-
mented Gang-/- cells, although without detectable infection. Although not representative for
other cell types, these results suggest that the amount of non-productive “pseudoreceptors” on
the MEF cell surface is much higher than anticipated.

Our data demonstrate that varying affinities for different gangliosides are the key determi-
nants of a successful MuPyV infection, in line with earlier reports [6–8]. Perhaps unexpectedly,
we also find that (even non-specific) attachment of the virus to a host cell can lead to successful
internalization, but that this does not necessarily lead to an infection. Thus, we propose that the
ratio between productive (ganglioside bound) and non-productive (ganglioside and glycoprotein
bound) glycotopes on the host cell itself or in its microenvironment helps to determine the pro-
ductivity of infection through diverging entry routes, and that differential affinities to these recep-
tors dictate this equilibrium. The nature of these diverging routes, their underlying driving forces,
and potential biological consequences other than immune stimulation [29] remain unknown–as
does the point at which they diverge. We cannot exclude the possibility that the distribution and
binding properties of (pseudo-)receptors are of importance mostly for the post-entry stage rather
than for events taking place at the cell surface. A better understanding of the distribution patterns
and densities of glycans on specific cells is clearly needed to fully appreciate the many aspects of
pathogenesis and tropism of MuPyV as well as many other glycan-binding viruses.

Methods

Ganglioside supplementation and quantification of MuPyV infection
WT and Gang-/- MEFs were seeded onto 96-well Costar 3906 imaging plates in Dulbecco's
Modified Eagle's Medium supplemented with 10% fetal bovine serum (FBS). WT (B4+/+St8
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+/+) and Gang-/- MEFs (B4-/-St8-/-) were provided by Thomas Benjamin at Harvard Medical
School. Gangliosides were purchased fromMatreya LLC and resuspended in DMSO upon
arrival, aliquoted, and stored at -20°C until use. Cells were incubated overnight in serum free
media prior to infection. For ganglioside supplemented Gang-/- MEFs, cells were starved in
serum free media containing the indicated concentration of ganglioside. Gangliosides were
then removed, and cells were washed with serum free media to remove any free ganglioside.
Cells were then infected with NG59RA, PTA, and LID MuPyV (MOI ~10–30). At 24 hours
post infection cells were washed in phosphate buffered saline and fixed with 4% paraformalde-
hyde at room temperature for 10 minutes. Cells were then permeabilized with 0.1% Triton X-
100, blocked in 10% FBS in PBS, and then stained for the viral protein, T-antigen (E1). Samples
were then incubated with Alexa Fluor labeled secondary antibodies (546). Plates were imaged
with the Molecular Devices ImageXpress Micro XL High-Content Screener. The percent
infected was calculated for each well (5 images were taken per well). Three wells were quanti-
fied per sample and the average percent infected, standard error, and standard deviation were
calculated for each sample. To quantify infection, T-antigen staining was measured per each
DAPI labeled nucleus. For image analysis, the DAPI channel on each image was thresholded,
and nuclei were counted using ImageJ (Analyze Particles). These particles were marked as
“Regions of Interest” (ROI), and then the average pixel intensity of T-antigen staining was
measured for each nucleus (ROI). These were then binned into T-antigen positive or T-antigen
negative nuclei to create % infected.

VP1 immunofluorescence staining
WT and Gang-/- MEFs were seeded onto glass coverslips in Dulbecco's Modified Eagle's
Medium supplemented with 10% (FBS). Cells were incubated overnight in serum free media
prior to infection. For ganglioside supplementation, Gang-/- MEFs were starved in serum free
media containing the indicated concentration of ganglioside. Gangliosides were then removed
and cells were washed with serum free media to remove any free ganglioside. Cells were then
infected with NG59RA. At indicated times post infection the cells were fixed with 4% parafor-
maldehyde at room temperature. Cells were blocked in 10% FBS in PBS and then stained for
GD1a using mAb MAB5606 (Millipore). Cells were then permeabilized with 0.1% Triton X-
100 and stained for the viral proteins, VP1 (I58 antibody) and T-antigen (E1 antibody). Sam-
ples were washed and then incubated with Alexa Fluor labeled secondary antibodies (488, 546,
647). Slides were then mounted using DAPI prolong gold mounting media. Slides were imaged
with a Nikon A1R confocal microscope. All images were taken as a 9 to 13 step (.25μm) z-
stacks on a laser scanning confocal microscope. Each z-stack was aligned and compressed into
a max intensity Z projection image.

Virus binding to ganglioside supplemented Gang-/- MEFs
WT and Gang-/- MEFs were seeded onto a 24 well dish in Dulbecco's Modified Eagle's
Medium supplemented with 10% (FBS). Cells were incubated overnight in serum free media
prior to infection. For ganglioside supplemented Gang-/- MEFs, cells were starved in serum
free media containing the indicated concentration of ganglioside. Gangliosides were then
removed and cells were washed with serum free media to remove any free ganglioside. Cells
were then infected with either NG59RA, PTA, or LID at an MOI ~10–30 (250 μL/well). At 4
hours post infection 150 μL of virus supernatant was removed and placed into a microcentri-
fuge tube. This virus supernatant was then used to infect WTMEFs seeded onto a 96-well plate
(50 μL/well). The amount of free virus was then quantified as percent of infection of the
96-well reinfection plate. At 24 hours post virus addition the plate was washed in PBS and
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fixed with 4% PFA at RT for 10 minutes. Cells were then permeabilized with 0.1% Triton X-
100, blocked in 10% FBS in PBS, and then stained for the viral protein, T-antigen (E1). Samples
were then incubated with Alexa Fluor labeled secondary antibodies (546). Plates were imaged
with the Molecular Devices ImageXpress Micro XL High-Content Screener. The percent
infected was calculated for each well (5 images were taken per well) as indicated by T-antigen
positive nuclei. Three wells were quantified per sample and the average percent infected, stan-
dard error, and standard deviation were calculated for each sample. For image analysis, the
DAPI channel on each image was thresholded and nuclei were counted using ImageJ (Analyze
Particles). These particles were marked as “Regions of Interest” (ROI) and then the average
pixel intensity of T-antigen staining was measured for each nucleus (ROI). These were then
binned into T-antigen positive or T-antigen negative nuclei to create % infected.

Expression and purification of VP1 pentamers
DNA encoding residues 33–316 of RA (GenBank # M34958.1) or PTA VP1 (GenBank #
PSU27812) was cloned into the expression vector pET15b (Novagen) in frame with an N-ter-
minal hexahistidine tag (His-tag) and a thrombin cleavage site. DNA for LID VP1 (GenBank #
PSU27813) was generated by site-directed mutagenesis of PTA VP1 residue 296. VP1 penta-
mers were overexpressed in E. coli (BL21) after IPTG induction, and purified by nickel affinity
chromatography. The His-tag was removed by thrombin cleavage on column for 72 hours
(leaving the non-native residues GSHM at the N-terminus), followed by size exclusion chroma-
tography on a Superdex-200 column.

Crystallization and crystal soaking
Pure VP1 pentamers were supplemented with 20 mMDTT, concentrated to 7.5–8 mg/mL (RA
VP1) or 8.5–9 mg/mL (PTA and LID VP1), and crystallized by sitting-drop vapor diffusion.
RA VP1 was crystallized at 20°C against reservoir solutions containing a range of 1.25–1.8 M
ammonium sulfate and 1–10% (v/v) isopropanol. PTA and LID were crystallized at 4°C against
reservoir solutions containing 0.1 M HEPES pH 7–8.5 and 1.6–1.8 M K-Na phosphate. For
complex formation, the crystals were soaked in the reservoir solution supplemented with the
glycan. The detailed crystallization and soaking procedures are listed in S1 Table. The GT1a
and GD1a glycans were purchased from Elicityl SA (France), and the DSLNT glycan was pur-
chased from Carbosynth (United Kingdom).

For concentration-dependent soaking VP1 pentamers of all three strains were crystallized at
20°C against a mother liquor containing 1.5 M ammonium sulfate and 6% (v/v) isopropanol.
These crystals were soaked in drops of mother liquor containing the appropriate concentration
of glycan for 30 minutes.

All crystals were cryoprotected by incubation in mother liquor supplemented with the
appropriate concentration of glycan and 25% (v/v) glycerol. They were then flash-frozen in liq-
uid nitrogen.

Structure determination and electron density quantification
Data reduction was carried out in XDS [55], and the structure of native RA VP1 was solved in
Molrep [56] using a model generated from the previously solved structure of P16 VP1 (PDB
code 1VPN [12]). Other structures were solved by molecular replacement using the RA VP1
structure in Phenix [57]. All structures were completed by alternating rounds of manual model
building in Coot [58], followed by restrained coordinate and isomorphous B-factor refinement
including TLS refinement and five-fold non-crystallographic symmetry restraints in Refmac5
[59]. TLS parameters were obtained from the TLSMD server [60]. All models agree well with
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the experimental data and have good geometry (Table 2). The PDB accession codes for the
structures are listed in Table 2. Structural figures were prepared in PyMOL [61].

Data collected for concentration-dependent soaking experiments was processed as
described above. The unit cell parameters for all datasets were treated as equal for all datasets
and isomorphous to the dataset “RA Nat” (S2 Table). They were scaled against “RA Nat” in
Scaleit [62] and then subjected to B-factor refinement and simulated annealing in Phenix
against models of RA, PTA, or LID VP1, which lacked atoms of all solvent molecules in the
receptor binding pocket as well as those of tryptophan residues 98 and 227 as controls. The
resulting bias-reduced Fobs-Fcalc electron density for Neu5Aca-[α-2,3]-Gala and the two marker
tryptophans was calculated as a summation of values of the grid points in a mask generated
1 Å around these groups using the programMapman [63]. The overall binding of a sugar at
different concentrations influences the electron density of the Neu5Aca-[α-2,3]-Gala portion,
which is included in GT1a, GD1a, and DSLNT. In contrast, it has no effect on the electron den-
sity of the marker tryptophan residues, which do not differ significantly for all data points. For
each data point, the average density of the five chains was plotted against ligand concentration
and submitted to a non-linear least squares fit using the equation

Y ¼ X
ðKD þ XÞ � ðBmax � B0Þ þ B0 ð1Þ

where Bmax was the highest observed electron density value overall (constrained to 95.03 AU)
and B0 the electron density in the binding pocket at 0 mM ligand concentration. Plotting and
fitting was done using the program Prism 6 (GraphPad Software, Inc., La Jolla, California,
USA).

Supporting Information
S1 Fig. Gangliosides are required for MuPyV infection, but not for cell surface binding. (A)
WT, Gang-/- MEFs, and Gang-/- MEFs supplemented with GD1a were infected with NG59RA
MuPyV. The MuPyV ganglioside receptor GD1a can be detected on the WTMEFs and GD1a-
supplemented Gang-/- MEFs (green), but is absent in Gang-/- MEFs. Virus binds WT, Gang-/-
, and GD1a-supplemented Gang-/- MEFs as shown by VP1 staining (red) on the cell surface at
1 hour post infection. At 24 hours post infection, WT and GD1a-supplemented Gang-/- MEFs
show robust infection as indicated by nuclear T-antigen staining (magenta). Despite high levels
of virus binding, Gang-/- MEFs are completely resistant to infection as shown by lack of T-
antigen staining at 24 hours post infection. (B) Gang-/- MEFs were supplemented with 2μM
GD1a, GT1b, GT1a, GD1b, and GM1 followed by infection with RA, PTA, and LID MuPyV.
At 4 hours post infection, virus supernatant was removed and the amount of free virus was
quantified for each sample by re-infection of WTMEFs. Virus bound to all cells at similar lev-
els, and there were no significant differences in virus binding to infectious versus non-infec-
tious ganglioside receptors. Error bars are standard error, and virus binding to WTMEFs is
normalized to one.
(TIF)

S2 Fig. CARP Plots of GT1a bound to the PTA VP1 pentamer. The observed phi and psi tor-
sion angles for the linkages occurring in the PTA-GT1a complex have been plotted and com-
pared to other linkages found in the PDB using CARP with the crystallographic definition of
torsion angles. The observed linkages are: Neu5Ac-[α-2,3]-Gal (A,B), Gal-[β-1,3]-GalNAc (C),
GalNAc-[β-1,4]-Gal (D), and Neu5Ac-[α-2,8]-Neu5Ac (E). The inlay on the lower right shows
the schematic and observed structure of GT1a. The linkages are named according to the panels;
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the coloring of the glycan rings was adopted from Fig 1.
(TIF)

S3 Fig. Ordered water molecules between the two branches of GT1a. Possible hydrogen
bonds between the glycan and ordered water molecules are depicted in grey. In GD1a, the glyc-
erol-like tail of Neu5Aca could principally also stabilize the glycan, but preferentially adopts a
conformation that does not participate in intramolecular contacts.
(TIF)

S4 Fig. B-factor variance across different strains and glycans. The glycans are colored by B
factor on an absolute scale between 0 (dark blue) and 80 (deep red). GT1a/PTA is shown as a
grey ghost for comparison. For GD1a and DSLNT, the intramolecular B-factor variance when
bound to LID is considerably higher, while values for GT1a are comparable to the other
strains.
(TIF)

S5 Fig. Mutation to a glutamine at position 91 of PTA VP1 restores the DSLNT binding
mode of RA VP1. Shown are the superimposed DSLNT complex structures of RA (PDB-ID
1VPS [12], transparent red) and PTA E91Q (yellow, r.m.s.d. value for the superposition in
PyMOL: 0.159 Å). An Fobs-Fcalc omit map (2σ, carved 1.6 Å around the ligand) is shown for
the PTA E91Q complex. On the lower right, DSLNT is represented schematically. As for RA
VP1, visible electron density for Neu5Acc in PTA E91Q can be seen in one of the five chains.
(TIF)

S6 Fig. The reduced van-der-Waals radius at position 296 in LID allows for a more versatile
glycan binding. The van-der-Waals radius of 3.5 Å is indicated as dotted sphere for V296
(PTA, yellow) and A296 (LID, blue). The mutation opens the pocket to one side and allows for
a more flexible binding mode of glycans without internal stabilization (DSLNT and 3’-N-Ace-
tyl-sialyllactosamine (3’-SLN), the prototype glycan of the LM1 ganglioside). O4 of Gala is
pointing directly towards the surface in all complexes. In this binding mode, no branching at
this point (as is the case e.g. for GD1b) can be tolerated. Glycans that adopt a binding mode
similar to the rigid GT1a are colored in green tones, glycans that exhibit shifts of their moieties
are colored in shades of red. GT1a bound to PTA is shown as a grey ghost for comparison.
(TIF)

S7 Fig. GD3 binding to VP1. The complex structures of PTA VP1 with GT1a (dark blue) and
GD3 (light pink) are superimposed in PyMOL. On the upper right, the structure of GD3 is rep-
resented schematically.
(TIF)

S1 Table. Crystallization and soaking conditions.
(DOCX)

S2 Table. Data set statistics for concentration-dependent soaking experiments.
(DOCX)
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