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Aspergillus flavus is an opportunistic pathogenic fungus for both plant and animal that 
produces carcinogenic toxins termed aflatoxins (AFs). To identify possible genetic targets 
to reduce AF contamination, in this study, we have characterized a novel A. flavus Set3, 
and it shares sequence homology with the yeast protein Set3. The set3 deletion mutants 
present no difference in growth rate but alterations in asexual development and secondary 
metabolite production when compared to the A. flavus wild type. Specifically, deletion of 
set3 gene decreases conidiophore formation and conidial production through 
downregulating expression of brlA and abaA genes. In addition, normal levels of set3 are 
required for sclerotial development and expression of sclerotia-related genes nsdC and 
sclR. Further analyses demonstrated that Set3 negatively regulates AF production as well 
as the concomitant expression of genes in the AF gene cluster. Importantly, our results 
also display that A. flavus Set3 is involved in crop kernel colonization. Taking together, 
these results reveal that a novel Set3 plays crucial roles in morphological development, 
secondary metabolism, and fungal virulence in A. flavus.

Keywords: Set3, regulate, reproduction, aflatoxin biosynthesis, Aspergillus flavus

INTRODUCTION

As both plant and animal opportunistic pathogenic fungus, Aspergillus flavus is responsible for 
serious health and economic impacts worldwide by producing carcinogenic mycotoxins termed 
aflatoxins (AFs). Many agriculturally important oilseed crops, such as peanuts, maize, and tree 
nuts, can be  contaminated by A. flavus and AFs (Amaike and Keller, 2011). AFs are also 
responsible for numerous health problems, including acute aflatoxicosis, immunosuppression, 
liver cancer, and even death in many animal species and human. These diseases are highly 
linked to the consumption of large amounts of AFs due to ingestion of contaminated crops 
(Hedayati et al., 2007; Klich, 2007). Economically, AF contamination leads to substantial monetary 
losses yearly, due in large part to rejection or reduced value of contaminated crops as well as 
costs associated with monitoring and detection in developed countries (Wu et  al., 2014). 
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AFs  and  other mycotoxins are estimated to contaminate one 
quarter of the world’s crops. Specifically, the health risks are 
a major concern in developing countries because of the lack 
of strict regulations or monitoring AF levels in commodities 
prior to consumption (Groopman et  al., 2008).

Nowadays, approaches such as chemical or physical methods 
are insufficient to control A. flavus colonization and AF 
contamination, since A. flavus caused extensive infestations 
by generating asexual spores called conidia (Adams et  al., 
1998; Hedayati et  al., 2007; Amaike and Keller, 2011). New 
strategies, such as those depending on genetic approaches, 
could contribute to the development of new methodologies 
to decrease dissemination and survival of this organism, as 
well as AF biosynthesis. Therefore, it is quite important to 
explore genetic regulatory pathways that control A. flavus 
morphogenesis and AF biosynthesis. Previous studies have 
revealed that AF biosynthesis is controlled by regulatory cluster 
pathways (Payne and Brown, 1998; Yu et  al., 2004), and 
increasing literatures showed that AFs are regulated not only 
by cluster genes (Amare and Keller, 2014; Nie et  al., 2018) 
but also by other signal pathways (Roze et  al., 2004), 
transcriptional regulators (Affeldt et al., 2014; Cary et al., 2017; 
Chang et al., 2017), and epigenetic regulators (Lan et al., 2016; 
Zhi et  al., 2017; Pfannenstiel et  al., 2018).

Set3 is a signature of chromatin-associated protein, which 
was first characterized in yeast by its feature of containing 
plant homeodomain (PHD) finger and Su(var)3-9, Enhancer-
of-zeste, Trithorax (SET) domains (Pijnappel et  al., 2001). 
Nowadays, Set3 protein had been identified in various eukaryotic 
cells, and these proteins encompass several roles, such as histone 
methyltransferase activity, and protein-protein interactions with 
other factors involved in chromatin regulation. Current data 
demonstrated that Set3 participates in multiple cellular functions, 
including meiosis-specific repression of sporulation (Pijnappel 
et  al., 2001), promotion of Ty1 retrotransposon integration at 
tRNA genes (Mou et  al., 2006), signaling secretory stress upon 
the PKC cell integrity pathway (Cohen et  al., 2008), the white-
opaque transition and pathogenicity in Candida albicans (Hnisz 
et al., 2010), as well as the environmental stress response (Torres-
Machorro et  al., 2015; Yu et  al., 2016). In budding yeast, Set3, 
Hos2, Sif2, and Snt1 form the functional core of a histone 
deacetylase complex named Set3/Hos2 complex (Set3C) (Pijnappel 
et  al., 2001). Recently, Set3C is found to play both repressive 
and activating roles in transcription, depending on the context 
of the region to which it is recruited (Kim and Buratowski, 
2009). Set3C is predominantly recruited to the 5′ transcribed 
region of genes to reduce the histone acetylation level (Hnisz 
et  al., 2012). A recent study also showed that Set3 can regulate 
transcription independent of Set3C (Yu et  al., 2016).

Although the roles of Set3  in many organisms have been 
studied, the function of Set3  in A. flavus has not been 
characterized. Herein, by using gene knockout strategy, 
we  identified a novel Set3  in A. flavus, encoding a putative 
SET and a PHD domain protein. Our results reveal that Set3 
is involved in morphological development, secondary metabolism, 
and virulence of the agriculturally and medically important 
fungus A. flavus.

MATERIALS AND METHODS

Strains and Growth Conditions
The uracil auxotrophic strain A. flavus PTSΔku70ΔpyrG (SRRC 
collection number 1709) (Chang et al., 2010) was used as recipient 
strain for gene knockout, and PTSΔku70ΔpyrG:: AfpyrG was 
used as wild-type strain (WT). For phenotype assays, all utilized 
strains were cultured on potato dextrose agar (PDA, BD Difco™, 
USA) media for growth assays at 37°C, on yeast extract sucrose 
(YES, 20  g/l yeast extract, 150  g/l sucrose, 1g/l MgSO4•7H2O) 
media at 29°C for aflatoxin analysis, and on sclerotia-inducing 
Wickerham media (WKM, 2  g/l yeast extract, 3  g/l peptone, 
5 g/l cornsteep solids, 2 g/l dextrose, 30 g/l sucrose, 2 g/l NaNO3, 
1  g/l K2HPO4•3H2O, 0.5  g/l MgSO4•7H2O, 0.2  g/l KCl, 0.1  g/l 
FeSO4•7H2O) (Lan et  al., 2016) for sclerotia analysis. Each strain 
was cultured on three plates at least for technical replicates, and 
each experiment was repeated for three times.

Phylogenetic Tree and Domain Analysis
Amino acid sequences of Saccharomyces cerevisiae Set3 (GenBank 
accession number: NP_012954.3) were used as a query, and 
basic local alignment search tool algorithm was used to download 
sequences of Set3 protein (Aspergillus spp. Candida albicans, 
Fusarium graminearum, Magnaporthe oryzae, Neurospora crassa, 
Arabidopsis thaliana, Drosophila melanogaster, Danio rerio, Mus 
musculus, Homo sapiens) from National Center for Biotechnology 
Information resources (NCBI, http://www.ncbi.nlm.nih.gov/). A 
neighbor-joining phylogenetic tree was constructed by the MEGA 
6.0 software. The visualized Set3 domain was generated by 
DOG 2.0 software (downloaded from http://dog.biocuckoo.org/).

Construction of Knockout and 
Complemented Mutant Strains
To construct set3 knockout mutant (Δset3) strain, previous 
approach was used (Yang et  al., 2016a) Primers utilized in 
this study were listed in Table 1. The entire gene deletion 
cassettes were amplified with specific primers. Overlap polymerase 
chain reaction (PCR) method was performed as described 
earlier (Szewczyk et  al., 2006), and then, fusion PCR products 
were transformed into the PTSΔku70ΔpyrG protoplasts of A. 
flavus. For constructing set3 complemented (Δset3-com) strain, 
PCR products of native promoter and open reading frame for 
Set3, combined with plasmid pPTR1 (Takara, Japan) containing 
the marker gene ptrA, were re-introduced into the protoplasts 
of the gene deletion strains. Fungal transformants were 
preliminary analyzed by PCR and reverse transcription PCR 
(RT-PCR) and further verified by southern blot as reported 
earlier in our group (Yang et  al., 2016a).

Microscopic Examination of Set3-mCherry 
Subcellular Localization
A. flavus Set3-mCherry strains were prepared using a published 
method (Yang et  al., 2016b), and the primers were listed in  
Table 1. To assess Set3-mCherry localization, fresh mycelia 
were analyzed using the Leica confocal SP8 microscope (Leica, 
Heidelberg, Germany). The nuclei of mycelia were observed 
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after samples were stained with 1  μg/ml 4′,6-diamidino-2-
phenylindole (DAPI, Sigma, USA).

Analysis of Fungal Conidia and Sclerotia
Spores (106 conidia/ml) from each strain were top-agar 
inoculated on PDA media for conidia assays and on WKM 
media for sclerotia analysis. For conidia analysis, cultures 
were incubated at 37°C in darkness for 5  days, and conidia 
were collected in triplicate from 10-mm cores that taken 
from equivalent zones of the fungal surface of PDA, and 
the collected samples were homogenized and diluted in 3  ml 
of 0.05% Tween-20 and counted by a hemocytometer (Qiujing, 
Shanghai, China). For sclerotia analysis, after 7  days grown 
on WKM media, each plate was sprayed with 75% ethanol 
to wash away the mycelia mat to allow the enumeration of 
the sclerotia. Sclerotia were collected and counted with the 
light microscope (Leica, Heidelberg, Germany). Each strain 
was assessed on five plates, and each experiment was repeated 
three times.

Stress Response Assays
The WT, the ∆set3-1, the ∆set3-2, and the ∆set3-com strains 
were inoculated onto PDA agar with oxidative stress agent 
H2O2 (2.5 and 5  mM) and cell wall stress agent Congo red 
(CR, 200 and 500  μg/ml), at 37°C in darkness for 3 days, 
respectively. To analyze the role of Set3  in stress response of 

A. flavus, the relative inhibition rates were calculated, according 
to the formula listed in the brackets {(diameter of colony 
without inhibitor − diameter of colony with inhibitor)/diameter 
of colony without inhibitor}. The experiments were performed 
in three repetitions.

Determination of Aflatoxin Production
To analyze aflatoxins (AFs), each strain was cultured in YES 
liquid media at 29°C for 3  days (180  r/min). Extracted AF 
samples were assessed by thin layer chromatography (TLC) 
and high performance liquid chromatography (HPLC) methods 
as previously described (Lan et  al., 2016).

Briefly, 106 conidia of the WT, the ∆set3-1, the ∆set3-2, 
and the ∆set3-com strains were inoculated in 50 ml YES liquid 
medium, and cultures were incubated at 29°C. After 72  h, the 
cultures were combined with 25  ml chloroform in 250  ml 
flask, which were shaken for 30  min. The mycelia were then 
collected, dried completely, and weighed. Next, the organic 
layer of each sample was taken to a new plate, completely 
dried, and resuspended in chloroform solvent (1  ml/mg of 
mycelia). Then, the extracts (10  ml/sample) were loaded onto 
silica TLC plates (Haiyang Chemical, Qingdao, China) and 
separated in developing solvent (chloroform: acetone  =  9:1). 
The TLC plates were exposed to UV radiation (365  nm) and 
photographed using a Quantum ST5 imaging system (Vilber 
Lourmat Deutschl and GmbH, Eberhardzell, Germany).

For HPLC experiment, the aflatoxin extracts were dissolved 
in methanol, filtered (0.22  μm), and performed by a Mycotox™ 
column (Waters, Milford, USA) at 42°C. The column was equilibrated 
in running solvent (water: methanol: acetonitrile  =  56: 22: 22), 
and 10  μl samples were injected, and isocratic runs were 
conducted for 15  min in 100% running solvent at a flow rate 
of 1.0  ml/min. Aflatoxins were analyzed using a fluorescent 
detector (Waters, Milford, USA) with excitation and emission 
wave lengths of 365 and 455 nm, respectively. Aflatoxin production 
for each strain was analyzed using three flasks, and each experiment 
was repeated three times.

Crops Infection Experiments
Peanuts and maize seed colonization assays were performed 
using a published procedure (Lan et  al., 2016). The peanut 
cotyledons and maize seeds infected with utilized strains 
were incubated at 28°C. After 5  days incubation, host seeds 
were harvested in 50  ml Falcon tubes and then vortexed 
for 2  min to release conidia into 20  ml sterile water 
supplemented with 0.05% Tween-80. The aflatoxin from the 
infected host seeds was extracted and analyzed as previously 
described (Lan et  al., 2016).

Quantitative Real-Time PCR Analysis
For qRT-PCR analysis, mycelia of all tested strains were 
collected from PDA, WKM, and YES cultures for total RNA 
isolation with TRIzol reagent (Biomarker Technologies, Beijing, 
China). qRT-PCR was performed with Piko real-time PCR 
system (Thermo Fisher Scientific, Finland) by using the qPCR 
SuperMix (TransGen Biotech, Beijing, China). All utilized 
qRT-PCR primers were listed in Table 2. The relative 

TABLE 1 | Primers utilized in this study.

Primer Sequence (5’-3’)

set3-AF

set3-AR

CAAGAAGATGTCACCCAACC

GGGTGAAGAGCATTGTTTGAGGCCAACCGAGCCTGCCTAC

set3-BF

set3-BR

GCATCAGTGCCTCCTCTCAGACCTCCTGCCGGTGGTGAT 

CAAGGTGGTTCTCGCTCC

pyrG-F

pyrG-R

GCCTCAAACAATGCTCTTCACCC

GTCTGAGAGGAGGCACTGATGC

set3-NF

set3-NR

CACGAGATGGGTTCCTGAT

GAGATGGTTGCGGTTGAG

set3-OF

set3-OR

CTCTTTACATCCATCGGTTTC

GTGGGTGCCGTTTACTTG

P801

P1020

CAGGAGTTCTCGGGTTGTCG

CAGAGTATGCGGCAAGTCA

set3-com-F

set3-com-R

TTGGCACATACGCAACTA

TGATACGCCGTCACAAA

mCherry-AF

mCherry-AR

ACCGAAGAAAGAAGCGAGCCA 

CTCGCCCTTGCTCACCATGGAAAGCGAGGATAGCTGGGA

mCherry-ptr-F

mCherry-ptr-R

ATGGTGAGCAAGGGCGAG

CGAGGTGCCGTAAAGCACTAACTACTTGTACAGCTCGTCCAT

ptrA-F

ptrA-R

CCGATTTCGGTCTATTGGT

CGACACGGAAATGTTGAA

mCherry-BF

mCherry-BR

CTGGATGGAGGCGGATAAAGTCTCCTGCCGGTGGTGAT

CAAGGTGGTTCTCGCTCC

mCherry-NF

mCherry-NR

CCACTGCTGCTCATAACTC

CCTAAACACCATACATACCCT

Each row may not add up to 100% because some of the options were not selected, 
although this only represents fewer than 2% of the choices.

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Lan et al. Set3, Regulate, Development, Aflatoxins, A. flavus

Frontiers in Microbiology | www.frontiersin.org 4 March 2019 | Volume 10 | Article 530

quantification of expression level for each gene was calculated 
following the 2−ΔΔCt method, and the expression of actin was 
used as internal control. Each sample for qRT-PCR assays 
was conducted with technical triplicates, and the experiment 
was repeated three times.

Statistical Analysis
All data were presented with the means ± SD (standard deviation). 
The significant differences (statistical significances) among groups 
were calculated with ANOVA and least significant difference (LSD) 
tests. The statistical analysis and significance were performed with 
the software GraphPad Prism5 (La Jolla, CA, USA), and the 
difference is regarded to be  statistically significant when p < 0.05.

RESULTS

Identification and Analysis of Set3  
in A. flavus
There were no previous reports of Set3  in Aspergillus species, 
so the Set3 amino acid sequence from model fungus Saccharomyces 
cerevisiae (GenBank accession number: NP_012954.3) was used 
with a basic local alignment search tool algorithm, then a putative 

protein that contains a PHD finger and a SET domain protein 
was identified in A. flavus designated Set3 (AFLA_134050). A. 
flavus Set3 presents 24% identity and 52% similarity with S. 
cerevisiae Set3, while it showed 61% similarity with the model 
filamentous fungus Aspergillus nidulans (AN5891.2, a putative 
protein). Analysis of Set3 proteins indicated that all of those 
Set3 proteins share conserved structures consisting of SET and 
PHD domains among fungi, plants, and animals (Figure 1A). 
A phylogenetic tree of evolutionary relationship of these Set3 
proteins was constructed, revealing that the Set3 protein is 
conserved among Aspergillus species (Figure 1B).

Subcellular Localization of A. flavus Set3
For subcellular localization analysis, a Set3-mCherry fusion 
generated with its native promoter was constructed and 
transformed into A. flavus auxotrophic strain PTSΔku70ΔpyrG. 
The construction strategy was shown in Figure 2A, and 
the resulting transformed strains exhibited a similar phenotype 
with WT strain, suggesting that the mCherry-tag did not 
affect the function of Set3 of A. flavus (data not shown). 
The results in Figure 2B showed that the mCherry fluorescence 
was dispersed in whole cytoplasm. By staining with 
4,6-diamidino-2-phenylindole (DAPI), we  also found that 
A. flavus Set3 is localized not only in cytoplasm but also 
in nucleus (Figure 2B).

Set3 Does Not Affect Growth Rate, but 
Involves in Hyphal Development
To gain an insight into the function of Set3  in morphogenesis 
of A. flavus, we  generated set3 gene deletion mutants (Δset3-1 
and Δset3-2) and complementation strain (Δset3-com), which 
are illustrated in Figure 3A. Transformants were confirmed 
by diagnostic PCR (Figure 3B). Expression levels of set3 in 
WT, Δset3, and Δset3-com strains were analyzed by RT-PCR, 
and the results showed that set3 gene transcript level was not 
expressed in those deletion strains, whereas set3 was detected 
in both the WT and Δset3-com strains (Figure 3C). The deletion 
strains were further verified by Southern blot (Figure 3D). In 
this study, we selected two deletion strains Δset3-1 and Δset3-2 
for further analysis. In the morphological study, our results 
showed that colony growth was not significantly altered in 
Δset3 strains in comparison to the WT and Δset3-com strains 
(Figure 3E). However, the Δset3-1 and Δset3-2 strains presented 
more fluffy phenotype when compared to WT and Δset3-com 
strains (Figure  3F), suggesting that Set3 involves in hyphal 
growth in A. flavus.

Set3 Regulates Conidia Formation
In addition to fungal growth, Δset3-1 and Δset3-2 strains were 
found to decrease severely in conidiation when compared to 
WT strains (Figure 4B). For analysis of defect in conidiation, 
we further examined formation of conidiophores, and the result 
showed the Δset3-1 and Δset3-2 strains generate less normal 
conidiophores than WT strains (Figure 4A). Next, we checked 
the expression levels of genes brlA and abaA, which encode 
transcript factors related to conidiation. The results indicated 

Table 2 | qRT-PCR Primers utilized in this study.

Primer Sequence (5’-3’)

brlA/QF

brlA/QR

GCCTCCAGCGTCAACCTTC

TCTCTTCAAATGCTCTTGCCTC

abaA/QF

abaA/QR

CACGGAAATCGCCAAAGAC

TGCCGGAATTGCCAAAG

nsdC/QF

nsdC/QR

GCCAGACTTGCCAATCAC

CATCCACCTTGCCCTTTA

sclR/QF

sclR/QR

CAATGAGCCTATGGGAGTGG

ATCTTCGCCCGAGTGGTT

nsdD/QF

nsdD/QF

GGACTTGCGGGTCGTGCTA

AGAACGCTGGGTCTGGTGC

aflR/QF

aflR/QR

AAAGCACCCTGTCTTCCCTAAC

GAAGAGGTGGGTCAGTGTTTGTAG

aflS/QF

aflS/QR

CGAGTCGCTCAGGCGCTCAA

GCTCAGACTGACCGCCGCTC

aflC/QF

aflC/QR

GTGGTGGTTGCCAATGCG

CTGAAACAGTAGGACGGGAGC

aflD/QF

aflD/QR

GTGGTGGTTGCCAATGCG

CTGAAACAGTAGGACGGGAGC

aflK/QF

aflK/QR

GAGCGACAGGAGTAACCGTAAG

CCGATTCCAGACACCATTAGCA

aflO/QF

aflO/QR

GATTGGGATGTGGTCATGCGATT

GCCTGGGTCCGAAGAATGC

aflP/QF

aflP/QR

ACGAAGCCACTGGTAGAGGAGATG

GTGAATGACGGCAGGCAGGT

aflQ/QF

aflQ/QR

GTCGCATATGCCCCGGTCGG

GGCAACCAGTCGGGTTCCGG

actin/QF

actin/QR

ACGGTGTCGTCACAAACTGG

CGGTTGGACTTAGGGTTGATAG
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that the transcript levels of both brlA (p  <  0.05) and abaA 
(p < 0.05) were significantly reduced in the Δset3-1 and Δset3-2 
strains, when compared to the WT andΔset3-com strains 
(Figures 4C,D). All these results indicated that set3 regulates 
conidia formation in A. flavus.

Set3 Positively Affects Sclerotia 
Production
A. flavus produces sclerotia to adapt unsuitable environment 
(Horn et  al., 2009). To determine involvement of Set3  in 
sclerotia formation, all the strains were cultured on the 

A

B

FIGURE 2 | Subcellular localization of  A. flavus Set3. (A) Construction strategy of Set3-mCherry strains. (B)  Fluorescent image of Set3-mCherry during the 
hyphae growth period, and the nucleus was stained with DAPI. Bars = 20 μm.

A B

FIGURE 1 | Characterization of Set3 protein of A. flavus. (A) Domains from Set3 proteins were characterized by SMART, and DOG2.0 software was used to 
visualize protein domains. (B) Phylogenetic relationship of Set3 from different species was analyzed.
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sclerotia-inducing Wickerham media (WKM) at 37°C for 7 days. 
The results indicated that sclerotia production in the Δset3-1 
and Δset3-2 strains was significantly decreased and less matured 
than that of the WT and complemented strains (p  <  0.05) 
(Figures 5A,B). To confirm these findings, we  performed 
qRT-PCR to check transcript levels of the sclerotia-related 
genes, nsdC and sclR. The results revealed that gene expression 
levels of nsdC (p  <  0.05) and sclR (p  <  0.05) were significantly 
lower in the Δset3-1 and Δset3-2 strains than WT and Δset3-com 

strains (Figures 5C,D). These above results showed that set3 
plays an important role in sclerotia production in A. flavus.

Set3 Plays Important Roles in Responses 
to Oxidative and Cell Wall Stresses
To verify whether A. flavus Set3 was involved in stress responses, 
we  measured several environmental stress responses by adding 
various stress agents into the tested media. As shown in Figures 
6A,B, the Δset3-1 and Δset3-2 strains showed more endurance 

A B

C D

E

F

FIGURE 3 | Construction of the set3 deleted (Δset3-1 and Δset3-2), complemented strains (Δset3-com), and growth analysis. (A) Construction strategy for Δset3 
strain using homolog recombination. (B)  The deleted and complemented strains were verified by PCR analysis with genomic DNA as template, lane 1~4: PCR 
examination on upstream of WT, Δset3-1, Δset3-2, and Δset3-com strains, lane 5~8: PCR examination on downstream of WT, Δset3-1, Δset3-2, and Δset3-com 
strains.  (C) RT-PCR was used to confirm the transcript levels of set3 gene in deleted and complemented strains. (D) Southern blot was conducted to confirm the 
deletion mutants.  (E) Colony morphology of WT, Δset3, and Δset3-com strains, grown on PDA media at 37°C for 5 days. (F) The Δset3-1 and Δset3-2 strain 
showed fluffier phenotype when compared to WT and Δset3-com strains.
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A

B C D

FIGURE 4 | Deletion of set3 caused defects of conidiation in A. flavus. (A) Conidiophores of WT, Δset3-1, Δset3-2, and Δset3-com strains were observed by 
microscope after 12 h incubation, and bars = 200 μm. (B) Conidia production of WT, Δset3-1, Δset3-2, and Δset3-com strains. (C) Transcript levels of  
 conidia-related gene brlA among WT, Δset3-1, Δset3-2, and Δset3-com strains. (D) Transcript levels of conidia-related gene abaA among WT, Δset3-1, Δset3-2, 
and Δset3-com strains. Different letters represent p < 0.05.
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FIGURE 5 | Deletion of set3 caused defects of sclerotia production in A. flavus. (A) Phenotypic analyses of WT, Δset3-1, Δset3-2, and Δset3-com strains grown 
on WKM media at 37°C for 7 days. (B) Sclerotia production of WT, Δset3-1, Δset3-2, and Δset3-com strains. (C,D) Gene transcript level of sclerotia-related genes 
nsdC and sclR among WT, Δset3-1, Δset3-2, and Δset3-com strains, respectively. Different letters represent p < 0.05.
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(p  <  0.05) than WT and Δset3-com strains when induced by 
oxidative stress agents (2.5  mM and 5  mM H2O2), suggesting 
that the Δset3-1 and Δset3-2 strains were less sensitive to the 
oxidative stress. Additionally, our results displayed that the 
relative growth inhibition of the deletion strains was significantly 
higher (p  <  0.05) than that of WT and Δset3-com strains 
when induced by cell wall integrity stress agent Congo Red 
(CR, 200 and 500  μg/ml) (Figures 6A,C). Whereas there was 
no inhibition growth difference among the WT, Δset3-1, Δset3-
2, and Δset3-com strains with the addition of osmotic stress 
(sodium chloride, NaCl) and genotoxic stress (methyl 
methanesulfonate, MMS) agents (p  >  0.05) (data not shown). 
All these results suggested that Set3 participates in oxidative 
and cell wall stress responses in A. flavus.

Set3 Negatively Regulates Aflatoxin 
Production
To examine if Set3 plays a role in aflatoxin (AFs) production, 
content of AFs in Δset3-1 and Δset3-2 cultures as well as in 

WT and complemented strains were assayed. The results showed 
that deletion of set3 gene resulted in a significant increase (>100%) 
(p  <  0.05) in aflatoxin B1 (AFB1) levels in comparison with 
those in WT and Δset3-com strains (Figures 7A,B). These findings 
were further confirmed by high performance layer chromatography 
(HPLC) analysis, showing both AFB1 and aflatoxin B2 (AFB2) 
production were upregulated in Δset3-1 and Δset3-2 strains 
(Figure 7C). In addition, we  detected transcript levels of genes 
relevant to aflatoxin biosynthesis. The qRT-PCR results indicated 
that both Δset3-1 and Δset3-2 strains increased the transcript 
levels of the candidate genes for AFs biosynthesis, including aflR, 
aflS, aflC, aflO, aflP, and aflQ, when compared to that of WT 
and Δset3-com strains (Figure 7D). These above results implied 
that set3 negatively regulates AF production in A. flavus.

Set3 Is Involved in Crop Kernel 
Colonization
To determine the roles of Set3  in kernel virulence, peanuts 
and maize kernel seeds were inoculated with WT strain, the 

A

B C

FIGURE 6 | Deletion of set3 affects oxidative and cell wall stress responses in A. flavus. (A) Colony morphology of WT, Δset3-1, Δset3-2, and Δset3-com strains 
cultured on PDA media with oxidative stress agents (2.5 mM and 5 mM H2O2) and cell wall integrity stresses agent (200 μg/ml and 500 μg/ml CR) at 37°C for 7 
days. (B) Inhibition growth rate induced by oxidative stress agents of WT, Δset3-1, Δset3-2, and Δset3-com strains. (C) Inhibition growth rate induced by cell wall 
integrity stress agent of WT, Δset3-1, Δset3-2, and Δset3-com strains. Different letters represent p < 0.05.
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Δset3-1, Δset3-2, and Δset3-com strains. Visually, both the 
Δset3-1 and Δset3-2 strains showed less able to infect and 
sporulate on host seeds (Figures 8A,D). After 5 days inoculation 
at 28°C, we  assayed conidia amount from the host seeds, and 
the results showed that Δset3-1 and Δset3-2 strains were 
impaired to generate the conidia in comparison with the WT 

and complemented strains (p  <  0.05) (Figures 8B,E). The 
aflatoxin from the infected seeds was subsequently assessed, 
and the results in Figures 8C,F showed that the Δset3-1 and 
Δset3-2 strains produced more AF contents (p  <  0.05) in both 
peanut and maize seeds. All these results indicated that set3 
in A. flavus is involved in colonization to crops.

A

C

D

B

FIGURE 7 | Aflatoxin production of WT, Δset3-1, Δset3-2, and Δset3-com strains. (A) Aflatoxins were detected by thin-layer chromatography (TLC) after  
grown on YES media for 3 days at 28°C in the dark. (B) Relative aflatoxin production in (A) was qualified. (C) HPLC analysis of aflatoxin production  
in WT, Δset3-1, Δset3-2, and Δset3-com strains after grown on YES media for 3 days at 28°C in the dark. (D) Transcript level of aflatoxin-related genes aflR,  
aflS, aflC, aflO, aflP, aflQ from WT, Δset3-1, Δset3-2, and Δset3-com strains. Different letters represent p < 0.05.
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DISCUSSION

During recent years, SET and PHD domain orthologs have 
been documented to play crucial roles in increasingly organisms 
from fungi to animals (Pijnappel et  al., 2001; Hnisz et  al., 
2010; Nobile et  al., 2014; Yun et  al., 2014; McElroy et  al., 
2017). Our in silico analysis indicated that the predicted Set3 
protein sequences were conserved within its corresponding 
homologs (Figure 1). A. flavus Set3 shows 100% identity to 
its homolog in important industrial fungus Aspergillus oryzae, 
and 61% identity to its homolog in the model Aspergillus species 
A. nidulans. Though it only shares 45% similarity with the 
model plant species Arabidopsis thaliana and 38% similarity 

with Drosophila elegans, the whole analyzed organisms harbor 
the conserved PHD and SET domain, implying that Set3 is 
important for survival. In yeast, Set3 is a non-essential gene, 
for survival, while with a mutant phenotype of defective 
transcription kinetics (Wang et  al., 2002; Hnisz et  al., 2012). 
Deletion of upset gene, the Drosophila homolog of SET3, was 
found to be  lethal in both sexes in flies (McElroy et  al., 2017). 
What’s more, MLL5 (SET3 homolog in mammals) has been 
linked to several different cellular processes, including cell cycle 
progression (Deng et  al., 2007), hematopoiesis (Heuser et  al., 
2009), oncogenesis (Emerling et al., 2002), and DNA methylation 
(Yun et  al., 2014). In this study, our results indicated that Set3 
protein positively regulates conidiation, sclerotial development, 

A
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E

FIGURE 8 | Crops infection of WT, Δset3-1, Δset3-2, and Δset3-com strains. (A) Phenotype of all strains grown on living maize seeds after grown in darkness for 
5 days. (B) Amount of conidia was measured from the infected maize seeds. (C) Aflatoxin production was detected from the infected maize seeds. (D) Phenotype of 
all strains grown on peanut seeds after 5 days in darkness. (E) Amount of conidia was measured from the infected peanut seeds. (F) Aflatoxin production was 
detected from the infected peanut seeds. Mock represents that crop kernels were inoculated with sterile water as a control group. Different letters represent p < 0.05.
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and cell wall stress response, whereas it negatively controls AF 
biosynthesis and oxidative stress response in A. flavus.

Here, we investigated the effects of Set3 on the fungal biology 
in A. flavus. Deletion of set3 gene produces more hyphal in 
A. flavus (Figure 3), which means that Set3 functions as a 
repressor for the hyphal development in filamentous fungi. 
These findings are consistent with the report on the pleiomorphic 
fungal pathogen, Candida albicans, which showed that the Set3/
Hos2 histone deacetylase complex (Set3C) acts as a crucial 
repressor of the yeast-to-filament transition (Hnisz et al., 2010), 
and inactivation of set3 gene resulted in biofilm perturbation 
in this fungus (Nobile et  al., 2014). Our results also revealed 
that Set3 is a positive regulator of A. flavus asexual development, 
as a significant reduction in the conidial production of the 
Δset3 colonies was observed when compared to that of WT 
(Figure 4). These were accompanied by a reduction in expression 
of brlA and abaA, essential genes in the central regulatory 
pathway that controls asexual development (Adams et al., 1988, 
1998). Unlike its positive roles in conidiation in A. flavus, 
Set3C represses genes in early/middle of the yeast sporulation 
program, including key meiotic regulators Ime2 and Ndt80 
(Pijnappel et  al., 2001). Besides conidiation, Set3 also engages 
in sclerotia formation (Figure 5A), sexual development structures 
that allow this fungus to survive extreme environmental 
conditions (Wicklow, 1987; Cary et  al., 2012), and it was well 
supported by the obvious downregulation of the sclerotia-related 
transcription factors nsdC (Figure 5C) and sclR (Figure 5D). 
All these observations indicated that Set3 plays diverse roles 
in cellular functions of filamentous fungi.

In natural environments, cells can experience rapidly changing 
conditions and must correspondingly change their gene 
expression patterns to adapt (Feil and Fraga, 2012). Set3 
binding was enriched for stress-related genes, and it plays 
both positive and negative roles in cell defense (Hnisz et  al., 
2012; Kim et  al., 2012). Set3C was important in regulating 
gene induction during the stress response, including changes 
in the carbon sources (Kim et  al., 2012), nitrogen starvation 
(Pijnappel et  al., 2001), and DNA damage (Sharma et  al., 
2007). Here, deletion of A. flavus set3 caused less sensitive 
to oxidative stress (Figure 6). Previous study showed that a 
paralog to Set3 known as Set4 also contains a PHD finger 
and a divergent SET domain, and it can interact with chromatin, 
which directly localizes to stress response genes upon regulating 
ROS (Tran et  al., 2018). Oxidative stress response is highly 
related to reactive oxygen species (ROS) (Schieber and Chandel, 
2014). Therefore, it is reasonable to infer that A. flavus Set3 
regulates oxidative stress response in the same pathway. On 
the contrary, Δset3 mutants showed more sensitive to cell 
wall stress than WT (Figure 6). Exposure to Congo red (CR) 
lowers the content of cell wall chitin, and the effects of Set3 
on A. flavus cell wall integrity may be  due to its regulation 
of the cell wall chitin accumulation factor Smp1 or the 
oligosaccharyltransferase Stt3 (Hagiwara et al., 2011). All these 
results suggest the diverse roles of Set3  in environmental 
stress responses. Therefore, we  postulate that Set3 is likely 
to contribute to each cell defense through distinct molecular 

mechanisms in A. flavus; however, further investigation will 
be  required to reveal the mechanisms driving the stress-
responsive regulation by Set3.

Although the biosynthesis pathway of AFs has been well 
characterized, the regulatory mechanism is complicated and 
has not been fully understood. Specially, the involvement of 
both SET and PHD domain protein was not reported yet in 
control of secondary metabolism. Our results found that 
inactivation of Set3 promoted AF production and its related 
genes’ expression (Figure 7), suggesting that Set3 acted as a 
repressor in AF biosynthesis. Set3 and HosA, as the core 
subunit of Set3C histone deacetylase complex, had been shown 
similar biological functions in most studies (Pijnappel et  al., 
2001; Cohen et  al., 2008; Hnisz et  al., 2010; Torres-Machorro 
et al., 2015). In another study, we identified a key Set3C histone 
deacetylase component HosA (homolog to Hos2) of A. flavus, 
unexpectedly, deletion of hosA seriously reduced the AF 
production. This might be  due to that HosA was required for 
bounding directly to AF biosynthesis cluster genes (data 
unpublished). We  speculated that Set3 and HosA were 
independently involved in regulation of AF biosynthesis, not 
only restricted to function as the Set3C complex, but also 
might play roles in other pathways or functional complexes 
to control AF biosynthesis. Functional data on SET domain 
proteins have related to chromatin regulation, and in certain 
cases, epigenetic mechanisms. Specifically, Set3 proteins have 
been identified as histone methyltransferase (Kim and Buratowski, 
2009), and they participated in Hst1-Sum1 complex (Pijnappel 
et al., 2001). From the upregulation of AF biosynthesis regulatory 
genes aflR and aflS in Δset3 strains (Figure 7D), it is possible 
that inactivation of Set3 may cause alteration of regulatory 
genes for post-translation modification. Taking together, these 
results further revealed that regulatory mechanism for AFs 
biosynthesis is highly complicated.

Previous study had been shown that C. albicans Δset3 
displayed strongly attenuated virulence in a mouse model of 
systemic infection (Hnisz et  al., 2010), but the role of Set3  in 
virulence is still unknown in filamentous fungus. A. flavus 
has potential to infect oilseed crops by sporulation on injured 
seeds, therefore, to contaminate the hosts with AFs. Although 
the physiological significance of these SET domains remains 
unknown, Set3 may be  relevant to fungal virulence of A. 
flavus, on the basis of the reduction of conidiation and increase 
of aflatoxin biosynthesis as a result of the inactivation of 
set3. This idea is further supported by the colonization 
phenotypes of the set3 mutants on both peanut and maize 
seeds (Figure 8).

In conclusion, we  identified a novel Set3 consisting of a 
functional SET and a PHD domain in A. flavus. Our results 
suggested that A. flavus Set3 plays important roles in 
reproduction, AFs biosynthesis, and fungal virulence and 
provides a novel sight for developing new fungal control 
strategies. Whereas further studies are required to discover 
the SET and PHD protein machinery and the molecular 
mechanism of Set3 cross-talk with the other crucial signal 
pathways in A. flavus.
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