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ABSTRACT: This article reports an improvement in the perform-
ance of the hafnium oxide-based (HfO2) ferroelectric field-effect
transistors (FeFET) achieved by a synergistic approach of
interfacial layer (IL) engineering and READ-voltage optimization.
FeFET devices with silicon dioxide (SiO2) and silicon oxynitride
(SiON) as IL were fabricated and characterized. Although the
FeFETs with SiO2 interfaces demonstrated better low-frequency
characteristics compared to the FeFETs with SiON interfaces, the
latter demonstrated better WRITE endurance and retention.
Finally, the neuromorphic simulation was conducted to evaluate
the performance of FeFETs with SiO2 and SiON IL as synaptic
devices. We observed that the WRITE endurance in both types of
FeFETs was insufficient ( 10 )8< to carry out online neural network
training. Therefore, we consider an inference-only operation with offline neural network training. The system-level simulation reveals
that the impact of systematic degradation via retention degradation is much more significant for inference-only operation than low-
frequency noise. The neural network with FeFETs based on SiON IL in the synaptic core shows 96% accuracy for the inference
operation on the handwritten digit from the Modified National Institute of Standards and Technology (MNIST) data set in the
presence of flicker noise and retention degradation, which is only a 2.5% deviation from the software baseline.
KEYWORDS: neuromorphic computing, Flicker noise, interface traps, FeFET, hafnium oxide, interface treatments

■ INTRODUCTION
The advent of neural networks (NN), especially the
convolution neural network,1−3 brought a historical change
in the field of computing, and machine learning became the
bona f ide choice for solving many tasks. However, the software-
based artificial neural networks (ANN) implemented in
traditional von Neumann computing systems face severe
bottlenecks due to the latency engendered by the data transfer
between segregated memory units and processing units. This
bottleneck has become more vivid with the plethora of edge
devices in recent times. Their real-time data have manifested
the need to overcome latency and energy costs induced by the
data transfer between the processing unit and memory in von
Neumann architecture. Therefore, researchers showed interest
in building an in-memory-computing (IMC) based alternative
paradigm,4−8 where the computation is done inside the
memory, reducing the latency and energy cost. The
quintessential example of IMC is vector-matrix multiplication
(VMM) with nonvolatile memories (NVMs), which is applied

to solve many high-level applications such as neuromorphic
computing and to solve computationally tricky problems.9−12

During the execution of VMM for neuromorphic computing,
the memory unit must perform computations using single-
instruction data sets. The memory element used for calculation
must be able to encode the data in physically realizable
parameters such as charge, current, or voltage with low latency
and also must be compatible with the scaling trend.

Among many emerging memory technologies like resistive
random access memory (ReRAM)13−15 and phase change
memory (PCM),16−19 ferroelectric field effect transistors
(FeFETs) seem to be the most promising ones. The
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pronunciation of ferroelectricity in a single-layer thin film of
hafnium oxide (HfO2), fast switching, high on-current (ION) to

off-current (IOFF) ratio ( )I
I

ON

OFF
, excellent linearity in synaptic

weight updates, bidirectional operation, and good endurance
are the key technological factors that make FeFET superior to
other methods.20,23−30,21,22 However, the primary bottleneck
in implementing the FeFET-based computing system lies in
the intrinsic stochasticity owing to the polycrystalline nature of
HfO2-based ferroelectric thin film, as well as inherent defect
sites that may capture electrons or holes from the channel side
(CS) or gate side (GS).31−33 Numerous efforts have been
made to reduce the impacts of such nonidealities from the
device process, and a circuit point of view.34−39,23,25 Previously,
it has been reported how the quality of the interface and the
READ-Voltage play a pivotal role in the performance of
FeFETs, especially for low-frequency noise response, retention,
and endurance.40,41,25,21,42−44 In this work, we aim to maximize
the reliability and performance of FeFETs by adopting a
synergistic approach of READ-voltage optimization and
interfacial-layer engineering.

This paper begins with the fabrication and characterization
of FeFET devices. We have fabricated FeFET devices with two
different interfaces, SiON and SiO2. Low-frequency noise,
endurance and retention characteristics are used to gauge the
impact of IL of the performance of the FeFETs. The noise
spectrum, in terms of output power spectral density (SID) and
the input gate voltage noise (SvG), are used to characterize the
low-frequency noise characteristics. Although we observed that
FeFETs based on SiO2 show a wider memory window (MW)
and better low-frequency noise response, FeFETs with SiON
as IL outperform those with SiO2 as IL in terms of endurance
and retention. This phenomenon is discussed in detail in the
following sections.

The second part of this article assesses the impact of IL
engineering on neuromorphic computing applications. An
artificial neural network has two primary operations: (i)
training and (ii) inference. The goal of the training operation is
to obtain the best possible values for the synaptic weights to

minimize the cost function. Therefore, synaptic weights are
constantly updated during training operations, necessitating
high WRITE endurance in synaptic devices for online training.
The other plausible option is offline training of neural
networks and carrying out the inference-only operations in
the hardware. During offline training, the synaptic weights are
optimized in the software and are subsequently written into the
hardware. Therefore, stable data-retention capability and low
READ variations are necessary for carrying-out inference
operations on the hardware without repeated retraining. With
the endurance to WRITE limited to 3 × 104 cycles, online
training of the neural network (NN) becomes tricky with the
synaptic devices manufactured in the synaptic core. Therefore,
we have considered an inference-only operation after training
the neural network offline for a single time. We observed that
optimizing the READ voltage could reduce the impact of low-
frequency noise, especially during a READ operation.
However, the systematic degradation in long-term data
retention becomes crucial for conducting an inference
operation without retraining. Devices with SiON interface
demonstrate high immunity to such variations and maintain an
inference accuracy of over 96% without retraining for MNIST
handwritten data sets in the presence of noise and retention
degradation.

■ EXPERIMENTS
Fabrication. The tested devices are FeFETs prepared on 300 mm

bulk-Si wafers with CMOS-compatible industry-standard production
tools. The size of the devices under consideration are 1 μm2 (W = 1
μm and L = 1 μm), with 2 nm thick interface material of SiO2 or
SiON, and a 10 nm silicon-doped HfO2 (HSO) layer. The
transmission electron microscopic (TEM) image in Figure 1 confirms
the thickness of the interfacial and ferroelectric layers. The interfacial
layer of SiO2 was grown by self-terminating chemical oxidation, and
the SiON layer was formed by rapid thermal annealing (RTA). The
quintessential process of preparing HfO2 thin film is atomic layer
deposition (ALD). The ALD process involves the sequential
deposition of a self-limiting monolayer of precursor molecules with
an oxidizer. We used HfCl4 with SiCl4 as precursors and H2O as an
oxidizing agent during ALD. The ALD of the 10 nm HSO layer was

Figure 1. Schematic and process flow of the FeFET devices with a 10 nm Si:HfO2 layer. The inset shows the transmission electron microscopy
image of the material stack.
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conducted at 300 °C. The cycling ratios for HfCl4 and SiCl4 were
16:1. The top electrode of titanium nitride (TiN) and amorphous
silicon was deposited by physical vapor deposition (PVD) and
chemical vapor deposition (CVD), respectively. The RTA for
crystallization and dopant activation was conducted simultaneously
at 1050 °C for 5 s. Figure 1 describes the detailed process flow of
device fabrication.
Electrical Characterization. The electrical characterization was

conducted using a B1500A Semiconductor Analyzer. The devices were
subjected to wake-up cycling by 5 and −4.5 V pulses of 500 ns before
READ-WRITE. The fabricated devices were programmed to binary
levels using 500 ns pulses at the gate terminal. A positive pulse at the
gate terminal of n-type FeFET programs the devices at a low
threshold voltage (LVT) state, and the negative pulse programs the
device at a high threshold voltage (HVT) state. Each WRITE pulse
was preceded by a RESET pulse of 500 ns, which is −5 V for WRITE-
1 and 4.5 V for WRITE-0. The drain, source, and bulk terminals were
biased at 0 V during the WRITE operation. The WRITE-pulses,
applied at the gate terminal, align the ferroelectric dipoles according
to their polarity, which manipulates the surface charge density of the
channel, the conductance of channel (Gch), and the threshold voltage
(Vt). Each state’s Vt was extracted at a constant drain current of 100
nA. A nondisturbing direct current (DC) sweep from −0.5 to +2 V
was applied at the gate terminal for the READ operation. The drain to
source voltage (Vds) was 100 mV during the READ operation.
Noise and Reliability Characterization. Quintessentially, one

observes the low-frequency or flicker noise as the aftermath of the
dangling bonds at the semiconductor and gate dielectric interface and
the defect states in the dielectric material. In FeFETs, during the
READ operation of the FeFETs, the surface charge carriers of the
semiconductor can be randomly trapped and detrapped inside the
defect states of the dielectric, generating the flicker noise in the drain
current. Flicker noise investigation and characterization were
performed with a ProPlus noise measurement system along with the
low noise amplifiers and the filtering of the system. For considering
the ferroelectric influence and different noise behavior of the HVT
and LVT states of the device, a more detailed description can be
found elsewhere.37 Multiple operating points were set for various
measurements focusing on the linear region. We have analyzed input
referred or gate input noise (SvG) and output or drain current noise
SID. SvG is an important Figure of merit, which provides crucial
information regarding the choice of the optimal operating point.
The analytical expression of it are given by the relationship

SvG SID
g( )m

2= .45,46 The parameter gm is the transconductance of the

MOSFET and is defined by the change of drain current ID (device
output current) to the change of the gate to source voltage Vgs (device
input voltage). gm is mathematically represented by, gm

I
V

D

gs
= . The

output power spectral density represents the drain current change in
the frequency domain. The change of the current in time is translated
into the frequency domain by Fourier transformation. The power

spectral density can be described as ( )SID SV g1fb
C I

gm m

2
2eff ox D= + .

The first term, SVfb, is the flat band voltage spectral density. μef f is the
effective mobility, Cox is the effective oxide capacitance, and α is the
Coulomb scattering factor. The SvG presentation is a powerful point
of view to compare the input noise behavior for an equivalent gate
voltage for different technologies and with different interface
materials.46 The detailed method of low-frequency noise investigation
is demonstrated in our previous work.37

Electric field cycling was applied for endurance measurement with
amplitudes in the ±6 V range and a pulse width of 500 ns.
Neural Network Simulation. Finally, the impact of low-

frequency noise and retention degradation on FeFETs on their
system-level performance, especially for neuromorphic applications,
was evaluated by Neurosim simulation platform.47 The experimentally
calibrated conductance value with variation statistics was used to
simulate the multilevel perception (MLP) neural network (NN)
performance with the MNIST data set. The neural network’s
architecture is illustrated in Figure 2a. The MLP architecture
comprises three layers, which are 400 input nodes, 100 hidden
nodes, and 10 nodes in the output layer. In this work, we have
considered offline training scenarios of neural networks. Although it
has been mentioned in many previous works of literature that online
training in the neural network can alleviate the impact of conductance
drift of FeFETs,48,49,26,40 it requires high endurance. It is power-
hungry.25,50 Therefore, we focus on an inference-only operation with
offline neural network training. The back-propagation algorithm with
the optimizer Adam was adopted to minimize the cost function during
offline training. We have considered the step function as an activation
function during forward-propagation and the sigmoid function as an
activation function during back-propagation. After offline training, the
synaptic weights, in terms of channel conductance of FeFETs, were
updated on the hardware using a single-shot programming pulse. The
synaptic weights were normalized between the minimum value (Wmin)

Figure 2. (a) Schematic representation of the neural network architecture used for simulating the performance of FeFET-based synaptic devices.
The input is an image of the hand-written digits. To simplify the hardware implementation task, the image is reshaped with a size of 20 × 20 pixels.
Therefore, the neural network has 400 input layers, 100 hidden layers, and 10 output layers. (b) Memory array architecture shows the synaptic core
used for simulating the inference operation.
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of −1 and the maximum value (Wmax) of 1. The IOFF of the FeFETs
was mapped with Wmin, and the ION was mapped with Wmax. The
FeFET-based synaptic core, shown in Figure 2b, is used to carry out
the vector−matrix−multiplication operation. The output of the
vector−matrix−multiplication is directly digitized by using a
current-to-digital converter.47 An additional READ variation param-
eter simulated the impact of low-frequency noise with experimentally
calibrated variation statistics. The impacts of retention degradation
were simulated using the experimentally obtained channel con-
ductance value with extrapolation up to 10 years. The cumulative
impact was evaluated by turning on all sources of variations during

inference operation. The results obtained from the experiments will
be discussed in the following sections.

■ RESULTS AND DISCUSSION
Parts a and b of Figure 3 show the READ operation conducted
after WRITE of the FeFETs with SiON and SiO2 interface.
FeFETs with SiON interface show a higher memory window
than those with SiO2. This trait can be attributed to the
trapping and detrapping phenomena from the interface.
Further analysis of the low-frequency noise provides a better

Figure 3. (a) Transfer characteristics of FeFETs with SiON interface for programmed and erased states show an average memory window of 1.5 V,
(b) while the devices with SiO2 interface have an average memory window of 1 V.

Figure 4. (a) Power spectral density (SID) noise behavior of the 10 nm HSO and SiO2 interface structure. In blue the ferroelectric erase state (ER)
and in red the programmed state (PG) are demonstrated. The operating point is set on Vt with an offset of 100 mV. (b) SID noise behavior of the
10 nm HSO and SiON interface structure. ER and PG state are on the same noise level. (c) Current normalized noise behavior with two different
structures (one structure with SiON and the other with SiO2 interface material) The noise level change for different operating points is
demonstrated for a frequency of 100 Hz in erase state. (d) Equivalent input gate voltage noise (SvG) with two different structures (one structure
with SiON and the other with SiO2 interface material) The noise level change for different operating points is demonstrated for a frequency of 100
Hz.
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insight into the root cause of memory window reduction in
SiO2-based FeFETs. However, the device-to-device variation
and on-state current (Ion) to off-state current (Iof f) ratio remain
almost the same for both of the interfaces.

The spectral density of the drain current (SID) was
measured with an operation point of 100 mV offset from Vt.
In an erased and programmed state, the SID noise behavior for
the 10 nm HSO SiO2 interface structure is demonstrated up to
a frequency of 100 kHz in Figure 4a. In light blue, the single-
device measurements are included. Two of these measure-
ments have a low noise level, and a different slope compared to
the other single die measurements of the SiO2 interface erases
the state measurements; for these, the operating current for the
used gate voltage was too low and reached the detection limit
of the system. In Figure 4b, SID is shown for the 10 nm HSO
SiON structure. For both states, ER and PG, the noise
behavior does not show differences in the two states.
Compared to dielectric devices in 22 nm technology
(investigation on 22 nm FDX device was presented else-
where45), the noise behavior in the lower frequency area for
the PG-state is similar. For the higher frequencies, a difference
of two magnitudes can be observed. For the SiO2 interface
structure, the noise level reaches higher frequencies than the
system limit.

Figure 4c shows the noise current (SID) for different
operating points and different interface materials (SiON,
SiO2). In direct comparison to the threshold voltage (Vt)
operating point, the SiON structure has a higher noise level
than the SiO2 structure. The SiON structure shows a decrease
in noise level with increasing gate voltage Vg, while for FeFETs
with SiO2 interface, the noise level remains the same for
different values of Vg.

On the other hand, Figure 4d shows the equivalent input
gate voltage noise for different operating points and interface
materials. SiON structure shows a continuous decreasing trend

with increasing Vg as in the normalized SID, and the SiO2
interface structure has the same level of SvG for different
operating points. The difference between SiON and SiO2 for
lower Vg operation points is similar in SvG and SID. The
change for higher Vg voltages differs. The gate input for higher
operating voltage is, for the SiON interface, lower than the
total noise level of this structure. For SiO2, an increase in the
operating voltage does not influence both.

In HSO-based FeFETs,51,37 a modification of the interface
layer has been shown to improve reliability, especially the
device’s resistance. Figure 5a visualizes the cycling endurance
of FeFETs based on FeFETs based on SiO2 and SiON for a
stress voltage amplitude of 6 V. Although continuous
degradation of the MW is observed for the SiO2 interface
layer, resulting in complete closure at approximately 3 × 104

cycles, the device based on SiON exhibits a stable and
comprehensive MW up to 104 cycles. Although there have
been several demonstrations of improvement of endurance in
HfO2 based ferroelectric films,52,53 the WRITE-endurance of
our devices are comparable with the 28 nm HKMG FeFETs
from GlobalFoundries’.27 At a higher number of cycles, a
walkout of the low Vt state to the high Vt state is observable,
most likely caused by trapped charges. Still, an MW exceeding
700 mV remains at 3 × 104 cycles. In the case of retention (see
Figure 5b), stable Vt states are observed for both programmed
and erased conditions in the case of the SiON-based devices.
However, initial detrapping is observable. A back-switching
trend is present for devices based on SiO2, as indicated by the
green arrow.

The origin of improved retention in SiON-based FeFETs
can be related to the depolarization field change. Due to the
higher relative permittivity of SiON compared to SiO2, the
depolarization field is reduced.51 However, (de)trapping
behavior for these is not understood in detail. The Flicker
noise results here, however, clearly indicate an increased noise

Figure 5. (a) Endurance characteristics of SiO2 and SiON-based HSO FeFETs for a stress voltage amplitude of 6 V. (b) Retention of the high- and
low Vt state of HSO FeFETs with SiO2 and SiON interface layer.
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level for the SiON devices, close to Vt. This indicates increased
trapping and detrapping of charges. As a result, charges can
detrap faster after the writing pulse, resulting in an already
open MW after writing in the case of SiON interface, whereas
the SiO2-based devices show this pronounced detrapping
effect. The strong back-switching trend afterward can be
explained by the displacement field as mentioned above and
additional charge-trapping from the other interface at the
electrode, which cannot be detrapped easily due to the
presence of the electron pocket in the band structure (see
Figure 6).

In the case of endurance, a similar origin can be deduced. As
for retention, charges are trapped inside the electron pocket in
the band structure. As observed in the retention case where an
opening of the MW is observed for SiO2-based devices due to
initially trapped charges, repeated cycling results in a similar
effect, only that, with extensive cycling, many more charges are
trapped. As they cannot easily detrap, compared to SiON, a
memory closure is observable, as these charges will pin
domains and shift the internal bias field. This effect has
recently been explored as well for fluorinated interfaces,37

reporting consistent results with the here presented data.
Finally, the cumulative impact of device variation, flicker

noise, and retention degradation of FeFETs on neural network
applications have been evaluated. We consider inference
operations on MLP-NN with MNIST data sets. Only the
READ operation is performed during the inference operation.

In this case, the retention of the data and the low-frequency
noise-induced READ variation become crucial. The software
baseline for the inference operation was 98.5%. Figure 7 shows
the device-to-device variation (D2D), with the impact of low-
frequency noise and retention degradation on the inference
accuracy. The high on-current to the off-current ratio in
FeFETs with SiON-based IL engenders better inference
accuracy in NNs built with them. Low-frequency noise
originates from intrinsic defects in the interface and ferro-
electric layer, and each defect site has a different ionization
energy [TSA_2]. This is why we observe a dependence of
noise current and inference accuracy on the bias voltage.
However, device variations and low-frequency noise impact are
marginal in NNs with a synaptic core built with any type of
FeFETs. The retention degradation causes closure of the MW
in FeFETs with SiO2IL, which is the pivotal reason behind the
failure of them to operate as synaptic devices after aging. We
have evaluated the cumulative impact of device variation, low-
frequency noise, and retention degradation in the inference
accuracy degradation, which shows that MLP-NN built with
FeFETs with SiON-based IL shows excellent immunity to all
three sources of variations and maintains accuracy over 96%
after 10 years of programming without retraining.

■ CONCLUSION
We have fabricated FeFET devices with silicon-doped hafnium
oxide as a ferroelectric layer. Fabrication was carried out in two

Figure 6. Schematic illustration of the band structure of a SiO2- (a) and a SiON- (b) based FeFET. An electron pocket is observed at the
ferroelectric−insulator interface.

Figure 7. Inference accuracy shows that the systematic variation due to retention degradation has a higher impact on the inference operation than
the random variation caused by low-frequency noise during the READ operation. The higher on-current to off-current ratio ensures better inference
accuracy for MLP-NN built with SiON interfacial layer-based FeFETs as synaptic devices.
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different splits with SiO2 and SiON as the interfacial layer
between the semiconductor and the ferroelectric layer.
Although the FeFET devices with the SiO2 interface
demonstrated excellent noise immunity, FeFET with the
SiON interface showed a one order increase in the write
endurance, without retention penalty. This improvement
paved the way for this device to be implemented as the
synaptic cells in inference engine applications.
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