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Epilepsy is a chronic brain disease that causes persistent and severe damage

to the physical and mental health of patients. Daily e�ective prediction

of epileptic seizures is crucial for epilepsy patients especially those with

refractory epilepsy. At present, a large number of deep learning algorithms

such as Convolutional Neural Networks and Recurrent Neural Networks

have been used to predict epileptic seizures and have obtained better

performance than traditional machine learning methods. However, these

methods usually transform the Electroencephalogram (EEG) signal into a

Euclidean grid structure. The conversion su�ers from loss of adjacent spatial

information, which results in deep learning models requiring more storage

and computational consumption in the process of information fusion after

information extraction. This study proposes a general Graph Convolutional

Networks (GCN) model architecture for predicting seizures to solve the

problem of oversized seizure prediction models based on exploring the graph

structure of EEG signals. As a graph classification task, the network architecture

includes graph convolution layers that extract node features with one-hop

neighbors, pooling layers that summarize abstract node features; and fully

connected layers that implement classification, resulting in superior prediction

performance and smaller network size. The experiment shows that the model

has an average sensitivity of 96.51%, an average AUC of 0.92, and a model size

of 15.5 k on 18 patients in the CHB-MIT scalp EEG dataset. Compared with

traditional deep learningmethods, which require a large number of parameters

and computational e�ort and are demanding in terms of storage space and

energy consumption, this method is more suitable for implementation on

compact, low-power wearable devices as a standard process for building

a generic low-consumption graph network model on similar biomedical

signals. Furthermore, the edge features of graphs can be used to make a

preliminary determination of locations and types of discharge, making it more

clinically interpretable.
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1. Introduction

Epilepsy is a brain disorder caused by abnormal brain

activity. There are approximately 50million people with epilepsy

of all ages around the world (Organization, 2019). It is worth

noting that these patients are at three times the risk of premature

death than the general population, with sudden death in

epilepsy, status epilepticus, unintentional injuries, and suicide

being the most common causes. The leading and potentially

preventable cause of death in people with epilepsy. In addition,

people with epilepsy often have cognitive, psychological, and

interpersonal impairments. Electroencephalogram (EEG) is

widely used in healthcare (Duan et al., 2012) and epilepsy-

related departments, especially in primary hospitals, and has

become the key research data for epilepsy diagnosis and

treatment due to its low cost, ease of use, tolerable movement

restrictions, painless and comfortable procedure, and long-

term monitoring. Although many advances have been made

in epilepsy detection, there are few studies related to epilepsy

prediction due to its complexity and difficulty. However,

effective daily prediction of seizures is an important support for

timely administration of fast-acting drugs, avoiding unintended

harm, and relieving tension.

Developments in the field of seizure prediction have been

greatly driven by the establishment of seizure EEG databases,

the holding of international epilepsy prediction competitions,

and the standardization of performance evaluation of algorithms

(Kuhlmann et al., 2018). In terms of algorithms, deep learning

has become the most popular research method for seizure

prediction. However, traditional deep learning models are often

used, such as Convolutional Neural Networks (CNN) (Rosas-

Romero et al., 2019; Sharan and Berkovsky, 2020; Wang

et al., 2020; Li et al., 2021d; Ozdemir et al., 2021; Usman

et al., 2021), Recurrent Neural Networks (RNN) (Tsiouris

et al., 2018; Li et al., 2021d; Usman et al., 2021), and new

deep learning models, such as multi-view CNN (Liu et al.,

2019), multi-time scale CNN (Qi et al., 2021), semi-expanded

CNN (Hussein et al., 2021), and Transformer (Hussein et al.,

2022). Can only process Euclidean grid data, often EEG

data or the feature is represented as a real number matrix.

However, this representation does not take into account

the structural connectivity characteristics of EEG data, so

a large number of model parameters requires more storage

and computational consumption when automatically extracting

features. Concerning this issue, some researchers use pruning

(Zhao et al., 2021a), Neural Architecture Search (NAS) (Lee

et al., 2020; Dong et al., 2021; Li et al., 2021a; Xue et al., 2021;

Yang et al., 2021c; Zhao et al., 2021a; Wang et al., 2022), and

other methods to simplify CNNs. Although a simplified model

can eventually be obtained, it is still challenging to ensure the

performance of the prediction.

Graphs are a way of representing entity relationships and

structured data that are ubiquitous in the real world, such

as social networks, business networks, biological networks,

transportation networks, and knowledge graphs. A graph

consists of some nodes and edges connecting these nodes and

contains rich potential value by its complex structure. Human

brains are massively complex networks of functional and

structural domains, and graph theory provides a new perspective

on their analysis. Figure 1 (Bronstein et al., 2017) visually

shows the difference between Euclidean and non-Euclidean

domains (manifolds and graphs). Specifically, the flatness of

Euclidean spaces means that certain operations require many

dimensions and complex computations to perform, whereas

non-Euclidean spaces may perform these operations more

flexibly with fewer dimensions. The graph structure breaks the

uniform distribution of the commonly used Euclidean grid

structure and can better represent the structural connections

and functional realization of brains (Wein et al., 2021). It has

been used in the diagnosis of autism spectrum disorders (Yang

et al., 2021a), fMRI analysis (Li et al., 2019b, 2021b), brain

network analysis (Wu et al., 2021; Royer et al., 2022), brain-

computer interface decoding (Feng et al., 2021; Che et al.,

2022), emotion classification (Liu et al., 2022), and epilepsy

detection (Zhao et al., 2021b). Studies of graph networks

for seizure prediction are rare and often focus on complex

variants of graph networks while ignoring the model’s scale

(Lian et al., 2020) or building models that are too large

(Dissanayake et al., 2021b; Li et al., 2021c). Lian et al. (2020)

proposed a global-local graph convolutional network (Kipf and

Welling, 2016) for robust seizure prediction. Compared with

the sEEG signal, the processed iEEG signal has more channels,

higher sampling frequency, and less artifact interference. While

providing richer and cleaner information for seizure prediction,

the premise of surgically implanting a signal collector also limits

the application scope of the algorithm and ignores the need

for a reduced model size in practical application scenarios.

Furthermore, they believed that it is almost impossible to

build a proper general prior map to predict seizures, so they

proposed to use deep learning to build the prior graph. Li et al.

(2021c) proposed a spatiotemporal spectral hierarchical graph

convolutional network with semi-supervised active learning for

seizure prediction. They used sEEG and also fully utilized deep

learning to synthesize prior graphs, for which there was a

problem of building a model that was too large. A GCN seizure

predictor using sEEG was also proposed by Dissanayake et al.

(2021b). They use deep learning to further synthesize the prior

graph based on the physical connection derived graph, and the

problem of the large model size still exists. However, mobile

portable seizure predictors loaded with reduced-scale models are

particularly important for patients with refractory epilepsy who

are inoperable or ineffective for surgical resection.
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In this article, each sample is modeled as a graph, with nodes

representing channels and undirected edges representing spatial

and functional connections. Use simple and general spatial and

functional edge features to build prior graphs, and then use GCN

architecture to extract and aggregate features to predict epileptic

seizures. While ensuring excellent performance, our method

reduces the size of the model so that it can better meet the

needs of practical applications of wearable devices. Therefore,

it can be used as a standard process to build a generic low-

consumption graph network of biomedical signals. In clinical

practice, the graph feature we use can serve as an aid in the initial

determination of discharge location and type, thus increasing

medical interpretability.

2. Methodology

2.1. Data preprocessing

Currently, The CHB-MIT Scalp EEG Database is one of the

few free public datasets of continuous long-term seizures. The

dataset marked the onset and end of seizures, and these marks

can be used to define the “ictal” for seizure detection. But for

the seizure prediction task, we need to define and distinguish

between preictal and interictal periods. Due to the small number

of subjects, we did not use the EEG from the American Epilepsy

Society Seizure Prediction Challenge, but we adopted its rules for

dividing pre-ictal and inter-ictal periods because of its relative

openness and authority. As shown in Figure 2, 1 h before the

seizure is selected as pre-ictal data. It needs to be stressed that

pre-ictal data is shifted forward by 5 min as a whole, which

allows sufficient predictive time for the patient and avoids the

effects of small errors in the onset of a seizure. Moreover,

inter-ictal data is limited to 4 h before or after a seizure.

A total of 18 bipolar montages are selected to reduce the

effect of noise: Fp1-F7, F7-T7, T7-P7, P7-O1, Fp1-F3, F3-C3,

C3-P3, P3- O1, Fp2-F4, F4-C4, C4-P4, P4-O2, Fp2-F8, F8-T8,

T8-P8, P8-O2, Fz-Cz, and Cz-Pz. Then, a 1Hz high-pass filter

is used to remove low frequency noise, and a 50Hz and 100Hz

notch filter are used to remove operating frequency noise. Min-

Max Normalization is then used to normalize signals to a range

of values between [0, 1] or [−1, 1]. Finally, signals are sliced by

a fixed length of time (60 s) without overlapping slides.

2.2. Feature extraction

Because the graph consists of some nodes and edges that

connect these nodes, extracted features can be classified as node

features and edge features. The Band Energy, Hjorth parameters,

Higher Order Crossings, 1-order difference, 2-order difference,

Differential Entropy, and Fractal Dimension are features of

nodes, and the geodesic distance and spectral correlation are

features of edges.

The Band Energy reflects the level of activity of the cerebral

cortex. We calculate the energy of six frequency bands with

wavelet packet decomposition. Six frequency bands are Delta (1–

4 Hz), Theta (4–7.5 Hz), Alpha (7.5–13 Hz), Lower Beta (13–16

Hz), Higher Beta (16–30 Hz), and Gamma (30–40 Hz).

The Hjorth parameters (Hjorth, 1970) reflect shape features

in the time domain, in which activity measures the deviation

of the signal amplitude, mobility measures the change in signal

slope, and complexity measures the number of standard slopes

on an amplitude of signals.

Activity =
1

N

N∑

n=1

(s (n) − µs)
2 (1)

Mobility =

√
var

(
s′ (n)

)

var (s (n))
(2)

Complexity =
Mobility

(
s′ (n)

)

Mobility (s (n))
(3)

where µs denotes the mean value of signal s (n), s′ (n) denotes

the first derivative of signal s (n), and var denotes the variance of

signal s (n).

Higher order crossings (HOC) use the number of times the

signal passes through the zero point to reflect the degree of signal

oscillation (Petrantonakis and Hadjileontiadis, 2009).

1-order difference is the difference between consecutive

adjacent two items in the discrete function, which reflects the

dynamic relationship between two adjacent frames. 2-order

difference is the difference between the 1-order differences

of consecutive adjacent two items in the discrete function,

which reflects the dynamic relationship between the three

adjacent frames.

Differential entropy (DE) is a generalized form of Shannon

information entropy on continuous variables.

DE = −

∫ b

a
p(x)log

(
p (x)

)
(4)

Fractal dimension (FD) can be used to represent the

complexity of time domain signals, we have chosen Higuchi

Fractal Dimension (Higuchi, 1988), Katz Fractal Dimension

(Esteller et al., 2001), and Petrosian fractal dimension

(Petrosian, 1995).

Geodesic distances reflect the spatial relationship between

scalp electrodes by calculating distances in a spherical

coordinate system.

Geodesic Distance = cos−1
(
xixj + yiyj + zizj

r2

)
(5)
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FIGURE 1

Example of the four Laplacian eigenfunctions φ0, ..., φ3 on a Euclidean domain (1D line, top left) and non-Euclidean domains (human shape

modeled as a 2D manifold, top right; and Minnesota road graph, bottom). In the Euclidean case, the result is the standard Fourier basis

comprising sinusoids of increasing frequency. The citation requested by third-party rights holders is as follows: ©[2017] IEEE.

FIGURE 2

Epileptic brain states.

where r is the sphere radius, (xi, yi, zi) and (xj, yj, zj) are two

points on the surface of the sphere.

Spectral correlation reflects the energy correlation between

scalp electrodes.

Spectral Coherence =

∣∣E
[
Sij

]∣∣
|E [Sii]|

∣∣E
[
Sjj

]∣∣ (6)

where Sij is the cross-spectral density of lead i and lead j, Sii and

Sjj are the power spectral density of lead i and lead j.

2.3. Graph convolutional networks

Given a graph G = (V , E), where V = {v1, v2, . . . , vn}

is a set with n nodes and E ⊆ V × V is a set of edges.

Extract the band powers andHjorth parameters as node features.

The adjacent matrix A ∈ R
n×n represents the connection

relationship between nodes, which can be used as the edge

features. Compute the geodesic distance and spectral correlation

to represent the adjacency matrix.

The Graph Fourier Transformation (GFT) is an extension

of the discrete Fourier transform to graph, transforming graphs

from spatial domain to spectral domain. Signals at all nodes of

the graph are φ :V → R
n where φi is the value at node vi. For a

graph φ, the GFT and the inverse GFT are computed as:

F {φ} = U−1φ = UTφ (7)

F
−1 {φ} = Uφ̂ (8)

where U is an orthogonalized eigenvector matrix of Laplacian

Matrix L of an undirected graph G.

Convolutions on graphs are an extension of convolution,

transforming graphs from spatial domain to spectral domain,

and then transforming from spectral-domain back to the spatial

domain after performing the convolution operation in the

spectral domain. The calculation can be divided into three steps

(Ma, 2021):
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1. GFT:

F {φ} = U−1φ = UTφ (9)

2. Convolutions:

gθU
Tφ (10)

3. Inverse Graph Fourier Transform (IGFT):

F
−1

{
gθU

Tφ

}
= UgθU

Tφ (11)

where θ is the corresponding spectral domain convolution

kernel obtained by the spatial domain filter g through the

Fourier transform of graphs, and gθ is a diagonal matrix whose

diagonal elements are θ .

Graph Convolutional Networks (GCN) (Kipf and Welling,

2016) is a simplified network based on ChebyNet (Hammond

et al., 2011) proposed by Thomas Kipf. To circumvent the

problem of local structure overfitting of ChebyNet on graphs

with large node degree distribution, GCN limits the layer-wise

convolutional operation to 1:

gθ (3) =

1∑

k=0

Tk
(
3̃

)
2k = 20+3̃21 = 20+

(
23n

λmax
− In

)
21

(12)

where3 is the eigenvalue matrix of Laplacian matrix L, Tk(3̃) is

the Chebyshev polynomial of 3̃, and 2 ∈ R
c×d is a convolution

kernel parameters matrix. To further simplify gθ , approximate

maximum eigenvalue λmax ≈ 2:

gθ (3) = 20 +

(
23n

λmax
− In

)
21 ≈ 20 + (3n − In) 21 (13)

Then, the filtered signal is:

Y = gθ
(
Lsym

)
= X20 +

(
−D− 1

2AD− 1
2

)
UTX21 (14)

where Lsym is the Symmetric Normalized Laplacian Matrix, D is

the DegreeMatrix of graphs,A is the adjacency matrix of graphs,

X ∈ R
n×c is the initial attribute matrix of all (n) nodes, each

node has c-dimensional attributes, and Y ∈ R
n×d is the output

of graph convolution. Let 2 = 20 = −21:

Y =
(
I + D− 1

2AD− 1
2

)
X2 (15)

In order to solve the numerical instability, gradient

explosion, and dispersion problems that may be caused by

multiple iterations, use the renormalization trick: Ã = A + In,

then:

Y = D̃− 1
2AD̃− 1

2X2 (16)

Consequently, the layer-wise propagation rule is:

f
(
Hl,A

)
= σ

((
D̃− 1

2AD̃− 1
2

)
HlWl

)
(17)

where Hl is the matrix of activations in the lth layer, andWl is a

layer-specific weight matrix. σ (·) is an activation function.

3. Experiments

3.1. Datasets

The CHB-MIT Scalp EEG Database (Shoeb, 2009) is a

collection of EEG recordings from 23 pediatric subjects with

intractable seizures. We finally select 18 available subjects

because of the rare cluster seizures and poor time continuity.

Moreover, all signals are sampled at 256 Hz. Files were recorded

using the international 10–20 system of EEG electrode positions,

most of which have 23 channels.

3.2. Architecture for EEG seizure
prediction

As shown in Figure 3, we build a GCN architecture

for epilepsy prediction, which has seven layers: three GCN

convolution layers, one global average pooling layer, and

three fully connected (FC) layers. The number of channels in

GCNConv is 32, 64, and 128, and the number of neurons

in FC layers is 128, 32, and 16. At the top of each GCN

convolutional layer, Batch Normalization (BN), and Leaky ReLU

activation functions are used to refine node features. Then, the

global average pooling layer summarizes the node features of

each channel to generate high-level features of the entire graph

information. After processing in FC layers, the label probability

and class prediction are output through the Sigmoid activation

function.

3.3. Model training

To obtain more reliable results, we used the Leave One Out

Cross Validation (LOOCV) method for each subject. During

training, we choose the Adam optimizer whose learning rate

is initially set to 0.01 and decreases by 10% after each epoch.

We also use the Synthetic Minority Oversampling Technique

(SMOTE) (Chawla et al., 2002) and Gradient Harmonizing

Mechanism (GHM) (Li et al., 2019a) to ease the numerical

imbalance between the two types of samples. We processed each

subject’s EEG sample by SMOTE and GHM. The ratios of inter-

ictal and pre-ictal samples of 18 subjects are as follows: 2:1,

6:1, 17:1, 2:1, 7:1, 15:1, 9:1, 3:1, 6:1, 3:1, 1:1, 2:1, 10:1, 7:1, 2:1,

4:1, 3:1, 1:1, and 6:1. After SMOTE and GHM, all subjects had

balanced ratios of 1:1. In addition, we use a 50% probability

of randomly discarding neurons in the fully connected layer to

avoid overfitting.
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FIGURE 3

The GCN architecture for seizure prediction.

3.4. Performance metrics

Seizure prediction performance was measured by the mean

and SD of sensitivity and AUC on the test set. The sensitivity is

defined as follows:

Sensitivity =
TP

TP + FN
(18)

where the True Positive (TP) and False Negative (FN) can be

calculated from the confusionmatrix. Furthermore, the Receiver

Operating Characteristic Curve (ROC Curve) is obtained by

plotting TPR as the horizontal coordinate and FPR as the vertical

coordinate at different probability thresholds. The ROC curve

considers both sensitivity and specificity and can remain almost

constant under different sample distributions. The Area Under

ROC Curve (AUC) can be used to quantitatively describe the

ROC curve, and classifiers with a higher AUC score perform

better.

4. Results

4.1. Feature selection results

To control the computational cost of the model, we combine

the node features in pairs. Table 1 shows the results of the

GCN model for feature combinations in the CHB-MIT dataset.

Combination Band Energy and Hjorth and Combination Hjorth

and FD not only have a sensitivity of over 90% but also have

an AUC of over 0.9. Considering the physical significance

of sensitivity in seizure prediction, we finally selected the

combination Band Energy and Hjorth with better sensitivity as

the node feature.

4.2. GCN results

Table 2 shows the results of the GCNmodel for Band Energy

and Hjorth in the CHB-MIT dataset. The mean sensitivity

and AUC for all subjects are 96.51 and 0.92%, and their SD

of them are 1.70 and 0.01. The mean sensitivity and AUC of

10 subjects (sub01, sub10, sub11, sub13, sub14, sub16, sub18,

sub19, sub20, and sub21) exceed 95%. The mean sensitivity

of one subject (sub05) is below 0.9. The mean AUC of six

subjects (sub04, sub05, sub06, sub07, sub09, and sub23) are all

below 0.9.

Figure 4A shows the seizure performance of different

patients individually and Figure 4B shows the overall prediction

performance of all the 18 patients.

4.3. Comparison results

Table 3 shows the comparison between our method and

other methods, all of which are evaluated on the CHB-MIT

Scalp EEG dataset. It is difficult to directly judge which method

is best because of the differences in the patients selected,

problem definition, evaluation methods, and performance

metrics among the methods. Among all methods, our method

uses the longest fixed pre-ictal time (60 min) and a medium

number of patients. With these premises, it obtains the second

highest sensitivity and the fifth high AUC, which is on par

with the performance of similar state-of-the-art methods.

Also promising is the achievement of the smallest model

size, which can effectively reduce storage space and energy

consumption, thus meeting the practical needs of wearable

devices better.
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FIGURE 4

Performance of the GCN model for seizure prediction. (A) ROC curves of each subject, (B) ROC curves of all subjects.

5. Discussion

5.1. Performance degradation

It is worth noting that the goal of predictivemodels is to have

the ability to apply to new samples, namely generalization ability.

The training set is only a partial sample of the sample space. If

the sampled training set cannot well reflect the characteristics of

the sample space, it is difficult to expect that the model learned

from the training set can perform satisfactorily on the unknown

test set. In practice, it is generally assumed that all samples

are independently and identically distributed. However, EEG

is categorized as non-stationary data, and seizure prediction

methods suffer from the data drift/covariate drift problem,

where the data distribution and characteristics change over

time. It can be observed in Figure 4A that there are significant

differences in the AUC curves of sub06, and the AUC curves of

sub14 and sub20 are completely consistent. Correspondingly, in

Table 2, it can be observed that the SD of the prediction results

of sub06 is the largest among all patients, and that of sub14
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TABLE 1 Seizure prediction results of Graph Convolutional Networks

(GCN) for feature combinations.

Feature Sensitivity (%) AUC

Band Energy 89.81± 19.13 0.88± 0.11

Hjorth 93.90± 6.02 0.90± 0.11

HOC 88.56± 17.97 0.86± 0.14

1-order difference 45.90± 46.13 0.69± 0.18

2-order difference 48.34± 46.76 0.67± 0.18

DE 58.33± 41.69 0.73± 0.18

FD 97.70± 4.44 0.80± 0.18

Band Energy and HjorthBand Energy and HjorthBand Energy and Hjorth 96.51± 4.0296.51± 4.0296.51± 4.02 0.92± 0.090.92± 0.090.92± 0.09

Band Energy and HOC 48.05± 47.70 0.77± 0.22

Band Energy and 1-order difference 84.09± 27.44 0.85± 0.14

Band Energy and 2-order difference 82.92± 27.45 0.85± 0.14

Band Energy and DE 88.89± 9.84 0.87± 0.11

Band Energy and FD 95.27± 10.29 0.88± 0.12

Hjorth and HOC 94.54± 8.26 0.90± 0.11

Hjorth and 1-order difference 86.98± 25.32 0.88± 0.15

Hjorth and 2-order difference 85.78± 25.85 0.88± 0.16

Hjorth and DE 87.73± 22.81 0.89± 0.12

Hjorth and FDHjorth and FDHjorth and FD 96.37± 4.8896.37± 4.8896.37± 4.88 0.93± 0.080.93± 0.080.93± 0.08

HOC and 1-order difference 79.28± 31.52 0.78± 0.21

HOC and 2-order difference 79.41± 33.20 0.77± 0.20

HOC and DE 83.90± 28.62 0.76± 0.21

HOC and FD 92.50± 11.35 0.82± 0.17

1-order differenceand 2-order difference 82.54± 25.54 0.74± 0.16

1-order difference and DE 88.37± 12.71 0.68± 0.17

1-order difference and FD 78.93± 36.23 0.78± 0.19

2-order difference and DE 76.47± 29.14 0.68± 0.17

2-order difference and FD 80.15± 33.29 0.77± 0.19

DE and FD 73.64± 38.54 0.80± 0.17

The meaning of the bold values is “Feature combinations and their performance with not

only sensitivity over 90% but also AUC over 0.9”.

and sub20 is the smallest. By comparing Figures 5–7, it can be

found that the distribution of the training set and test set of

sub06 is significantly different, and both sub14 and sub20 are

identically distributed. This is why the same model architecture

has significantly different results between different patients.

Furthermore, within the perspective of raw data, the ratio of

sample sizes in the two categories is approximately 17:1, 15:1,

and 9:1 for sub04, sub07, and sub09 among 6 subjects with

unsatisfactory performance. Besides, most seizures recorded in

sub05, sub07, sub09, and sub23 are so concentrated that the

inter-ictal data between seizures is missing. In addition, Sub06

recordings have many discontinuities in time.

5.2. Performance comparison

Li et al. (2021c) used GCN and LOOCV, and was the closest

one in terms of our method. The AUC and longest up-front

TABLE 2 Seizure prediction results of GCN for Band Energy and

Hjorth.

Subject Sensitivity(%) AUC

sub01 97.08± 1.18 0.99± 0.01

sub02 95.98± 1.39 0.90± 0.01

sub04 95.56± 0.39 0.78± 0.02

sub05 83.33± 1.18 0.85± 0.02

sub06 94.80± 6.45 0.82± 0.04

sub07 94.65± 2.54 0.81± 0.01

sub09 98.33± 2.04 0.88± 0.02

sub10 98.93± 1.82 0.98± 0.01

sub11 99.17± 1.18 0.99± 0.00

sub13 99.36± 1.11 0.99± 0.01

sub14 100.00± 0.00 1.00± 0.00

sub16 98.89± 0.79 0.96± 0.01

sub18 99.17± 0.83 0.99± 0.01

sub19 95.00± 4.71 0.95± 0.02

sub20 100.00± 0.00 0.99± 0.00

sub21 98.92± 1.08 0.97± 0.01

sub22 96.34± 2.03 0.93± 0.02

sub23 91.59± 1.86 0.72± 0.03

AVG 96.51± 4.02 0.92± 0.09

duration of this method are slightly better than our method,

which means that possible subsequent seizures are predicted at

an earlier time without increasing toomany false alarms. But this

also makes it slightly less sensitive than our method, which may

miss early warnings for some seizures. Furthermore, to enhance

the prediction performance, the method uses a complex deep

learning sub-network to synthesize the prior map, which results

in a much larger model size than ours, limiting its portable use

in everyday life.

5.3. Seizure focus

Inter-ictal epileptiform discharges and focal seizures are

characterized by a large number of neurons disrupting normal

neuronal activity with synchronous discharges, and scalp

inter-ictal EEGs are characterized by a large number of

neurons collectively superimposed on synchronous oscillations

of postsynaptic potentials (Kibler and Durand, 2011). Thus,

the electrodes around the epileptogenic zone can record a

similar increase in energy, and the corresponding EEG signal

is similarly changed at the sites that are reached through the

neural network. The strong correlation of functional features in

edge features of the graph network can suggest that electrodes

correspond to abnormal discharge sites in the patient’s inter-

ictal period. For temporal lobe epilepsy and frontal lobe epilepsy,
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TABLE 3 Result of recent studies on predicting seizures on the CHB-MIT dataset.

Method ♯ of cases Evaluation Classifier Sensitivity (%) AUC Model size Pre-ictal duration

Daoud and Bayoumi (2019) 8 LOOCV DCAE + Bi-LSTM 99.72 - 27.00 60

Zhang et al. (2019) 23 LOOCV CNN 92.00 0.9000 33.98 30

Yang et al. (2021b) 13 LOOCV CNN + ResNet 90.16 0.8909 - 30

Dissanayake et al. (2021a) 23 10-F-CV CNN 92.45 0.9694 98.66 60

Zhao et al. (2021a) 10 - CNN + Quan+ Pruning 93.48 0.9770 45.22 30

Dissanayake et al. (2021b) 23 10-F-CV CNN + LSTM + ChebyNet 95.94 0.9879 289.00 60

Li et al. (2021c) 19 LOOCV GCN 95.50 0.9380 333.01 15-90

Proposed 18 LOOCV GCN 96.51 0.9169 15.52 60

FIGURE 5

The distribution curve of the training set and test set of sub06.

which are the most common types of epilepsy, most cases of

temporal lobe epilepsy can be roughly located according to

EEG interpretation (Blume et al., 2001). In these patients, the

strength of correlation can assist clinicians to find the seizure

focus, as a supplement to manual reading EEG which mainly

depended on the difference in amplitude, frequency, and time

sequence of the interictal discharges. Besides, the underlying

pathological mechanisms also can be explored by analyzing

the characteristics of different subtypes of epilepsy, applying

to the seizure origin and the evolution of the typical partial

seizures in patients, since the similarity of energy changes was

analyzed at the level of total channels not at the level of EEG

indicators.

It is important to note that in patients with frontal

lobe epilepsy, there are some limitations to scalp EEG.

First, inter-ictal discharges in frontal lobe epilepsy are

usually widely distributed involving multiple electrodes,

and scalp EEG is difficult to detect in patients with

deep epileptogenic zones (40% of patients with frontal

lobe epilepsy do not record discharges) (Quesney, 1991;

Salanova et al., 1993; Bautista et al., 1998), even in

patients with medial frontal lobe epilepsy who have focal
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FIGURE 6

The distribution curve of the training set and test set of sub14.

FIGURE 7

The distribution curve of the training set and test set of sub20.

abnormal discharges at electrodes in the central zone

(Blume, 1996).

For example, in the inter-ictal EEG of sub01, based

on normal background activity, there are focal paroxysmal

abnormalities (spikes and slow waves) issued on both sides

of the prefrontal area in the inter-ictal EEG, and intermittent

midline rhythms may be common. As shown in Figure 3, there

is a strong spectral correlation in the bilateral forehead leads.

Additionally, because of the same multifocal issuance in frontal

lobe epilepsy, weaker spectral correlations exist in the other leads

as well. In the EEG of sub09, unilateral or bilateral synchronous

or asynchronous temporal lobe spikes and/or slow waves with

conduction to the prefrontal region were observed in the inter-

ictal EEG, as well as the existence of discontinuous rhythmic

delta wave activity in the occipital region, suggesting that this

patient may have temporal as well as occipital lobe epilepsy.

Compared with other CNNs, which can only clinically

interpret the amplitude of features, GCN can additionally
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FIGURE 8

Chord diagram of functional edge features.

interpret the connection relationship between features because it

retains rich edge features, thus expanding its clinical application.

A Chord diagram of functional edge features is introduced

in this article to visualize the Spectral correlation. Inspired

by the revised Circular Graph (RCG) (Zhao et al., 2019), the

visualization draws a circular plot where the montage names

are placed on the circumference of the circle. The Spectral

correlation values between two montages are drawn as lines

connecting the two montages, with their width representing the

strength of the energy correlation between two montages.

The strong spectral correlation results in Figure 8 could

indicate similar energy activity in the bilateral occipital leads,

which coincides with occipital lobe localization. In contrast, the

discharge in the temporal lobe is not shown in Figure 8, probably

due to the more restricted discharge in this area and the large

difference in energy recorded by the surrounding electrodes.

6. Conclusion

The usual conversion of EEG data to a common Euclidean

grid structure for processing leads to the loss of adjacent

information. To process graph-structured data with richer

structural information and to simplify the model size, we

propose a new smaller and computationally simple GCN-based

architecture for seizure prediction. The proposed method uses

only models with a scale of 15.5 k, which matches the state-of-

the-art performance of the CHB-MIT scalp EEG dataset. The

results show that our method can be regarded as a standard

procedure to build a general low-power graph network model

for processing similar biomedical signals, which is easier to meet

the requirements of EEG-based low-power wearable devices. In

addition, graph network functional edge features have different

sensitivities for different patients, different discharge locations,

and types. This means that in the actual epileptic seizure

prediction, we can not only obtain the final prediction result

but also make preliminary speculation and judgment on the

discharge location and type of the patient to enhance its medical

interpretability.
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