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Tumor heterogeneity, a hallmark of cancer, impairs the efficacy of cancer therapy and
drives tumor progression. Exploring inter- and intra-tumoral heterogeneity not only
provides insights into tumor development and progression, but also guides the design
of personalized therapies. Previously, high-throughput sequencing techniques have been
used to investigate the heterogeneity of tumor ecosystems. However, they could not
provide a high-resolution landscape of cellular components in tumor ecosystem. Recently,
advance in single-cell technologies has provided an unprecedented resolution to uncover
the intra-tumoral heterogeneity by profiling the transcriptomes, genomes, proteomes and
epigenomes of the cellular components and also their spatial distribution, which greatly
accelerated the process of basic and translational cancer research. Importantly, it has
been demonstrated that some cancer cells are able to transit between different states in
order to adapt to the changing tumor microenvironment, which led to increased cellular
plasticity and tumor heterogeneity. Understanding the molecular mechanisms driving
cancer cell plasticity is critical for developing precision therapies. In this review, we
summarize the recent progress in dissecting the cancer cell plasticity and tumor
heterogeneity by use of single-cell multi-omics techniques.
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INTRODUCTION

Tumor heterogeneity, including genetic heterogeneity, epigenetic heterogeneity, phenotypic and
functional heterogeneity, plays essential roles in tumor progression, especially in promoting
resistance to treatment and driving metastasis (Giraudeau et al., 2019; Guo et al., 2019;
Hinohara and Polyak, 2019). Investigating the origin of tumor heterogeneity has been the focus
of research. For example, theories of cancer stem cell, clonal evolution and cellular plasticity have
been proposed to explain the origin of heterogeneity (Michor and Polyak, 2010). Previously, high-
throughput sequencing techniques have been employed to classify molecular subtypes, monitor the
treatment response, identify new therapeutic targets and explore the tumor heterogeneity in the field
of cancer research (Choi et al., 2017; Zhang et al., 2018; Zhao et al., 2020; Gay et al., 2021). However,
these techniques have not been ideal tools to investigate the intra-tumoral heterogeneity since they
usually detected the average signals of mixed cell populations rather than signals of individual cells
within a tissue. For example, the bulk RNA sequencing cannot distinguish the proportions of distinct
cellular components within a tumor (Roma-Rodrigues et al., 2019). Also, it is hard for the bulk
sequencing techniques to determine the mutation status or transcriptome of distinct cell
subpopulation in the tumor ecosystem. In contrast, single-cell techniques have shown great
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advantages in dissecting the cellular compositions and also their
molecular features (Qian et al., 2020; Liu J. et al., 2021; Arora and
Pal, 2021). Moreover, there are multiple hybrid or intermediate
states of cells in the tumor ecosystem, such as hybrid epithelial/
mesenchymal cells (Kroger et al., 2019; Thong et al., 2020). It is
also hard for the bulk sequencing technologies to identify these
hybrid cells. However, single-cell techniques have provided an
opportunity to unmask hybrid states of individual cells
(Williamson et al., 2016; Wouters et al., 2020; Gay et al.,
2021). For example, multiple hybrid states of cancer cells have
been discovered in human cancers by single-cell RNA sequencing
(scRNA-seq), such as hybrid EMT cells and cancer/immune cells
(Gay et al., 2021). In addition, single-cell techniques have great
power to identify rare cell populations (Goveia et al., 2020; Kieffer
et al., 2020; Pombo Antunes et al., 2021). Finally, single-cell
techniques can distinguish tumor cells from non-tumor cell
components, and also infer the interactions within or across
these cellular components. Therefore, single-cell techniques
provide more refined molecular features of tumor tissues
compared with the bulk sequencing techniques.

Since the first application of single-cell transcriptome
sequencing in 2009, single-cell techniques have evolved
greatly and contributed tremendously in various fields of
research (Tang et al., 2009; Navin et al., 2011; Hou et al.,
2012; Liu J. et al., 2020; Zhu et al., 2020). Currently, single-
cell techniques have been widely used in cancer research and
shed light on the molecular underpins of tumor initiation and
progression. For example, single-cell techniques have been used
to analyze tumors at the levels of DNA (Gawad et al., 2016),
RNA (Gonzalez-Silva et al., 2020), proteome (Wu and Singh,
2015), and epigenome (Schwartzman and Tanay, 2015).
Recently, spatial transcriptomics (ST) techniques have enabled
high-throughput sequencing of cellular components while

preserving their spatial information within the tissue
(Crosetto et al., 2015).

Cancer cell plasticity refers to some cancer cells transit
dynamically between different cellular states, which results in
increased tumor heterogeneity and promotes tumor progression
(Gupta et al., 2011; Meacham and Morrison, 2013; Gunnarsson
et al., 2020). However, molecular mechanisms that regulate
cellular plasticity are still elusive. Recently, single-cell
sequencing has been used to explore cancer cell plasticity (Su
et al., 2017; Lourenco et al., 2020; Sacchetti et al., 2021). In this
review, we summarize the recent progress in dissecting the cancer
cell plasticity and tumor heterogeneity through single-cell multi-
omics techniques, including the scRNA-seq, Single-Cell DNA
Sequencing (scDNA-seq), single-cell proteomics and single-cell
epigenomics (Figure 1).

DISSECTION OF TUMORAL
HETEROGENEITY
Single-Cell RNA Sequencing Analysis of
Tumor Heterogeneity
ScRNA-seq has been widely used to explore the intra-tumoral
heterogeneity (Peng et al., 2019; Robertson et al., 2020; Zhang
et al., 2020; Zhou et al., 2020; Wang R. et al., 2021). For example,
scRNA-seq revealed seven cancer cell subpopulations in
pancreatic ductal adenocarcinoma (PDAC). However, only one
subpopulation was shared in most PDAC patients, whereas the
other six subpopulations existed in 1–2 patients (Peng et al.,
2019). Moreover, tumor cells from different PDAC patients have
been found to be hardly clustered together, indicating a high
inter-tumor heterogeneity of PDAC (Lin et al., 2020).
Consistently, similar findings have been identified in

FIGURE 1 | The diagram indicates applications of single-cell multi-omics in dissecting tumor heterogeneity (A), tracing cancer cell evolution (B), identifying hybrid
cancer cells (C), and precision cancer therapy (D).
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glioblastoma (Patel et al., 2014), melanoma (Tirosh et al., 2016),
and breast cancer (Karaayvaz et al., 2018). Furthermore, scRNA-
seq provided a refined resolution to dissect the tumor
heterogeneity (Sottoriva et al., 2013; Gay et al., 2021;
Riemondy et al., 2021). ScRNA-seq has also been used to
identify rare cancer cell subpopulations, which previously
hardly been identified by the bulk RNA-seq. For example, five
cancer cell subpopulations were identified in primary gastric
adenocarcinoma by scRNA-seq, three of which corresponded
to histopathological features of Lauren’s subtypes whereas the
other two were recognized as new subpopulations with different
molecular characteristics (Zhang M. et al., 2021). In addition,
scRNA-seq explored the functional heterogeneity of distinct
cancer cell subpopulations. For example, scRNA-seq identified
three different transcriptional states of lung adenocarcinoma
(LUAD), tS1, tS2 and tS3 (Peng et al., 2019). The
transcriptional state of tS1 and tS3 were similar to that of
normal lung epithelial cells, suggesting that normal lung
epithelial cells may be the source of LUAD. However, the tS2
showed a completely different transcription signature,
characterized by the increased expression of genes associated
with advanced tumors (Tirosh et al., 2016).

Single-Cell DNA Sequencing Analysis of
Tumor Heterogeneity
ScDNA-seq has been used to identify single nucleotide variations
(SNVs), copy number alterations (CNAs), and structure variants
(SVs), as well as investigate the genetic heterogeneity of tumors.
For instance, Duan et al. used scDNA-seq to study the CNA
patterns of gastroesophageal junction cancer, and found that
there are more than two subclones with different CNA patterns in
both primary tumors and metastatic lymph nodes, suggesting
that there is an extensive intra-tumor heterogeneity in both
primary and metastatic tumors (Duan et al., 2021). Similar
results have been identified in Hodgkin’s lymphoma
(Mangano et al., 2019). Besides, scDNA-seq has been used to
examine the heterogeneity of circulating tumor cells (CTCs) from
liquid biopsies and monitor cancer genomes in a non-invasive
manner. For example, scDNA-seq detected the samemutations of
TP53, RB1, PIK3CA and ERBB2 genes in both biopsies and CTCs
from patients with inflammatory breast cancer, suggesting that
CTCs may reflect the genetic aberrations of primary tumors and
act as an alternative resource of tumor heterogeneity (Bingham
et al., 2017).

Single-Cell Proteomics Analysis of Tumor
Heterogeneity
Recently, single-cell proteomics techniques have also been
developed to investigate tumor heterogeneity and uncover the
mechanisms of tumor progression (Wagner et al., 2019; Liu L.
et al., 2020; Reza et al., 2021). For example, Wagner et al. analyzed
144 human breast tumors and 50 non-tumor tissues using
cytometry by time-of-flight (CyTOF). Accordingly, they
classified epithelial cells into seven luminal subgroups (L1–L7)
and two basal subgroups (B1 and B2). Notably, the L3 luminal

subgroup was observed to express high levels of EpCAM and
CD49f but low level of ERα, which are characteristics of luminal
progenitor cells. In contrast, the L4 luminal subgroup was shown
to express high levels of the ERα, AR, HER2, EGFR and c-MET,
which are involved in tumor cell proliferation and migration.
Remarkably, they found that tumors recognized as ER+ by
Immunohistochemical staining also contain a subset of ER−

cell populations (Wagner et al., 2019). These findings could
help to explain why nearly 30% of the ER+ breast cancers
eventually develop endocrine resistance and progress to
metastasis (Reinert and Barrios, 2015).

Furthermore, using RNAscope-based in situ hybridization
protocol coupled with CyTOF, Schulz et al. have analyzed
subcellular resolution mRNA and protein in breast cancer
(Schulz et al., 2018). Similarly, the combination of CyTOF and
immunohistochemical staining has enabled us to visualize the
spatial distribution of distinct cellular compositions (Giesen et al.,
2014). In addition to the CyTOF, multiple immunofluorescence
imaging techniques have been used to detect multiple proteins in
single cells (Lin et al., 2015; Pachynski et al., 2021). For example,
cyclic immunofluorescence (CycIF) has been used to examine the
formalin-fixed, paraffin-embedded (FFPE) specimens(Lin et al.,
2018).

Single-Cell Epigenomics Analysis of Tumor
Heterogeneity
Single-cell epigenomics techniques have also been developed to
investigate epigenetic features of the cellular components within
heterogenous tissues, such as single-cell DNA methylation
sequencing and single-cell chromatin mapping (Schwartzman
and Tanay, 2015), providing an opportunity to identify epigenetic
regulation patterns and characterize epigenetic heterogeneity. For
example, single-cell DNA methylation sequencing revealed that
tumor-derived clonal organoids from different colorectal cancer
patients show different epigenetic states, and one tumor
encompasses multiple epigenetic states (Roerink et al., 2018).
Furthermore, combinational single-cell RNA, DNA and
methylation sequencing has been used to study the
heterogeneity of hepatocellular carcinoma (Hou et al., 2016).
In addition, single-cell ChIP-seq was employed to investigate the
heterogeneity of chromatin states in breast cancer, which revealed
that drug-resistant tumors show more heterogeneity than
sensitive tumors. Notably, a small population of tumor cells
with resistance signatures could also be detected in the
sensitive tumor, indicating the pre-existence of drug resistant
subpopulations (Grosselin et al., 2019).

Recently, single-cell sequencing assay for transposase-
accessible chromatin (scATAC-seq) has also been employed to
dissect the tumor heterogeneity (Wang et al., 2019; LaFave et al.,
2020). For example, scATAC-seq identified three cancer cell
subpopulations in glioblastoma, including pro-neural,
mesenchymal and intermediate cell states (Wang et al., 2019).
Moreover, dynamic evolution of cancer cells in a mouse model of
lung adenocarcinoma has been investigated by scATAC-seq,
which revealed an epigenetic continuum of cancer progression,
characterized by loss of cellular identify and progression to a
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metastatic state (LaFave et al., 2020). Together, these findings
indicate that single-cell epigenomics also have advantages to
exploring tumor heterogeneity and identifying mechanisms
underlying cancer cells evolution.

DISSECTING HETEROGENEITY OF
STROMAL CELLS

Tumor microenvironment (TME) plays essential roles in cancer
development and progression, which is composed of many types
of cellular components and extracellular matrix (Hinshaw and
Shevde, 2019). Importantly, single-cell sequencing has also been
used to investigate the cellular heterogeneity of TME (Kieffer
et al., 2020; Qian et al., 2020; Zhang et al., 2020). For example, a
single-cell analysis of pan-cancer revealed a wide range of
heterogeneity of stromal cells, including cancer-associated
fibroblasts (CAFs), infiltrated immune cells, and endothelial
cells (Qian et al., 2020). Moreover, a subset of FAP+ CAF could
be further divided into eight subpopulations in Breast Cancers
by scRNA-seq. Importantly, one CAF subpopulation
characterized by high expression of genes encoding
extracellular matrix proteins was revealed to drive
immunotherapy resistance by increasing the protein levels of
PD-L1 and CTLA4 in Treg cells through cell crosstalk (Kieffer
et al., 2020). Similarly, scRNA-seq identified six CAF
subpopulations in human intrahepatic cholangiocarcinoma,
which could promote tumor progression by interacting with
tumor cells (Zhang et al., 2020).

Furthermore, single-cell profiling of myeloid cells has been
investigated in glioblastoma across species, which revealed that
there are two distinct populations of tumor-associated
macrophages, microglia- and monocyte-derived macrophages,
which exist in the TME and compete for space (Pombo
Antunes et al., 2021). Similarly, single-cell profiling of
infiltrated T cells has been performed in multiple cancers
(Zheng et al., 2017; Azizi et al., 2018; Li et al., 2019). For
instance, scRNA-seq identified that a large number of CD8+
T cells exhibit continuous progression from an early effector state
to dysfunctional T cell state in melanoma. Interestingly, this study
also demonstrated that the dysfunctional CD8+ T cells are the
major proliferating immune cells showing highly clonal and
differentiating properties (Li et al., 2019). Moreover, scRNA-
seq has been used to elucidate the heterogeneity of immune cells
in treatment response to anti-PD1 in breast cancer, which
revealed that PD1+ T cells undergo clonal expansion upon
anti-PD1 treatment (Bassez et al., 2021). In addition, scRNA-
seq has been employed to determine the heterogeneity of
endothelial cells (ECs) in lung cancer, which identified 17
known and 16 unrecognized phenotypes of ECs (Goveia
et al., 2020). Similarly, the subpopulations of ECs in tumors
and their changes in gene expression following antiangiogenic
treatment were analyzed by scRNA-seq (Zhao et al., 2018).
Together, these studies demonstrated that single-cell technology
greatly accelerates the understanding of stromal heterogeneity,
providing new avenues to target these cellular components for
precision cancer therapy.

TRACING CANCER CELL EVOLUTION BY
SINGLE-CELL SEQUENCING

Cancer cell evolution is a fundamental process during tumor
progression (Black and McGranahan, 2021). Single-cell
technologies have been used to trace the dynamic evolution of
cancer cells (Wang et al., 2014; Davis et al., 2020; Ireland et al.,
2020; Schlesinger et al., 2020; Liu R. et al., 2021; Su et al., 2021).
For example, it has been considered that acinar metaplasia is the
first step during pancreatic ductal adenocarcinoma
tumorigenesis. However, using scRNA-seq and trajectory
analysis, Schlesinger et al. found that acinar cells and early
metaplastic cells show a continuous change to one of two
fates, tumorigenic or stomach metaplastic, suggesting that
metaplastic cells may not be involved in the evolution process
from acinar cells, early metaplastic cells to tumor cells
(Schlesinger et al., 2020). Moreover, small cell lung cancer
(SCLC) has been classified into four molecular subtypes,
including ASCL1+, NEUROD1+, POU2F3+ and YAP1+ SCLC
(Rudin et al., 2019). However, the cellular origins of these SCLC
subtypes are still elusive. Through time-series scRNA-seq
analysis, Trudy Oliver and colleagues demonstrated that MYC
can drive the dynamic evolution of SCLC subtypes, promoting a
temporal shift from ASCL1+ to NEUROD1+ and YAP1+ SCLC
states (Ireland et al., 2020).

In order to trace the clonal evolution of cancer cells from
primary tumor to metastatic tumor, Davis et al. examined the
heterogeneity of primary tumors and early metastases of triple-
negative breast cancer by the scRNA-seq. They found that the
heterogeneity of metastatic tumors is consistent with that of
primary tumors, but the proportion of a subpopulation
obviously increases in metastatic tumors, indicating an
enrichment of this subpopulation during the process of
metastasis (Davis et al., 2020). Moreover, clonal evolution of
breast cancer has been investigated through the scDNA-seq,
which found that chromosome rearrangements occur in the
early stage of tumor evolution whereas point mutations evolve
gradually over the long-term, generating extensive clonal
diversity (Wang et al., 2014). Furthermore, scDNA-seq has
been used to study genomic heterogeneity and clonal
evolution of gastroesophageal junction cancer, which found
that the similarity between lymph node metastasis and
primary tumor is greater than that between different lymph
node metastases, indicating that different lymph node
metastases can originate from the same primary tumor but
evolve independently (Duan et al., 2021). Similarly, Su et al.
investigated the clonal evolution of liver cancer by scRNA-seq
and scDNA-seq (Su et al., 2021). In addition, through examining
genomic alterations of primary colorectal cancer tumor cells and
CTCs from the same patient, Gao et al. revealed convergent
evolution of copy number alterations from primary to circulating
tumor cells (Gao et al., 2017).

Drug treatments have been shown to drive cancer evolution
and increase the intra-tumor heterogeneity (Eyler et al., 2020;
Vander Velde et al., 2020; Cohen et al., 2021). For example,
longitudinal scRNA-seq has revealed that there are three main
trajectories of tumor clonal evolution in patients with multiple

Frontiers in Molecular Biosciences | www.frontiersin.org October 2021 | Volume 8 | Article 7570244

Pan and Jia Single-Cell Analysis of Tumor Heterogeneity

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


myeloma, indicating that nearly half of the patients show clonal
dynamics and transcriptional changes. Notably, one patient
showed the transition from clone 1 with high expression of
CSAG1 and MS4A1 genes at baseline treatment to clone 2
with downregulated expression of CSAG1 and MS4A1 after 4
cycles of treatment (Cohen et al., 2021). Furthermore, scRNA-seq
revealed dynamic phenotypic changes in the evolution of drug
resistance in ALK positive NSCLC, and even short-term Alectinib
exposure can significantly affect cell phenotypes, suggesting a
drug-induced direct cellular adaptation (Vander Velde et al.,
2020). Additionally, scRNA-seq has been used to trace the
emergence of drug resistance in glioblastoma cells after
treatment of RTK inhibitors, which revealed the critical roles
of interplay between genetic and epigenetic mechanisms in drug
resistance (Eyler et al., 2020).

HYBRID TUMOR CELL STATES
UNCOVERED BY SINGLE-CELL
TECHNOLOGIES
Hybrid Epithelial/Mesenchymal Cells
By use of single-cell sequencing, multiple hybrid states of tumor
cells have been identified in various cancers, such as hybrid
epithelial/mesenchymal cells, hybrid tumor/immune cells and
hybrid tumor/endothelial cells. These hybrid states could confer
tumor cells with different potentials to adapt to the changing
microenvironments. EMT has been recognized as an important
cellular program not only in normal embryonic development but
also in many diseases, especially cancer initiation and progression
(Brabletz et al., 2018). Recently, cancer cell subpopulations with
EMT feature have been identified in multiple cancers by single-cell
sequencing. For example, glioblatoma cells have been classified into
four subtypes by scRNA-seq, including neural proenitor-like
(NPC-like), oligodendrocyte-progenitor-like (OPC-like),
astrocyte-like (AC-like) and mesenchymal like (MES-like) cells.
Importantly, a dynamic transition fromOPC-like or NPC-like cells
to MES-like cells was revealed, indicating a high plasticity of
glioblastoma cells (Neftel et al., 2019). Moreover, using scRNA-
seq and ST analysis, Ji et al. dissected the cellular composition and
architecture of cutaneous squamous cell carcinoma. They found
that a tumor-specific keratinocyte (TSK) subpopulation, expressing
classic EMT markers, localizes to a fibrovascular niche and
functions as a hub for intercellular communication (Ji et al., 2020).

In addition, Wouters et al. reported an intermediate state of
melanocyte and mesenchymal cell, which was regulated by a set of
transcription factors, including SOX6, NFATC2, EGR3, ELF1, and
ETV4. They also demonstrated that knockdown of the SOX10 gene
is sufficient to switch melanocytic and intermediate cell state to
mesenchymal-like cell state (Wouters et al., 2020). Notably, the cell
origins of CAFs are still elusive. One of the cell origins has been
proposed is that CAFs can be derived from tumor cells undergone a
EMT program, which can be distinguished by analyzing the
genomic alterations (Sahai et al., 2020). In summary, by use of
single-cell technologies, these studies indicated that a subset of
tumor cells with EMT feature has been widely existed in
heterogenous populations of multiple Cancers.

Hybrid Tumor/Immune Cells
Immune Checkpoint Blockades (ICB) have been used in clinic to
treat cancer patients. However, only a few patients respond to
these ICBs. Unfortunately, the underlying mechanisms regarding
immune evasion of tumor cells are largely unknown. Recently, a
subpopulation of tumor cells expressing immune cell markers has
been identified in several cancers by scRNA-seq. For example, Jin
et al. identified a tumor cell population characterized by
expression of epithelial-immune dual markers, such as classical
epithelial marker EPCAM and immune markers, MHC-II and
complement genes. The dual feature of tumor cells was observed
to be positively correlated with the expression of co-inhibitory
receptors on CD8+ T cells. Importantly, tumor cells with this dual
feature exhibited a higher capacity for tumorigenesis and
associated with poor prognosis of patients with
nasopharyngeal carcinoma (Jin et al., 2020). Moreover, Miao
et al. found that a subset of tumor-initiating stem cells in
squamous cell carcinoma selectively express CD80, a
previously identified immune cell surface ligand. They further
demonstrated that CD80 is necessary for the tumor-initiating
stem cells to endure immune attack and CD80 could dampen the
activity of cytotoxic T cells through directly engaging with
CTLA4 (Miao et al., 2019). Consistently, Wang et al. identified
that cancer stem cells can upregulate another immune checkpoint
molecule CD276 (B7–H3) in order to evade host immune attack.
They found that CD274 is highly expressed by cancer stem cells of
mouse and human head and neck squamous cell carcinoma, and
anti-CD276 could eliminate these stem cells (Wang C. et al.,
2021). Additionally, Chen et al. found that luminal prostate
cancer cells express T-cell co-stimulatory genes, suggesting a
potential role of tumor cells involved in antigen presentation
(Chen et al., 2021). Taken together, these findings indicated that
tumor cells expressing immune cell markers is one of the
mechanisms by which tumor cells evade immunosurveillance,
providing a new avenue for the development of immune
checkpoint inhibitors and combined targeted therapy.

Hybrid Tumor/Endothelial Cells
Angiogenesis is one of the cancer hallmarks. It has been reported
that tumor cells could transdifferentiate into endothelial cells and
form vascular mimicry in order to feed rapidly growing tumors
(Maniotis et al., 1999; Kirschmann et al., 2012). Recently, single-
cell sequencing has been used to understand the tumor
angiogenesis. For example, Caroline Dive and colleagues found
that a rare subpopulation of CTCs from SCLC patients co-
expresses vascular endothelial-cadherin (VE-cadherin) and
cytokeratin, which is consistent with the process of
vasculogenic mimicry, a process during which tumor cells
form endothelial-like vessels. They also found that knockdown
of the VE-cadherin could increase sensitivity of SCLC cells to
chemotherapy (Williamson et al., 2016). Consistently, a rare
subpopulation of tumor-derived endothelial cells was observed
to contribute to vessels within the tumor tissues in a mouse model
of glioma (Carlson et al., 2021). In addition, Li et al. showed that
disseminated melanoma cells could transdifferentiate into
endothelial cells in intravascular niches of various metastatic
organs (Li et al., 2020). Altogether, these findings indicated
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that tumor cells with endothelial cell features might play
important roles in tumor growth, drug resistance and metastasis.

SINGLE-CELL MULTI-OMICS AND
PRECISION CANCER THERAPY

Single-cell techniques have been applied in precision cancer
therapy, such as tracing drug treatment responses and
identifying novel therapeutic targets (Su et al., 2017; Yang et al.,
2019; Jerby-Arnon et al., 2021). For example, melanoma cells with
BRAFmutation often develope drug resistance after treatment with
BRAF inhibitors. By use of single-cell functional proteomics, the
activation of MEK/ERK and NFκB p65 pathways were revealed
shortly after BRAF inhibition and before the emergence of drug
resistance, suggesting that combining MEK and NFκB p65
inhibition with BRAF inhibitor could delay the adaptive cell
state transition and development of resistant phenotypes (Su
et al., 2017). Besides, HES6 was identified as a driver of
metastasis in primary uveal melanoma by scRNA-seq,
suggesting that HES6 may represent an actionable target of this
tumor (Pandiani et al., 2021).

Moreover, single-cell techniques have been used to
simultaneously determine the responses of heterogeneous
tumors to multiple chemotherapeutic drugs, which could
uncover the transcriptome networks underlying drug responses
at single-cell resolution, and help to eliminate the effects of intra-
tumoral heterogeneity on treatments (Roider et al., 2020; Srivatsan
et al., 2020). Furthermore, single-cell techniques have advantages
to identifying rare cancer cell subpopulations, which lead to the
tumor progression and failure of cancer treatments (Kim et al.,
2016; Miao et al., 2019; Prieto-Vila et al., 2019; Lee et al., 2020;
Sehgal et al., 2021). For instance, scRNA-seq identified a subset of
tumor-initiating stem cells in squamous cell carcinoma, which
selectively express CD80 molecule and bind to the CTLA4 on
cytotoxic T cells and thus damage the activity of T cells.
Accordingly, blocking the binding of CTLA4 and CD80 could
specifically eliminate these tumor-initiating stem cells and inhibit
tumor relapse after immunotherapy (Miao et al., 2019). Besides,
scRNA-seq revealed coexistence of multiple tumor cell
subpopulations in metastatic renal cell carcinoma, whereas each
tumor cell subpopulation showed distinct dysregulated signal
pathways. This study further demonstrated that combinational
inhibition of both EGFR and SRC signaling pathways could
significantly enhance the therapeutic effect, indicating that
single-cell sequencing can be used to optimize the strategy of
targeted therapy (Kim et al., 2016). Similarly, scRNA-seq has been
used to identify therapeutic targets for patients with refractory
cancer (Lee et al., 2020).

In addition, single-cell techniques have been applied in
identifying biomarkers to predict prognosis of cancer patients.
For instance, by integrating large-scale bulk multi-omics and
single-cell transcriptomic data of primary melanoma, a
predictive model was constructed and 17 genes associated with
the poor prognosis of patients were identified (Song et al., 2021).
Finally, single-cell sequencing has been used to reveal the
prognostic roles of stromal cell heterogeneity in multiple

Cancers (Savas et al., 2018; Dominguez et al., 2020; Zhang Y.
et al., 2021; Gong et al., 2021). For example, Gong et al. performed
scRNA-seq of 66,627 cells from 14 nasopharyngeal carcinomas
(NPCs), which revealed the stromal dynamics and NPC-specific
characteristics in the TME of NPCs. Notably, they found that the
dynamic immune signatures correlate with patient prognosis, such
as increased infiltration of plasma B cells, dendritic cells and
macrophages associated with a good prognosis (Gong et al.,
2021). Moreover, scRNA-seq uncovered a subpopulation of
CD8+ memory T cells in breast cancer, which showed high
expression of immune checkpoint molecules and effector
proteins. Importantly, this subset of T cells was observed to be
significantly associated with an improved survival of patients with
early-stage triple-negative breast cancer (Savas et al., 2018).
Furthermore, Zhang et al. performed scRNA-seq analysis of
renal cell carcinomas (RCC), which revealed that a higher
fraction of endothelial cells associates with better overall
survival of patients. Moreover, two macrophage subpopulations
(macrophage-A and macrophage-B) were identified in the RCCs,
high expression of the macrophage-A signature was observed to be
associated with poor prognosis whereas high expression of the
macrophage-B signature correlated with favorable prognosis
(Zhang Y. et al., 2021). Besides, Dominguez et al. investigated
the single-cell atlas of CAFs in pancreatic cancer by scRNA-seq,
which revealed that a LRR15+CAF subpopulation associates with a
poor outcome of cancer immunotherapy (Dominguez et al., 2020).
Taken together, single-cell technologies have shown great
advantages in personalized therapy and prognosis prediction.

LIMITATIONS OF SINGLE-CELL
TECHNOLOGIES

Although single-cell technologies have greatly enhanced our
understanding of the tumor heterogeneity, there are still
multiple limitations of these techniques, such as limited
sensitivity, scale and accuracy, which need to be addressed by
technological improvements or combined with other technologies
(Lei et al., 2021). Furthermore, most single-cell techniques
performed analysis on dissociated cells, which could not
interrogate spatial architecture of tumor tissues. With the
advance of new techniques, such as the spatial transcriptomics
(ST), this issue can be partly solved. However, the resolution of the
current ST platform is still low, the capture spot usually contains a
couple of cells (Wu et al., 2021). Besides, the transcriptome and
proteome of cells could be disturbed during the preparation of
single-cell suspension. Moreover, most scRNA-seq approaches
only detected protein-coding genes by capturing polyA RNAs,
which excluded all the non-coding genes. In addition,
interpretation of data generated from single-cell omics
techniques has been a challenge, which heavily depended on
bioinformatics methods. However, each bioinformatic
algorithm has its own advantages and limitations. For
example, the number of cell types identified within a tumor
could be affected by using different parameters. Finally, the cost
of current single-cell omics techniques is extremely expensive
compared with the bulk omics approaches.
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CONCLUSIONS

The dynamic evolution of tumor cells and their interactions
with non-tumor cell components in the TME contributed to
the tumor progression. Understating the heterogeneity of
cellular compositions and their crosstalk in the TME will
accelerate the development of personalized therapies.
Fortunately, Single-cell multi-omics have shown great
advantages in the dissecting the intra-tumoral
heterogeneity. Importantly, the identification of cancer cell
plasticity and their regulators have enabled us to understand
the molecular underpinnings of cancer cell evolution during
tumor progression.
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