
Copyedited by: MANUSCRIPT CATEGORY: ECCB

[16:04 7/8/2012 Bioinformatics-bts371.tex] Page: i633 i633–i639

BIOINFORMATICS Vol. 28 ECCB 2012, pages i633–i639
doi:10.1093/bioinformatics/bts371

Finding differentially expressed regions of arbitrary length in
quantitative genomic data based on marked point process model
Hiroshi Hatsuda∗
Department of Statistics, the University of Warwick, Coventry CV4 7AL, UK

ABSTRACT

Motivation: High-throughput nucleotide sequencing technologies
provide large amounts of quantitative genomic data at nucleotide
resolution, which are important for the present and future biomedical
researches; for example differential analysis of base-level RNA
expression data will improve our understanding of transcriptome,
including both coding and non-coding genes. However, most studies
of these data have relied on existing genome annotations and thus
are limited to the analysis of known transcripts.
Results: In this article, we propose a novel method based on a
marked point process model to find differentially expressed genomic
regions of arbitrary length without using genome annotations. The
presented method conducts a statistical test for differential analysis
in regions of various lengths at each nucleotide and searches
the optimal configuration of the regions by using a Monte Carlo
simulation. We applied the proposed method to both synthetic and
real genomic data, and their results demonstrate the effectiveness of
our method.
Availability: The program used in this study is available at
https://sites.google.com/site/hiroshihatsuda/.
Contact: H.Hatsuda@warwick.ac.uk

1 INTRODUCTION
Next-generation nucleotide sequencing technologies, such as
Illumina, ABI SOLiD and 454 sequencing technologies, have
been revolutionizing biology and medicine by providing massive
amounts of quantitative genomic data at nucleotide resolution
in a relatively short time and at a relatively low cost. This
revolution has been making progress on, for instance, transcriptome
including RNA expression (RNA-Seq) (Nagalakshmi et al., 2008)
and RNA expression in transcription start sites (TSS) (5′-SAGE and
CAGE) (FANTOM Consortium, 2009; Taft et al., 2009, protein–
DNA binding (ChIP-Seq) (Robertson et al., 2007)) epigenomics
including DNA methylation (Lister et al., 2009) and nucleosome
organization (Mavrich et al., 2008). These vast amounts of
quantitative genomic data have led to qualitative progress in our
biomedical understanding.

Because we now have large amounts of genome-wide expression
data at nucleotide resolution, there is an increasing interest in
differential analysis, which is a process to compare the expressions
between different biological conditions, of the quantitative genomic
data; however, most previous studies of the differential analysis
have depended on existing genome annotations and were conducted
by each gene (Anders and Huber, 2010; Robinson and Smyth,

∗
To whom correspondence should be addressed.

2007; Wang et al., 2010). The differential expression analysis by
smaller regions is important for a research on transcript isoforms
(Pan et al., 2004, 2008; Sultan et al., 2008) which are significant
for understanding the regulation of gene transcription. Thus, it is
important to develop a reliable method for differential analysis of
base-level quantitative genomic data in order to proceed with the
research on the regulation of gene transcription.

Therefore, in this article, we propose a novel method to
find differentially expressed regions of arbitrary length in the
quantitative genomic data. The presented method searches the
optimal configuration of non-overlapped genomic regions with
differential expression between distinct biological conditions. For
this purpose, we use a point process (Baddeley et al., 2006) which
is a statistical theory of point patterns and can model and analyze
spatial data of points in many fields, including ecology (Law et al.,
2009), epidemiology (Diggle, 1993), seismology (Ogata, 1999) and
computer vision (Stoica et al., 2004).

In this study, we use one-dimensional marked point process which
is an extension of a point process and has marks in each point of
a point process, to model the genomic data. In our methodology,
each point corresponds to each nucleotide, and the points have
attributes, which are called marks, representing the genomic regions
of various lengths. Figure 1 illustrates the gist of the proposed
method. Figure 1a and b shows virtual expression data in a certain
gene in two biological conditions. Short red line segments in Figure
1c and d denote particular regions corresponding to a specific
nucleotide; there are many candidates of the regions and some
of them overlap one another in Figure 1c. The proposed method
removes overlapped regions and regions that are not differentially
expressed; it thus finds the optimal configuration of non-overlapped
regions with differential expression, as shown in Figure 1d. Note
that it can detect the differentially expressed regions that are shorter
in length than this gene which has almost the same expression level
as a whole in the two conditions.

To search a good configuration of the regions, we define a
Gibbs energy function consisting of two terms: data energy and
prior energy. The data energy is based on a statistical test for
differential expression analysis and the prior energy incorporates
penalty for overlapping regions. The Gibbs energy is minimized by
using the Reversible jump Markov chain Monte Carlo (RJMCMC)
(Green, 1995) or the birth-and-death dynamics (Descombes et al.,
2009) coupled with the traditional simulated annealing (Metropolis
et al., 1953) to find the optimal configuration of the marked
points. We use the birth-and-death dynamics in this study because
the computational cost is much more effective in the birth-and-
death dynamics than RJMCMC, and we also present a multiple
birth-and-death dynamics to deal with the regions of various lengths.

Moreover, we apply a novel smoothing method (Hatsuda, 2012)
based on the second-generation wavelets (Sweldens, 1997) to find
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Fig. 1. Schematic view of the proposed method. (a) and (b) Virtual
expression data in a certain gene in two biological conditions. (c) Horizontal
red line segments denote candidates of differentially expressed regions. The
left edge of the segments corresponds to a nucleotide. (d) The proposed
method finds differentially expressed non-overlapped regions from the
candidates

candidates of the boundaries of the genomic regions prior to
conducting the proposed method for finding differentially expressed
regions. Although this process is not necessary in principle, it is
useful to reduce the number of the candidates of the regions in
advance in order to lower computational cost. The second-generation
wavelet-based smoothing method is more effective than the classical
wavelet-based smoothing methods because it can smooth data and
yet preserve sharp edges which can be regarded as the boundaries
of the regions.

In addition, the presented method is versatile because it can be
used to detect any kind of regions of interest by incorporating
suitable data energy and analyze every type of nucleotide-level
quantitative genomic data, such as DNA methylation (Lister et al.,
2009) and nucleosome organization (Mavrich et al., 2008) data.

2 RELATED WORK
Although there is no previous method for directly finding
differentially expressed regions of arbitrary length, genome
segmentation techniques can be used to conduct the differential
analysis without genome annotations. Genome segmentation is
usually performed by using ad hoc approaches such as a simple
clustering based on sliding windows (Carninci et al., 2006; Valen
et al., 2008); however, there are some genome segmentation
techniques based on more sophisticated methods, such as hidden
Markov models (HMMs) (Day et al., 2007), RJMCMC (Salmenkivi
et al., 2002) and the graph construction of data intensity (Hower
et al., 2011).

Once we obtain segments that are shorter than a gene in
length by genome segmentation, we can perform a statistical test
for differential analysis in each segment. We thus can extract
differentially expressed regions without depending on genome
annotations. However, this approach has a serious limitation;
genome segmentation does not divide genome based on the
difference of expression between distinct biological conditions and
thus involves the risk of failing to detect differentially expressed
regions of arbitrary length. In contrast, the proposed method is

more effective than the previous techniques because it searches them
based on the difference of the expressions.

In addition, this is the first study of a practical application of
marked point process to the comprehensive analysis of genomic
data. There are some theoretical studies of marked point process in
biomedical research (Chan and Zhang, 2007; Leung et al., 2005).
There is also an applied study of marked point process for modeling
the occurrence of regulatory elements (Carstensen et al., 2010);
however, this is a limited application for the analysis of specific
regions of genome. This point of view also indicates the significance
of this study in biology and medicine.

3 METHODS

3.1 Point process
First, we consider a point process X in a bounded set K =[0,Xmax], which
supports a set of genomic data whose size is Xmax. The set of configurations
of points of K is defined on a probability space (�,A,P):

∀ω∈�,X (ω)={x1,··· ,xn},xi ∈K, (1)

where n denotes the number of points related to the event ω. This
mapping defines a point process whose random variables realize random
configurations of points.

3.2 Marked point process
To model quantitative genomic data, we consider a marked point process. A
point process is extended by adding an attribute, such as a parameter of a
genomic region, to the points of a point process X . A marked point process
X ′ =X ×M is a point process in X , where each point has a mark from a
bounded set M such as the length of the regions. Because the regions are
not of the same length, we use a multiple marked point process in which the
mark space M is associated with a set of marks, such as a set of the lengths
of the regions M = [γmin,γmax], where γmin and γmax are the minimum and
maximum lengths of the regions, respectively.

3.3 Gibbs energy
To model measurements consistent with data and interactions between
marked points realized from the marked point process, we define a Gibbs
density h(x) of a configuration x of the marked points X ′:

h(x)= 1

Z
exp

(−U (x)
)
, (2)

where Z is a normalizing constant Z =∫ exp
(−U (x)

)
dx and a Gibbs energy

U (x) defined by
U (x)=Ud (x)+wUp(x). (3)

In Equation (3), the data energy Ud (x) considers how the marked points, the
regions at each nucleotide in this study, fit to the genomic data, the prior
energy Up(x) considers the interaction of the regions, and w is a weighting
factor between the two energy terms. The weighting factor w regulates the
balance of the effects of the data and prior energy terms. If we emphasize the
constraints on the structure of the regions based on our prior knowledge, we
can limit the detection of differentially expressed regions that do not meet
the conditions by setting w to a large value. In contrast, if we ignore the
constraints and attempt to extract as many differentially expressed regions
as possible based only on the data intensity, we can detect a lot of regions
by setting w to a small value. The density h(x) will be maximized on the
optimum configuration x̂. In other words, the optimum configuration can be
determined by minimizing the Gibbs energy:

x̂=argmin
x∈X ′ U (x). (4)

This energy minimization is feasible because the density h(x) does not need to
be normalized, and the normalizing constant Z does not need to be computed.
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3.4 Data energy
To define the data energy Ud (x) to fit the marked points to the genomic
data, we need to perform differential expression analysis of the regions
corresponding to each nucleotide. Gene expression is often regarded as a
random sampling process, and thus transcription level can be modeled by a
sample from a specific probability distribution independently and uniformly
in each nucleotide. Anders and Huber (2010) proposed that gene expression
level in each gene can be modeled by a negative binomial distribution. The
number of reads from an individual region can also be modeled by a binomial
distribution and approximated by a Poisson distribution (Wang et al., 2010).
We use this model to conduct a statistical test for differential expression
analysis in each region.

Suppose that we have C1 and C2 expressions, or read counts from a
next-generation nucleotide sequencer, in a specific region for two biological
conditions 1 and 2, respectively, with Ci ∼binomial(ni,pi), i=1,2, where
ni denotes the total count of the reads and pi represents the probability of
a read derived from that region. We then define M = log2 C1 −log2 C2 and

A= log2 C1+log2 C2
2 , and the conditional distribution of M given by A=a is

approximated by a normal distribution because we assume that C1 and C2 are
independent based on the random sampling model. We obtain the estimates
of the expectation and variance of the conditional distribution:

Ê [M |A=a]= log2 n1 −log2 n2 (5)

and

V̂ [M |A=a]=
4

(
1−

√
22a/

n1n2

)(
log2 e

)2
(
n1 +n2

)√22a/
n1n2

. (6)

Therefore, we can calculate the z-score for a region r with M =m and A=a
for a hypothesis testing H0 :p1 =p2 and H1 :p1 �=p2, which is given by

z-score=
∣∣∣m−Ê [M |A=a]

∣∣∣√
V̂ [M |A=a]

. (7)

We can then convert this score to a two-sided P-value and determine whether
the region r is differentially expressed or not.

We compute the data energy by converting the z-score to a value Ud (xi)
at nucleotide i according to

Ud (x)=∑
i

Ud (xi)=

∑
i

⎧⎪⎨⎪⎩
1 if dz(xi)�zmin

zmax−dz (xi )
zmax−zmin

−1 if zmin <dz(xi)<zmax

−1 if zmax �dz(xi)

, (8)

where dz(xi)=z−score(region(xi))−wn ×z−score(neigbor(xi)) and zmin

and zmax are, respectively, parameters for the minimum and maximum
thresholds of z-score. In other words, we regard the regions whose z-score
is more than zmin as differentially expressed regions and make no distinction
between the regions whose z-score is zmax and the regions whose z-score is
more than zmax. We compute the z-scores for each region and its neighboring
region which is defined as adjacent k-mer regions on both sides, and use the
weighting difference of the two z-scores to compute the data energy. This
data energy Ud (xi) provides 1 to the regions whose z-score is lower than
zmin and negative values ∈ [−1,0] to the regions whose z-score is higher
than zmin.

3.5 Prior energy
To define the prior energy, we consider a penalty for overlapping and
neighboring regions. We restrict neighboring regions to prevent from
providing too many small regions. This prior energy is given by

Up(x)=
∑

i

max
xj∈N (xi )

⎧⎨⎩
1 if Lij �γ

1− Lij−γ

k if γ <Lij <γ +k
0 if γ +k �Lij

, (9)

where N (xi) denotes a set of neighboring regions of a region, or a marked
point, xi , and Lij is the distance between regions xi and xj , γ is the length
of the region xi and k is a parameter for the criterion of neighborhood. We
do not penalize neighboring regions whose distance is more than k. The
computation of the prior energy takes account of all interactions between
neighboring regions and selects the maximum overlap for this energy for
each region. The prior energy Up(xi)∈[0,1] provides larger values to a region
with overlapping or neighboring regions and smaller values to a region with
no overlapping or neighboring regions. This energy approximates geometric
constraint of the structure of the marked points in the configuration.

3.6 Energy minimization
To achieve the optimum configuration of the marked points, we need to
minimize the Gibbs energy U (x). For this purpose, we simulate the marked
point processes by using the birth-and-death dynamics, which simulates a
Markov chain with only the birth transition adding a point to the configuration
and the death transition removing a point from the configuration and holds
the detailed balance condition in the continuous space (Descombes et al.,
2009).

Moreover, to deal with various lengths of the regions, we extend the
birth-and-death dynamics and present a multiple birth-and-death dynamics.
We define non-uniform birth rates of multiple marks based on the data energy
for each marked point; we define death rates based on both the data energy
and the current configuration of the marked points. The discretization scheme
of the multiple birth-and-death dynamics is presented in Algorithm 1.

In addition, we use Mersenne twister (Matsumoto and Nishimura, 1998)
to generate pseudo-random numbers to compare the probabilities in this
algorithm.

Algorithm 1 Multiple birth-and-death dynamics

1. Computation of the data energy: the data energy Ud (xi =m) is
computed for each nucleotide i∈ I in the genome I . We compute
it for each mark, and the variable m represents a mark m∈M .

2. Initialization: the inverse temperature parameter β and discretization
step δ are initialized.

3. Mark selection: for each nucleotide i∈ I , if there is no marked point,
we select a mark in proportion to the rate 1−Ud (xi=m)

2 .

4. Computation of the birth rate: the birth rate for each nucleotide i∈ I
is computed according to

B(xi =m)= vb(xi =m)∑
j∈I b(xj =mj)

, (10)

where v is a parameter, and b(xi =m) is given by

b(xi =m)

=1+9
maxj∈I Ud (xj=mj )−Ud (xi=m)

maxj∈I Ud (xj=mj )−minj∈I Ud (xj=mj )
.

(11)

Ud (xi =m) is the data energy at i whose mark is m selected in Step 3.

5. Birth step: for each nucleotide i∈ I if there is no marked point and
that nucleotide is included in the candidates of the start point of the
regions i∈S described in Subsection 3.7, we add a marked point with
probability δB(xi =m).

6. Computation of the prior energy: the prior energy Up(xi) of the current
configuration x is computed for each nucleotide i∈ I .

7. Death step: we sort the current configuration x from the highest to
lowest data energy. In this order, the death rate d (xi) at each nucleotide
i∈ I is computed to

d (xi)= δexp{−βU (xi)}
1+δexp{−βU (xi)} . (12)

We delete a marked point at i with probability d (xi).
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8. Convergence test: the convergence is achieved if the following
conditions are met: all the marked points added in the birth step have
been deleted in the death step, and all the marked points deleted in
the death step have been added in the birth step. If the process has not
converged, the temperature and the discretization step are decreased
by a given factor. Then, the process goes back to Step 3.

3.7 Preprocessing: reducing the number of the
candidates of the regions

In principle, we can successfully find differentially expressed genomic
regions of arbitrary length by using the method described in Subsections
3.1–3.6. However, we perform an additional procedure to reduce the number
of the candidates of the regions in order to lower the computational cost of
our method. Because the starting and ending points, or edges, of the regions
are probably nucleotides in which expression level substantially changes, we
simply define a set of the candidates of the starting points S and a set of the
candidates of the ending points E as follows:

S =
{

i∈ I;((y(i)�1
)∧(y(i−1)=0

))
∨(y(i)−y(i−1)> t

) }
(13)

E =
{

i∈ I;((y(i)�1
)∧(y(i+1)=0

))
∨(y(i)−y(i+1)> t

) }
. (14)

In Equations (13) and (14), y(i) represents the expression data at nucleotide
i and t is a parameter for the threshold of the drastic change.

Although we can select S and E from raw data y based in Equations (13)
and (14), we also apply a smoothing method to the data to further reduce the
number of the candidates. For this purpose, we employ a novel smoothing
method (Hatsuda, 2012) based on the second-generation wavelet transform
(SGWT) (Sweldens, 1997), because it can smooth quantitative data but yet
preserve sharp edges.

Unlike the classical wavelets, SGWT consists of the lifting scheme in
which base (wavelet) functions are not based on scaling and translation
of base functions but constructed based on the contents of data to cope
with local particularities of the data. Therefore, SGWT realizes nonlinear
data-dependent multi-scale decomposition, and the smoothing method based
on SGWT is performed by reconstruction of the decomposed data yNθ and{
d θ
}Nθ

θ=1:

yNθ ,
{
λθ d θ

}Nθ

θ=1 
→y′(x), (15)

where y(x) represents input data, the superscript θ denotes the scale level,
d θ is the wavelet coefficient at scale θ , λθ is a parameter to determine the
extent of smoothing at scale θ , Nθ is the total number of scale and y′(x)
represents the function of smoothed data. Small λ values at fine scales
smooth the details of data, whereas large λ values at fine scales enhance
the details. In order to automatically determine λ values in Equation (15),
we use bivariate shrinkage (Sendur and Selesnick, 2002, 2003), which is
the Bayesian estimation of the dependency between the neighboring wavelet
coefficients.

In this study, we use y′ produced by the SGWT-based smoothing to obtain
S and E according to Equations (13) and (14). This S is used in the Step 5
of Subsection 3.6. We also use S and E to make a list of the lengths of the
regions and confine the model space M to this list.

4 RESULTS AND DISCUSSION
To demonstrate the effectiveness of the proposed method, we applied
it to both synthetic and real genomic data and compared it with a
previous approach.

4.1 Parameter setting
In the performance evaluations, we set the model and algorithmic
parameters, as shown in Table 1, where β0 and δ0 are the initial β

Table 1. Model and algorithmic parameters for our differential analysis
method

γmin γmax zmin zmax k

5 2000 4 40 25

w wn β0 δ0

1 0.5 1 2

Table 2. Algorithmic parameters for the reduction process of
the region candidates in Subsection 3.7

t Nθ

5 4

and δ, respectively. The model parameters define the differentially
expressed regions we attempt to find with the proposed method; γmin
and γmax define the region size, zmin and zmax define the extent of
differential expression and k is the criterion of the neighborhood.
The weighting factors w and wn define the balance of the effects
of the data and prior energy terms; these parameters are determined
experimentally so that the presented method detects the neighboring
regions with the intervals appropriate for the users. The algorithmic
parameters β and δ are determined according to the simulated
annealing scheme; β and δ are, respectively, multiplied by 1.02 and
0.999 in each iteration. We set the parameter v from data according

to v= 2
∑

j∈I b(xj=mj)
δ0 maxj∈I Ud (xj=mj)

in the first iteration. The parameters for the

reduction of the region candidates described in Subsection 3.7 are
also shown in Table 2. The proposed method takes ∼1 s to analyze
a set of 10 000-mer sequences by using a 2.0 GHz CPU computer.

4.2 Performance evaluation on synthetic data
Figure 2 shows synthetic data and their analysis results by the
presented method. Figure 2a, b, d and e denotes virtual expressions
in a certain genomic region; the x-axis represents genomic position
and the y-axis represents expression. Figure 2c demonstrates that
it successfully detects differentially expressed regions and does not
detect equally expressed regions between 2a and b. We can modulate
the degree of difference it detects by setting the parameters zmin and
zmax properly. Figure 2d, e and f illustrates the effect of the prior
energy of our method. In Figure 2d and e, the distance between
adjacent two regions becomes larger from left to right. If two
differentially expressed regions are close to each other, our method
detects one region; and if two differentially expressed regions are
sufficiently away from each other, it detects two regions, as shown in
Figure 2f. We can modulate the effect of the prior energy by setting
the parameter w properly.

4.3 Differential analysis of TSS data
We also applied the proposed method to real genomic data. In this
study, we used RNA expression of TSS of Drosophila melanogaster
as real genomic data. In order to prepare base-level expression
data, we aligned the 5′-SAGE reads, published at the database of
TSS of Drosophila (Ahsan et al., 2008), to Drosophila genome by
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Fig. 2. Applications of the proposed method to synthetic data. (a), (b), (d)
and (e) show virtual expressions in a certain genomic region. Bars in (c) and
(f ) show differentially expressed regions. Heights of the bars in (c) and (f )
do not have meaning

using BLAT (Kent, 2002). We then counted the number of reads
aligned at each nucleotide; we excluded the reads that were aligned
to more than two locations in the genome or had more than four
mismatches. We thus have RNA expression of TSS at base resolution
for each biological condition, including young female, young male,
old female and old male.

Figures 3–6 show four examples of RNA expression data of
TSS and their differential analysis results. Figures X(a) and (b)
(X = 3–6) represent the expression at each nucleotide, X(c) show
differentially expressed regions detected by our method and their
z-scores and X(d) denote segmentation results and their z-scores
by a previous approach (Day et al., 2007; Wang et al., 2010).
Although the four genes in these figures are not differentially
expressed in the whole gene, they have differentially expressed
smaller regions. This means that they have almost the same total
expression in different biological conditions; however, they have
distinct distributions of the expression. For example, Figure 3a has
three large peaks; while 3b has two large peaks. This difference is
biologically important because the peak shift in RNA expression
is thought to be associated with the binding to DNA of different
transcription factors due to environmental changes (Carninci et al.,
2006). The presented method can detect this difference; however,
this difference is often not found by previous methods based on
genome segmentation because they are indirect differential analysis
methods. They usually depend on the degree of smoothing process
and thus tend to fail to provide the regions of appropriate length
in terms of differential analysis. For instance, because we set the
window size of wavelet-based smoothing to 128 and the number of
state of segmentation based on HMM to 2 to segment genes in this
evaluation, we obtained a large region, as shown in Figure 3d, and

Fig. 3. Application of the proposed method to real genomic data 1: RNA
expression data of TSS in gene CG34117 of Drosophila of (a) the old female
and (b) young female samples. (c) Differential analysis using the proposed
method. It finds a differentially expressed (z-score > 4) region between (a)
and (b). (d) Differential analysis using the previous methods. The y-axis
represents z-score of each region in (c) and (d). Z-score between (a) and (b)
in the whole gene is 1.2

thus failed to find the rightmost differentially expressed peak in 3a.
In contrast, our method can locate the region containing that peak
because it directly searches differentially expressed regions based on
the difference of the expressions without genome segmentation and
does not depend on the smoothing. The same applies to Figures 4–6.
These examples demonstrate the effectiveness of our method.

In addition, although we can select smaller numbers for the
window size of the smoothing to obtain smaller segments, we
need to choose larger values for the state number of HMM in that
case because the small window size produces many clusters with
different expression levels. This means that we need a laborious
process of trial and error for setting the state number to obtain a
good segmentation; it is infeasible for genome analysis to select an
appropriate state number in each gene. We thus have to use a large
number for the window size so that we can set the state number
to 2, which means regions of interest and regions of not interest.
This is a serious drawback in the previous approach consisting of
smoothing and HMM-based segmentation; in contrast, the proposed
method is free from this problem because it does not depend
on the genome segmentation irrelevant to differential expression
analysis.

5 CONCLUSION
In this article, we have presented a novel method based on a
marked point process model to find differentially expressed regions
of arbitrary length in quantitative genomic data without depending
on genome annotations. The proposed method is effective because it
can locate differentially expressed regions that previous approaches,
such as genome segmentation, fail to find. This is highly important
for genome science because we currently have large amounts of
quantitative genomic data at nucleotide resolution. For instance,
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Fig. 4. Application of the proposed method to real genomic data 2: RNA
expression data of TSS in gene tango11 of Drosophila of (a) the young female
and (b) young male samples. (c) Differential analysis using the proposed
method. It finds differentially expressed (z-score > 4) regions between (a)
and (b). (d) Differential analysis using the previous methods. The y-axis
represents z-score of each region in (c) and (d). Z-score between (a) and (b)
in the whole gene is 0.1

Fig. 5. Application of the proposed method to real genomic data 3: RNA
expression data of TSS in gene CG8979 of Drosophila of (a) the old male
and (b) young male samples. (c) Differential analysis using the proposed
method. It finds differentially expressed (z-score > 4) regions between (a)
and (b). (d) Differential analysis using the previous methods. The y-axis
represents z-score of each region in (c) and (d). Z-score between (a) and (b)
in the whole gene is 1.9

we can study the relation between the type of promoters and
RNA expression pattern in the regions near TSS to reveal the
transcriptional regulation by using the presented method. In addition,
it is important to note that the proposed method can be used to detect
any type of regions of interest by incorporating suitable data energy
and analyze all kinds of base-level quantitative genomic data.

Fig. 6. Application of the proposed method to real genomic data 4: RNA
expression data of TSS in gene crc of Drosophila of (a) the young male
and (b) young female samples. (c) Differential analysis using the proposed
method. It finds differentially expressed (z-score > 4) regions between (a)
and (b). (d) Differential analysis using the previous methods. The y-axis
represents z-score of each region in (c) and (d). Z-score between (a) and (b)
in the whole gene is 0.9
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