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Abstract: In sensor-based human activity recognition, many methods based on convolutional neural
networks (CNNs) have been proposed. In the typical CNN-based activity recognition model, each
class is treated independently of others. However, actual activity classes often have hierarchical
relationships. It is important to consider an activity recognition model that uses the hierarchical
relationship among classes to improve recognition performance. In image recognition, branch CNNs
(B-CNNs) have been proposed for classification using class hierarchies. B-CNNs can easily perform
classification using hand-crafted class hierarchies, but it is difficult to manually design an appropriate
class hierarchy when the number of classes is large or there is little prior knowledge. Therefore,
in our study, we propose a class hierarchy-adaptive B-CNN, which adds a method to the B-CNN
for automatically constructing class hierarchies. Our method constructs the class hierarchy from
training data automatically to effectively train the B-CNN without prior knowledge. We evaluated our
method on several benchmark datasets for activity recognition. As a result, our method outperformed
standard CNN models without considering the hierarchical relationship among classes. In addition,
we confirmed that our method has performance comparable to a B-CNN model with a class hierarchy
based on human prior knowledge.

Keywords: human activity recognition; class hierarchy; deep learning

1. Introduction

Human activity recognition is expected to be used in a wide range of fields [1]. Sensor-
based human activity recognition is the task of automatically predicting a user’s activity
and states using sensors. The prediction results can be used to support user actions or
decision-making in organizations.

In recent years, deep learning (DL) has been used in various fields and many DL
methods have been proposed for human activity recognition. Many activity recognition
models with DL are based on convolutional neural networks (CNNs) [2]. DL is a powerful
method for various fields and has been rapidly developed in computer vision and neural
language processing especially.

The activity recognition models based on CNNs use activity labels encoded to one-hot
vectors. Typical activity recognition models are trained ignoring the relationships among
activities, because the one-hot encoding treats each class as independent of each other.
However, there are hierarchical relationships among actual activities, which are based on
similarity of sensor data [3]. For example, considering four classes of stationary, walking,
going up the stairs and going down the stairs, the three classes other than stationary can
be regarded as an abstract class, non-stationary. This indicates that there is a hierarchical
structure among the activity classes. Hierarchical relationships among classes are known to
affect classification patterns of standard CNNs [4]. Low similar classes, such as stationary
and walking, can hardly be misclassified mutually. On the other hand, high similar classes,
such as walking and going up the stairs, are frequently misclassified mutually. Therefore,
the recognition model is expected to improve its performance using relationships among
classes known in advance.
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In some previous works on human activity recognition, hierarchical classification
methods using class hierarchies have been proposed, as shown in Figure 1a. Hierarchical
classification methods solve a decomposed classification problem based on a class hierarchy
using multiple models. In this method, each model targets only the classification problem
simplified by the class hierarchy, which reduces complexity and improves classification
performance, compared to standard classification models. However, such hierarchical
classification methods have the disadvantage of increasing the number of models when
dealing with a large number of classification classes or classes with complex hierarchical
relationships. Especially, in some hierarchical classification methods with DL [5,6], the
increase in the number of models leads to a significant increase in computational costs.

(a) (b) (c)

Figure 1. Model overview of the related methods (a,b) and of our method (c). (a) Hierarchical Classification. (b) B-CNN [7].
(c) Class Hierarchy Adaptive B-CNN.

On the other hand, in computer vision, Zhu et al. [7] proposed the branch CNN
(B-CNN), which incorporates the hierarchical relationship among classes into the CNN
model structure. As shown in Figure 1b, the B-CNN is designed to learn the hierarchical
relationship between classes by mapping the CNN hierarchical structure to the class
hierarchical structure. The B-CNN is a simple method for incorporating the class hierarchy
into the CNN model structure and it is easy to use B-CNNs for activity recognition. Unlike
hierarchical classification methods, B-CNNs can use the class hierarchy in a single model;
however, the class hierarchy needs to be provided by humans as prior knowledge to
construct branches.

Humans can construct a class hierarchy using a misclassification tendency of a typical
classifier, a data similarity and a domain knowledge. It is easy to manually design a class
hierarchy with a small number of target classes, but it is not easy to manually design
a class hierarchy with a large number of target classes because of the complexity of the
relationships among the classes. In this study, we propose a class hierarchy-adaptive
B-CNN, which adaptively defines the class hierarchy used to train B-CNNs. Our method
is shown in Figure 1c. The left side of Figure 1c shows a B-CNN and our method adds
the method for automatically constructing a class hierarchy to a B-CNN. Our method
automatically constructs a class hierarchy from training data and the B-CNN is trained
using the constructed class hierarchy. In this study, we show that the B-CNN model is
also effective in activity recognition and we address the problem of B-CNNs whereby the
hierarchical structure of classes must be designed by humans.

The contributions of this study are as follows:

• We show the effectiveness of the B-CNN model in sensor-based activity recognition.
In addition, by examining the effect of the number of subjects used for training on the
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recognition performance of the model, we find that the B-CNN model is particularly
effective when the number of training data is small.

• By examining the relationship within the class hierarchy provided for the B-CNN and
its recognition performance, we found that an inappropriate class hierarchy decreases
the recognition performance of the model, indicating that a class hierarchy is an
important factor that affects the performance of B-CNNs.

• The above verification also revealed that class hierarchies designed by humans are
not always optimal.

• To construct class hierarchies that work effectively for B-CNNs, we propose a method
for automatically constructing class hierarchies based on the distances among classes
in the feature space and we demonstrate the method’s effectiveness.

2. Related Works
2.1. Human Activity Recognition

Human activity recognition is the task to recognize human activities and states using
sensing devices, such as accelerometers and cameras. The solutions for human activity
recognition are categorized into video-based methods [8,9] and sensor-based methods [1,2,8]
based on the different sensing devices. In video-based activity recognition, RGB images
and RGB-D images, which include the depth map, are used. The image data format can
represent states of the whole body of a single person and multiple people as one data; thus,
video-based human activity recognition is effective to recognize fine-grained activities
(e.g., gestures) and activities of a crowd. However, it is difficult to constantly recognize
the state of a specific user for video-based activity recognition using cameras. On the
other hand, sensor-based human activity recognition methods use inertial sensors worn by
users, such as accelerometers and gyroscopes on smartphones, or environmental sensors
installed in a space. Especially, in activity recognition performed using mobile devices
(e.g., smartphones and smartwatches), it is possible to recognize the activities of a specific
user regardless of the surrounding environment, because the device always moves with
the user. In this paper, we focus on sensor-based activity recognition using mobile devices
such as smartphones.

In sensor-based activity recognition, many methods using DL have been proposed.
Methods without DL perform activity classification using features manually designed by
humans. On the other hand, methods using DL perform feature extraction from observed
sensor data and activity classification simultaneously. The methods based on DL are
powerful and generally achieve higher performance than methods without DL.

In activity recognition models using DL, many CNN-based methods have been pro-
posed for activity recognition [10–17]. Most of them use a simple model structure consisting
of several convolutional layers and pooling layers, which are connected hierarchically [10–12].
Other methods that combine CNNs and recurrent neural networks (RNNs) have also been
proposed [13–15]. Ordóñez et al. [13] and Xu et al. [14] proposed methods that extract
spatial features from sensor data using CNNs and then classify the activity by RNNs from
the extracted features. On the other hand, the method proposed by Xia et al. [15] encodes
the time dependency of waveform data using RNNs, then extracts the spatial features by
CNNs and classifies the activity by fully connected layers. Recently, Gao et al. [16] and
Ma et al. [17] proposed an activity recognition method using the attention mechanism,
which has attracted considerable attention in the fields of natural language processing and
computer vision.

2.2. Usage of Class Hierarchy in Human Activity Recognition

In activity recognition, many hierarchical classification methods using a class hierarchy
have been proposed [5,6,18–21]. The method proposed by Khan et al. classifies activities to
three abstract classes—stationary, non-stationary and transition—and then classifies target
classes included in each abstract class. Their methods achieved much better performance
than models without hierarchical classification. Fazli et al. [5] and Cho et al. [6] proposed
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hierarchical classification methods using DL models such as MLP and CNN. Their method
achieved higher performance than standard DL models. However, in terms of the use of
class hierarchies, their methods only replace the models used in the previous hierarchical
classification methods with DL models.

Van Kasteren et al. [22] proposed an activity recognition method with the hierarchical
hidden Markov model (HHMM), which uses relationships among classes. Their method
assumes that an activity consists of some actions (e.g., raising an arm and putting a foot
forward) and the actions are latent variables, which are not annotated. The actions are
detected automatically, such as a clustering, in the process of optimizing the model. Their
method outperformed a hidden Markov model and a hidden semi-Markov model without
the actions.

2.3. Usage of Class Hierarchy in Computer Vision

In the field of image recognition, Zhu et al. [7] proposed the B-CNN, which reflects
a class hierarchy in the structure of the CNN. B-CNNs classify coarse classes based on a
class hierarchy in a branching path in the middle of the model. This enables the model
to learn the hierarchical relationships among classes, thereby improving the recognition
performance of the model. Similar to B-CNNs, various methods have been proposed to
reflect the hierarchical structure of classes in CNN models [23–26]. On the other hand,
Deng et al. [27] proposed the hierarchy and exclusion (HEX) graph that represents the
hierarchical relationships among classes and a classification method using the HEX graph.
Unlike B-CNNs, their method encodes the hierarchical relationship between classes using
the HEX graph and trains the recognition model that is based on conditional random fields.
Koo et al. [28] proposed the method for capturing the hierarchical relationship among
classes using RNNs. Their method extracts hierarchical features of images using CNNs
and predicts the class hierarchy using RNNs.

The B-CNN is a very simple method to learn hierarchical relationships among classes
in CNNs. In the Zhu et al.’s work, a B-CNN was verified using only one type of class
hierarchy that they designed. However, the effect of structures of the class hierarhcy on
B-CNN performance was not discussed in their work.

2.4. Automatically Constructing Class Hierarchy

Most of the methods mentioned above assume that the class hierarchy is manually
designed based on the human’s prior knowledge. On the other hand, there have been
approaches to automatically construct class hierarchies from data. Methods for construct-
ing class hierarchies are mainly divided into top-down methods [29–33] and bottom-up
methods [33–37]. In the top-down method, a virtual abstract class is treated as a root node
of a tree structure and a class hierarchy is constructed by recursively partitioning this
root node until all classes become leaf nodes. In the top-down method, structures of class
hierarchies are less constrained because the nodes can be divided in arbitrary numbers.
However, the number of node divisions is a hyperparameter and must be set by humans.
On the other hand, in the bottom-up method, each class is merged recursively with certain
criteria until all classes are merged into one abstract class. Concretely, the bottom-up
methods using hierarchical clustering [34,36], confusion matrices [33] and graphs [37] have
been proposed. Hierarchical clustering creates dendrograms by recursively merging two
classes (or clusters) based on the distances between features. The created dendrogram
can be regarded as a kind of class hierarchy, but its structure is constrained by the binary
tree. By extracting flat clusters from the dendrogram using a threshold, the constraint of
the structure can be relaxed to some extent. However, the threshold needs to be given by
humans. Our method determines the threshold for the dendrogram automatically. Hence,
our method can construct class hierarchies without human’s prior knowledge at all.

The work by Jin et al. [37] is particularly relevant to our study. Their method detects
confusion communities from a graph called confusion graph using the Louvain method [38],
which is one of the community detection algorithms. The confusion graph is created from
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the softmax outputs of CNNs. Their method can construct class hierarchies because the
Louvain method can output a process of detecting communities.

2.5. Hierarchical Multi-Label Classification

Hierarchical multi-label classification (HMC) is another task that deals with hierarchi-
cal relationships among classes. HMC is a task aimed at inferring hierarchical relationships
among classes [39,40] and is known to be more complex and difficult than typical classi-
fication tasks because HMC involves inference of multiple classes as well as hierarchical
relationships among classes. Although HMC is similar in concept to the automatic con-
struction of class hierarchies, they have different objectives. In automatic construction
methods for class hierarchies, the quality of the hierarchical structure is not the main target
of evaluation, since the hierarchical structure is composed on the assumption that the
class hierarchy will be used for another task. On the other hand, in HMC, the quality of
the estimated hierarchical structure is the main evaluation target of the method since the
objective is to estimate the hierarchical structure of classes.

This research study aims to improve the performance of a specific activity classification
problem using a hierarchical structure of classes; therefore, it differs from HMC.

3. Class Hierarchy-Adaptive B-CNN Model

In this section, we describe B-CNNs and our automatic class hierarchy construction
method, which are the main components of our method.

Figure 1c shows our proposed method. Our method classifies activities by B-CNNs
using a class hierarchy automatically constructed from training data. Our method consists
of two steps, as described in Algorithm 1. In our method, feature vectors are firstly
computed from a pre-trained standard CNN model. Next, the centroids of each class in the
feature space are calculated from the feature vectors and the class hierarchy is constructed
by merging similar classes through hierarchical clustering. Then, the B-CNN is trained
using the constructed class hierarchy. Our method uses two different models, Mstd and
Mbranch. Mstd is a standard CNN model used for class hierarchy construction, and Mbranch
is a B-CNN model. Mbranch is trained from the initial state without using the parameters of
the trained Mstd.

Algorithm 1 Class hierarchy-adaptive B-CNN.

Input: Train Dataset for B-CNN Dtrain = {(xi, yi)}N−1
i=0 ; Split rate rpre; Dimension for PCA

d; The number of corase levels in class hierarchy L;
Output: Trained B-CNN Model Mbranch

1: // (1) Construct Class Hierarchy (see Algorithm 2)
2: P← ConstructClassHierarchy(Dtrain, rpre, d, L)
3: P(0), P(1), · · · , P(L−1) ← P
4:
5: // (2) Train B-CNN Model
6: Initialize B-CNN Mbranch

7: let be p(k)i ∈ P(k)(i = 0, · · · , N − 1, k = 0, 1, · · · , L− 1).

8: Dbranch
train ← {(xi, p(0)i , p(1)i , · · · , p(L−1)

i , yi)}N−1
i=0

9: Train Mbranch using Dbranch
train

10: return Mbranch

Although we propose a class hierarchy-adaptive B-CNN for sensor-based activity
recognition, our method can be applied to video-based activity recognition based on CNNs,
such as the models designed by Ji et al. [41] and Zhou et al. [42]. Our method can be
applied to a variety of other problem settings. To apply the method, the following three
conditions are required:
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1. The task can be formulated as a classification problem and the estimation target can
be grouped into abstract concepts.

2. The classification deep learning model is composed of stacked convolution layers,
such as VGG and ResNet.

3. The entire model can be pre-trained in an end-to-end manner such as training with
softmax cross-entropy loss to design a class hierarchy by our method.

In this section, Section 3.1 describes the B-CNN proposed by Zhu et al. [7] and Section 3.2
shows our automatic class hierarchy construction method.

3.1. Branch Convolutional Neural Network (B-CNN)

The structure of the model is shown in Figure 1b. The B-CNN branches a model into
multiple paths based on a class hierarchy and classifies them in ascending order from the
highest level in the class hierarchy. Similar to traditional CNN models, the B-CNN classifies
using class scores calculated using the softmax function and each level of classification is
performed independently.

The B-CNN is trained using the stochastic gradient descent method. The loss function
is a weighted sum of the softmax cross-entropy loss of each level and the loss function Li
for the i-th sample is defined in Equation (1):

Li = −
K

∑
k=1

Ck

∑
c=1

wktk
i,c log

eyk
i,c

∑Ck
j=1 eyk

i,j
(1)

where K denotes the number of levels in the class hierarchy; wk represents the weight for
the loss of the k-th level; Ck represents the number of classes in the k-th level; yk

∗,c denotes
the classification score of class c in the k-th level; tk represents the ground truth in the k-th
level and is defined in Equation (2).

tk
∗,c =

{
1 (c is ground truth)
0 (otherwise)

(2)

In the B-CNN model, a convolutional block consisting of several convolutional layers
and a pooling layer is used as the unit of the branching position. Since a typical CNN
model has a structure in which multiple convolutional blocks are connected hierarchically,
various patterns of branching are possible. In this study, the patterns of the branching
positions are tuned by treating them as a hyperparameter.

3.2. Automatic Construction of Class Hierarchies

The procedure for creating the class hierarchy is shown in Algorithm 2. Figure 2
shows the method for automatically constructing a class hierarchy.

Figure 2. Overview of the class hierarchy construction method.
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Algorithm 2 Constructing a class hierarchy.

Input: Training Dataset for B-CNN Dtrain; Split rate rpre; Dimension for PCA d; Number of
target classes C; The number of corase levels in class hierarchy L;

Output: Hierarchical multi-labels based on constructed class hierarchy, P
1: // (1) Pre-training phase
2: Initialize Standard CNN Mstd
3: Dpre, Dadp ← SplitDataset(Dtrain, rpre)
4: Train Mstd using Dpre
5: F ← ExtractFeature(Mstd, Dadp)
6: F ← DecompositionWithPCA(F, d)
7:
8: // (2) Calculate centroids for each target class
9: Let Fcenter be an array of size C.

10: for c = 0, · · · , C− 1 do
11: Nc ← The number of samples in class c
12: Fc ← { fc ∈ F; fc belonging to class c}
13: Fcenter[c]← 1

Nc
∑ fc∈Fc fc

14: end for
15:
16: // (3) Construct class hierarchy
17: H ← CreateDendrogram(Fcenter)
18: let d0, d1, · · · , dk be the distances between the clusters in the order of integration in the

dendrogram H.
19: k denotes the number of clusters in dendrogram H.
20: si := di+1 − di (i = 0, 1, ..., L− 1)
21: // mi denotes a mapping from target label to corse label.
22: // P(i) denotes abstract class labels of target classes.
23: let Y be target class labels included in Dtrain.
24: for each i = 0, 1, · · · , L− 1 do
25: j← ArgMax

i
(S)

26: ti ← dj + ε (ε > 0)
27: mi ← HierarchicalClustering(H, ti)

28: P(i) ← Relabel(Y, mi)
29: Pop sj from S
30: end for
31: P← {P(i)}L−1

i=0
32: return P

In the creation of the class hierarchy, first, the standard CNN model Mstd, which has
no branch structure, is trained with Dpre, while Dadp is converted into a feature vector F
by the Mstd. Then, F is reduced to d dimensions using the principal component analysis
(PCA). In this study, the number of dimensions was set to d = 64. Dpre and Dadp are created
by dividing the Dtrain used for training the B-CNN model Mbranch. The rpre is the ratio of
Dpre to Dtrain and, in this study, rpre was set to rpre = 0.5. Next, the class centroids Fcenter

are calculated from the feature vectors F. Fcenter is treated as a representative vectors of
each class. Then, a dendrogram H is created by performing a hierarchical cluster analysis
on Fcenter. There are various types of hierarchical cluster analyses. In this study, we used
the Ward method [43].

To create a class hierarchy, a threshold is determined based on the distance between
the merged clusters. In the hierarchical cluster analysis, two data (or clusters) are integrated
recursively according to certain criteria and, finally, all data are integrated into one cluster.
The dendrogram shows the order of the clusters to be integrated and the distance between
the clusters in merging them. In Figure 2, class 4 and class 5 are first merged as one cluster;
then, class 3 and cluster {4, 5} are merged. In our method, the distances between the merged
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clusters are defined as d0, d1, d2, · · · , dk in the order of merging and si = di − di−1 (i =
1, 2, · · · , k) is calculated. Then, L elements are selected from S = {si}k−1

i=0 and, for each
selected element dj, dj + ε is calculated and set as the threshold. Finally, coarse labels are
determined by clustering using these thresholds and a class hierarchy is constructed from
the coarse labels and target labels.

4. Experimental Settings

In our experiment, we evaluated the estimation accuracy using three different bench-
mark datasets. In this section, we describe the details of the experimental setups.

4.1. Dataset

In the experiments, three datasets were used: HASC [44], WISDM [45] and UniMib
SHAR [46].

HASC [44] is a benchmark dataset for which basic human activities were recorded
by wearable devices such as smartphones. HASC contains sensor data for six types of
activities: stay, walk, jog, skip, stair up (stup) and stair down (stdown). Sensors used in
HASC include accelerometers, gyroscopes and magnetic sensors; however, in this study,
we used only a 3-axis accelerometer. In the experiment, BasicActivity data with a sampling
frequency of 100 Hz were used and the position and type of the device were not restricted.
We trimmed 5 s before and after each measurement file. The input data for the model were
created using the sliding window method. The window size and stride width were set to
256 samples. We used the data of 176 subjects, which account for a sufficient amount of
data among all subjects recorded in HASC.

WISDM [45] is a benchmark dataset containing data relative to human daily activities
measured using smartphones, as well as HASC. In WISDM, 3-axis accelerometer data are
recorded, relative to six types of activities: standing (stand), sitting (sit), walking (walk),
jogging (jog), ascending stairs (stup) and descending stairs (stdown). The WISDM holds
records of activities similar to HASC, but the dataset contains fewer subjects and a smaller
amount of data than HASC. In our experiments, the accelerometer data were divided into
several segments based on subjects and activities and trimmed 3 s before and after each
segment. The input data for the model were created using the sliding window method; the
window size and stride width were set to 256 samples.

UniMib SHAR [46] is a dataset that contains measurements of human daily activities
and fall scenes using smartphone accelerometers. The measured daily activities and fall
scenes are standing up from sitting (standFS), standing up from lying (standFL), walking
(walk), running (jog), jumping (jump), going upstairs (stup), going downstairs (stdown),
lying down from standing (layFS), sitting (sit), generic falling forward (fallF), generic falling
backward (fallB), falling rightward (fallR), falling leftward (fallL), hitting an obstacle in
the fall (hitO), falling with protection strategies (fallPS), falling backward–sitting-chair
(fallBSC) and syncope (syncope). UniMib holds records of 3-axis accelerometer data and is
provided in a frame of 151 samples. The experiment was conducted using the divided data.

4.2. Model Structure

In our method, two types of models are used, the standard CNN model (we call
this model the std model) and the B-CNN model. In this study, the VGG model [47]
is used as the base model for both models. The VGG model has been confirmed to be
effective in sensor-based activity recognition by Hasegawa et al. [48] and we judged
that the simple model structure of VGG is appropriate as the base model for the B-CNN.
Figure 3 shows the structure of the B-CNN model used in the experiments. Conv Block
consists of several convolution layers and a max pooling layer, and Classifiers consist of a
global average pooling layer and one fully connected layer. In the VGG model proposed by
Simonyan et al. [47], the feature map obtained from the last convolutional layer is resized
to 7× 7 using average pooling and pooled features are input to a classifier consisting of
several fully connected layers and a dropout layer. In this study, we aim to verify the effect
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of the B-CNN on the feature space and the resulting change in recognition performance, so
the size of the classifier was kept small to reduce the effect of the classifier on the model
performance. In addition, the original VGG model uses two-dimensional convolutional
layers to handle images as input, but, in this study, all convolutional layers were changed
to one-dimensional (1D) convolutional layers to handle 1D sensor data as input. The
branching position of the B-CNN was tuned for each dataset as a hyperparameter. In
Figure 3, the Conv Blocks are 1, 2, 3, 4 and 5 from the left, while the branching positions
are 1 and 3 for HASC, 1 and 2 for WISDM and 3 and 4 for UniMib.

Figure 3. Model structure of the B-CNN with VGG16 as the base model.

4.3. Training Model

All models were trained using Adam and the initial learning rate was set to 0.001. The
number of epochs was set to 300, but 200 epochs were set for the training of the std model
Mstd, which was used for automatic construction of class hierarchy. When training the
model, three types of data augmentation methods were used together: RICAP [49], sensor
data axis swapping and sensor data amplitude inversion. Although RICAP is a method
proposed in the field of image recognition, it can be applied to 1D data such as sensor
data and its effectiveness has been confirmed by Hasegawa [50], along with the rotation of
sensor data. RICAP has a hyperparameter β, which is related to the cut-out position of the
data. In this study, we set β = 0.5. The inversion of the sensor data amplitude can expand
the distribution of input data with respect to the terminal position and orientation as well
as the axis swapping and is considered to be effective in datasets such as HASC, where the
terminal possession position and orientation are not fixed.

In addition, in the training of the B-CNN, it is necessary to set weights wk for each
loss on the hierarchy. In this study, we set the weights of each hierarchy equally, with the
constraint that the sum of the weights of each hierarchy was one. We focused on the effects
of differences in class hierarchies and set the weights in this manner to minimize the effects
of the weights wk.

4.4. Evaluating Model

The hold-out method was used to evaluate the model and the dataset was divided
by subjects. The breakdown of the number of subjects included in Train (training set),
Validation (validation set) and Test (test set) is shown in Table 1.

The HASC dataset includes large-scale sensor data from a large number of subjects—
more than 100. Therefore, we set the number of subjects in the training, validation and
test sets to 10, 50 and 50, respectively, to ensure a sufficient number of data and variety in
the validation and test sets for the HASC’s validation. In contrast, in WISDM and UniMib
SHAR, the number of subjects was set the same, so that all the data would be used in each
trial, because they have a small number of subjects compared to HASC. This is because
the same partitioning method as that used for HASC may not provide enough data for the
validation and test sets.
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In the experiment, a set of 20 trials was conducted, consisting of division of the dataset,
training of the model and evaluation of the model; the average of the results of all trials was
used for evaluation. The indices used for evaluation were accuracy and average F-score.

Table 1. Details of the number of subjects in each dataset in the hold-out method.

Dataset Train Validation Test

HASC 10 50 50
WISDM 12 12 12
UniMib SHAR 10 10 10

5. Experimental Results

Table 2 shows the accuracy and average F-score of our method and the baseline
method. In the table, stdvgg16 represents the standard CNN model with the VGG structure
and branchvgg16 represents the CNN model with the B-CNN branch added to the VGG
structure. In this section, we first present the validation results on the effectiveness of the
B-CNN model and then discuss the results. Afterward, we discuss the effects of different
class hierarchies on the recognition performance of the B-CNN model and the search costs
of class hierarchies. Then, based on the above two points, we evaluate the effectiveness of
our method and analyze the class hierarchies created using our method.

Table 2. Comparison of estimation accuracy for three types of activity recognition datasets.

Model Class Hierarchy Branch
HASC WISDM UniMib

Accuracy F-Score Accuracy F-Score Accuracy F-Score

stdvgg16 - - 0.803 0.806 0.866 0.799 0.725 0.607
branchvgg16 hand-crafted X 0.819 0.823 0.887 0.830 0.723 0.620
branchvgg16 Jin et al. [37] X 0.810 0.814 0.870 0.801 0.719 0.607
branchvgg16 ours X 0.814 0.817 0.881 0.827 0.728 0.614

5.1. Discussion on the Effectiveness of B-CNNs
5.1.1. Effectiveness of B-CNNs

Table 2 shows the experimental results of the std model and the B-CNN model on
each dataset. For B-CNN, we compared three methods for creating the class hierarchy: the
hand-crafted method, Jin et al.’s [37] method and our method. In the hand-crafted method,
a B-CNN is trained using class hierarchies that are manually designed by humans. The
hand-crafted class hierarchy is described in detail in Section 5.3.

Table 2 shows that the B-CNN model with the manually designed class hierarchy
outperformed the std CNN model in terms of F-score on all datasets. In UniMib, the
B-CNN model is inferior to the std model in terms of accuracy, but the difference is as small
as 0.002. Therefore, the B-CNN model is not only effective in image recognition but also
sensor-based activity recognition. Furthermore, Figure 4 shows the change in accuracy
when the number of subjects in Dtrain was increased by 10, from 10 to 50, in the HASC
dataset. According to the results of the B-CNN with the manually designed class hierarchy,
the B-CNN model outperformed the std model in terms of accuracy, even when the number
of subjects was increased. However, as the number of subjects used for training increased,
the difference in accuracy between the B-CNN and std models decreased. Thus, the B-CNN
model is a particularly effective method when the number of training data is small.
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Figure 4. Effect of varying the number of subjects used for training on accuracy.

5.1.2. A Study on the Effect of Backbone Architecture on the Recognition Performance
of B-CNNs

B-CNNs can use any CNN architecture as the backbone. In the work by Zhu et al. [7],
a B-CNN with a VGG-like architecture as the backbone was used. However, their work
did not discuss the effects of backbone CNNs on the recognition performance of B-CNNs.
Therefore, in our work, we also examined the effects of the architecture and size of the
backbone of B-CNNs on recognition performance.

In the validation, we compared B-CNNs with three different backbone architectures:
VGG [47], ResNet [51] and LSTM-CNN [15]. In the VGG architecture, we also compared
four different models with different depths and different widths (the number of filters). The
architecture of the LSTM-CNN was composed of simple CNNs following the two LSTMs,
while the VGG16 was used as the simple CNN. The class hierarchy used in the B-CNN
was designed manually. The same class hierarchy was used for all models. The branching
position of the B-CNN was tuned for each architecture, which were VGG, ResNet and
LSTM-CNN. Each model was validated using the HASC dataset using the same method as
described in Section 4.4.

The validation results are shown in Table 3. In the table, VGG16-S represents the
VGG16 model whose convolution filters were all halved and VGG16-W represents the
VGG16 model whose convolution filters were all doubled. As the results show, in the
VGG architecture, the accuracies of all models with a branching structure were higher
than those of the models without a branching structure. The VGG16-S with a branching
structure achieved the highest recognition performance, but the gain of recognition per-
formance due to branching structure was the largest for the plain VGG16. The VGG19,
which was deeper than the VGG16, and the VGG16-W, which was wider than the VGG16,
had smaller improvements in recognition performance than the plain VGG16 due to the
branching structure.

The recognition performance of ResNet and VGG models without branching structure
was the same. However, in the ResNet architecture, unlike VGG, there was no performance
improvement due to the branching structure. The most significant difference between
ResNet and VGG was the presence of a skip connection. Therefore, it is considered that
B-CNNs are less effective in architectures with the skip connection.

The recognition performance of the LSTM-CNN model without the branching struc-
ture was higher than the VGG and ResNet models without the branching structure. The
recognition performance of the LSTM-CNN model was improved by using the branch-
ing structure. In addition, the recognition performance of LSTM-CNNs with branching
structure and VGG16 with branching structure were equivalent. This result implies that
the B-CNN has a particularly large effect on the CNN part of the LSTM-CNN and a small
effect on the LSTM part.
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Table 3. Comparison of estimation accuracy for B-CNNs of different backbone architecture.

Backbone
Architecture

w/o Branch w/ Branch
Accuracy F-Score Accuracy F-Score

VGG11 0.802 0.806 0.816 0.820
VGG13 0.808 0.812 0.821 0.824
VGG16 0.803 0.806 0.819 0.823
VGG16-S 0.811 0.815 0.821 0.825
VGG16-W 0.802 0.805 0.811 0.814
VGG19 0.801 0.805 0.808 0.811

ResNet18 0.809 0.809 0.807 0.811
ResNet50 0.797 0.799 0.798 0.801

LSTM-CNN 0.815 0.818 0.820 0.824

5.1.3. A Study on the Effect of Different Class Hierarchies on the Recognition Performance
of B-CNNs

We examine the relationship within the class hierarchy provided for B-CNNs and the
recognition performance of the model. All possible class hierarchy creation patterns were
attempted using the HASC dataset. Since the number of class hierarchies was extremely
large (3230 patterns), we train and evaluated the model once for each class hierarchy and
treated the evaluation result as the score of the class hierarchy.

Figure 5 shows a histogram of the accuracy of all trials. The blue vertical bar represents
the frequency of each class and the red line represents the cumulative relative frequency.
This result shows that the accuracies of all trials were distributed around 0.808 and the
trials with an accuracy greater than or equal to 0.808 accounted for 50% of the total trials.
Since the accuracy of the std model was 0.805, it is likely to achieve higher accuracy than
the std model, even if the class hierarchy is created randomly. The minimum and maxi-
mum accuracies of the B-CNN model were 0.771 and 0.838, respectively. The recognition
performance of B-CNNs varies significantly depending on the design of the class hierarchy.
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Figure 5. Distribution of accuracy when attempting all possible patterns of class hierarchy in the
HASC dataset.

Table 4 shows the class hierarchies with the maximum and minimum accuracy in
all trials, respectively. In the class hierarchy with the highest accuracy, stay and skip
were integrated in Level 2, whereas stay, skip, walk and skip were integrated in Level 1.
Figure 6 shows the percentage of integration of two different classes in Level 2 of the top
1% accuracy class hierarchy. According to this result, in the Level 2 hierarchy of the top 1%,
the three classes walk, stup and stdown had the largest percentage of integration with each
other. Furthermore, the percentage of integration between skip and stay, which was seen
in the class hierarchy with the highest accuracy, was large. In Level 1, the percentage of
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two classes merged increased, compared to Level 2, but the trend was generally the same
as in Level 2. When humans manually design class hierarchies, they consider stay and
skip to be the classes with the least similarity to each other and assign them to different
clusters, as well as assigning stay and a group of walk and stup to different clusters as
stationary and non-stationary. This shows that the class hierarchies designed by humans
are not necessarily the best class hierarchies for B-CNNs.

Table 4. Class hierarchy with maximum and minimum accuracy in all trials.

Level HASC Best Hierarchy
1 stay skip walk stup jog stdown
2 stay skip walk stup jog stdown
3 stay skip walk stup jog stdown

HASC Worst Hierarchy
1 stay jog walk stdown skip stup
2 stay jog walk stdown skip stup
3 stay jog walk stdown skip stup

On the other hand, in the class hierarchy with the lowest accuracy, stay and jog, walk
and stdown, and skip and stup were integrated in Level 2, while stay, jog, walk and stdown
were integrated as one cluster in Level 1. In Figure 7, the percentage of integration of two
different classes in Level 2 of the lower 1% accuracy class hierarchy is shown. According to
the results, the percentage of integration of stay and jog, stay and stup, skip and stup, and
skip and stdown was large in the Level 2 hierarchy of the bottom 1% and, especially, stay
and stup is a pattern that also appears in the lowest class hierarchy in Table 4. This trend is
similar to the Level 1 hierarchy. Since walk, stup and stdown are classes that are frequently
misclassified with respect to each other, the integration of stay and stup in the lowest class
hierarchy may have negatively affected the classification of walk, stup and stdown in the
target classes, degrading the classification accuracy. In contrast, in the pattern where stay
and skip are integrated, which is often seen in the top 1% accuracy class hierarchy, stay
and skip are completely different activity classes. Therefore, it is considered that, even if a
B-CNN model is optimized with stay and skip as the same class in the branched classifier,
sufficient feature representation for activity classification can be obtained by optimizing
the target classes.
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Figure 6. Percentage of two classes merged at Level 2 of the top 1% class hierarchy.
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Figure 7. Percentage of two classes merged in Level 2 of the lower 1% class hierarchy.

5.1.4. Search Costs of Class Hierarchy

In Section 5.1.1, we verify that B-CNN improves activity recognition performance.
However, in Section 5.1.3, it is shown that inappropriate class hierarchy degrades the
recognition performance of the B-CNN model. Therefore, the design of the class hierarchy
is an important factor of B-CNNs. One method for designing the class hierarchy is to
manually design a class hierarchy based on humans’ prior knowledge. In this method, it
is difficult to manually design the class hierarchy when the number of original classes is
large. Here, Figure 8 shows the number of patterns created for a class hierarchy of height 3,
as shown in Figure 2. According to the graph, the number of patterns of the class hierarchy
increases exponentially as the number of the original classes increases. For example, when
the original number of classes is 4, the number of patterns for creating a class hierarchy is
18. But, when the number of classes is 9, the number of patterns of the class hierarchy is as
large as 7,226,538 and all searches are unrealistic.
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Figure 8. The number of combinations of class hierarchies of height 3 per original number of classes.

Furthermore, the class hierarchy needs to be created considering a relationship among
classes. For example, in the case of UniMib, the 17 activity classes can be semantically
divided into two classes, daily activities and fall scenes. However, the activities of “lying
down from a standing (layFS)” included in the daily activities and “falling backward
(fallB)” included in the fall scenes may be similar in terms of body movements, regardless
of whether they are falls or not. Thus, when manually designing a class hierarchy, it is
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necessary to consider the similarity of each activity in the analysis, which makes the manual
design of a class hierarchy an extremely difficult task when there are many classes.

From the above discussion, a method for automatically designing a class hierarchy
from data is useful, especially when the number of classes is large.

In this study, we use an automatic design of class hierarchies for training B-CNNs, but
it can be also useful in interpreting the target task itself through the automatically designed
class hierarchy.

5.2. Discussion of the Proposed Method for Automatic Construction of Class Hierarchies

In this subsection, based on the above discussion, we evaluate the effectiveness of
our method. Table 2 shows that our method outperforms the std model in both accuracy
and F-score for all datasets. In addition, our method outperforms the B-CNN model with
class hierarchies constructed by Jin et al.’s method [37]. Comparing our method with
the B-CNN model using manually designed class hierarchies, our method achieved a
classification accuracy comparable to the model using manually designed class hierarchies
for both accuracy and F-score metrics on HASC and WISDM. In UniMib, our method
had the highest accuracy, but its F-score was 0.006 lower than that of the B-CNN model
with a manually designed class hierarchy. Furthermore, Figure 4 shows that our method
outperformed the std model in terms of accuracy, even when the number of subjects used
for training was increased; however, the difference in accuracy with the std model became
smaller as the number of subjects increased. Our method had slightly lower accuracy
than the B-CNN using the manually designed class hierarchy, regardless of the number
of subjects used for training, but the difference became smaller as the number of subjects
increased. Therefore, the effect of different class hierarchies on the B-CNN model was more
pronounced when the number of training data was small.

These results show that class hierarchies manually designed by humans based on prior
knowledge work well for B-CNNs. However, the performance of our method is comparable
to that of the B-CNN model using manually designed class hierarchies. Therefore, our
method is particularly effective when it is difficult to design class hierarchies that work
well for B-CNNs with little prior knowledge.

5.3. Discussion on Class Hierarchy Designed Using the Proposed Method

We show the class hierarchies designed using our method in detail and evaluate them
qualitatively. In Tables 5 and 6, class hierarchies manually designed for each dataset and
class hierarchies automatically designed using our method for a particular trial are shown.
Table 6 shows the class hierarchy for the UniMib dataset, but, because the UniMib dataset
has a large number of classes, the table is wrapped in the middle. In the table, Level 1
and Level 2 correspond to the coarse classes in Figure 1c and Level 3 corresponds to the
target classes.

Table 5. Manually designed class hierarchies for HASC and WISDM and class hierarchies designed by the proposed method.

(a) HASC
Level Hand-Crafted Proposed Method

1 stay walk stup stdown jog skip stay walk stup stdown jog skip
2 stay walk stup stdown jog skip stay walk stup stdown jog skip
3 stay walk stup stdown jog skip stay walk stup stdown jog skip

(b) WISDM
Level Hand-Crafted Proposed Method

1 jog walk stup stdown sit stand jog walk stup stdown sit stand
2 jog walk stup stdown sit stand jog walk stup stdown sit stand
3 jog walk stup stdown sit stand jog walk stup stdown sit stand
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Table 6. Manually designed class hierarchy for UniMib SHAR and class hierarchy designed by the proposed method.

Level Hand-Crafted Method
1 jog walk stup stdown jump standFS standFL
2 jog walk stup stdown jump standFS standFL
3 jog walk stup stdown jump standFS standFL
1 layFS sit fallF fallPS fallR fallL fallB fallBSC hitO syncope
2 layFS sit fallF fallPS fallR fallL fallB fallBSC hitO syncope
3 layFS sit fallF fallPS fallR fallL fallB fallBSC hitO syncope

Level Proposed Method
1 jog walk stup stdown jump standFS standFL layFS sit
2 jog walk stup stdown jump standFS standFL layFS sit
3 jog walk stup stdown jump standFS standFL layFS sit
1 fallF fallPS fallR fallL fallB fallBSC hitO syncope
2 fallF fallPS fallR fallL fallB fallBSC hitO syncope
3 fallF fallPS fallR fallL fallB fallBSC hitO syncope

According to the results of HASC, only walk and stup were integrated in Level 2,
which is a reasonable result in terms of activity similarity. However, in Level 1, stay, walk,
stup and stdown were integrated as one class. Even in other trials, there were many cases
in which stay, walk, stup and stdown were integrated into one class. However, considering
the similarity in the activities, the stay and walk groups (walk, stup and stdown) should be
separated. Therefore, based on the discussion in Section 5.1.3, it can be considered that this
is the reason for the difference in recognition performance between our method and the
B-CNN model with the manually designed class hierarchy.

In addition, it is thought that one of the reasons why the stay and walk groups (walk,
stup and stdown) were merged into one class is the loss function used to train the std
model. In our method, the distribution of each class in the feature space was designed by
training the std model and the class hierarchy was created using the distribution of each
class in the feature space. The designed feature space depends on the loss function that
is optimized in training the std model and it is thought that the data of the walk group
were distributed closer to the data of the stay than the data of the skip on the feature space
designed by optimizing softmax cross-entropy loss used in this study. Therefore, it may be
possible to create a more appropriate class hierarchy by examining the loss function used
for training the std model and the training method for the std model.

In WISDM, the result for walk differs significantly from that of the manually designed
class hierarchy. In the manually designed class hierarchy, walk was integrated into the
same cluster as stup and stdown at Level 2 and was integrated with jog, stup and stdown
at Level 1 in terms of the magnitude of the motion; however, in the class hierarchy created
by our method, walk was not integrated with any class at Level 2 and was integrated
with jog at Level 1. Both jog and walk move on a flat surface and their movements are
similar, even though the magnitudes of the movements are different. It is considered that
our method integrated walk and jog into one cluster and separated them from stup and
stdown because of this similarity.

In UniMib, standFS, standFL, layFS and sit are stationary activities such as standing
up and sitting down, whereas fallF, fallPS, fallR, fallL, fallB, fallBSC, hitO and syncope
are grouped into one activity, classed as fall motion. It is difficult to distinguish among
walk, jog, stup, jump and stdown, but it is considered that they are differentiated by the
magnitude of body movement. stup and stdown are similar activities, but stdown is
different from stup in that it moves toward gravity. Therefore, in stdown, the body moves
faster than in stup when going up and down a staircase and the acceleration observed by
the sensor becomes larger. This is a common term with jump, which has a large acceleration
when jumping up, and it is thought that our method separated walk, jog and stup from
jump and stdown by the magnitude of acceleration.

From the above discussion, it can be seen that, although the class hierarchies created
using our method were different from that designed by a human, many of the class hierar-
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chies were designed by capturing the similarity of activity from a perspective different from
that of humans. Table 2 also shows that the B-CNN model trained with class hierarchies
created using our method achieved better recognition performance than the std model.
However, based on the discussion in Section 5.1.3, there may be more appropriate class
hierarchies that can improve the recognition performance of B-CNN models and there is
still room for improvement in our method.

6. Conclusions

In this study, we proposed a class hierarchy-adaptive B-CNN model for human activ-
ity recognition. Our method automatically creates a class hierarchy from the training data
and trains the B-CNN using the created class hierarchy. Thus, our method performs classi-
fication considering the hierarchical relationships among classes without prior knowledge.
The experimental results show that the B-CNN model is also effective for sensor-based
activity recognition. In addition, we found that the B-CNN model is particularly effective
when the amount of training data is small. Next, we evaluated our method and confirmed
that our method achieves better classification accuracy than the standard CNN model and
achieves a recognition performance comparable to the B-CNN model with a manually
designed class hierarchy. Since the search costs of class hierarchies required for B-CNN
training increase exponentially with the number of classes, our method is particularly
effective in situations where there is little prior knowledge and there is difficulty in creating
an appropriate class hierarchy. However, the class hierarchies created using our method
depend heavily on the feature space designed by training the standard model and, if the
hierarchical relationship among classes is not reflected in this feature space, it is difficult to
design appropriate class hierarchies using our method. In addition, our results suggest that
there is a class hierarchy that improves activity recognition accuracy more than the class
hierarchy automatically created using our method. Therefore, the design of the features
used to create the class hierarchies and the methods for creating more appropriate class
hierarchies from the features are future tasks.
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