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Abstract

Background: Non-pharmaceutical interventions (NPIs) and voluntary behavioral

changes during the COVID-19 pandemic have influenced the circulation of non-

SARS-CoV-2 respiratory infections. We aimed to examine interactions among com-

mon non-SARS-CoV-2 respiratory virus and further estimate the impact of the

COVID-19 pandemic on these viruses.

Methods: We analyzed incidence data for seven groups of respiratory viruses in

New York City (NYC) during October 2015 to May 2021 (i.e., before and during the

COVID-19 pandemic). We first used elastic net regression to identify potential virus

interactions and further examined the robustness of the found interactions by com-

paring the performance of Seasonal Auto Regressive Integrated Moving Average

(SARIMA) models with and without the interactions. We then used the models to

compute counterfactual estimates of cumulative incidence and estimate the reduc-

tion during the COVID-19 pandemic period from March 2020 to May 2021, for each

virus.

Results: We identified potential interactions for three endemic human coronaviruses

(CoV-NL63, CoV-HKU, and CoV-OC43), parainfluenza (PIV)-1, rhinovirus, and respi-

ratory syncytial virus (RSV). We found significant reductions (by �70–90%) in cumu-

lative incidence of CoV-OC43, CoV-229E, human metapneumovirus, PIV-2, PIV-4,

RSV, and influenza virus during the COVID-19 pandemic. In contrast, the circulation

of adenovirus and rhinovirus was less affected.

Conclusions: Circulation of several respiratory viruses has been low during the

COVID-19 pandemic, which may lead to increased population susceptibility. It is thus

important to enhance monitoring of these viruses and promptly enact measures to

mitigate their health impacts (e.g., influenza vaccination campaign and hospital infec-

tion prevention) as societies resume normal activities.
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1 | INTRODUCTION

Viral respiratory infections are one of the leading causes of disease in

humans. Each year, numerous respiratory viruses co-circulate in the

population, causing substantial public health burden1 and economic

loss.2,3 Previous studies have suggested that respiratory viruses may

interfere with and change the risk, timing, or natural history of infec-

tion of one another.4 For instance, in 2009, seasonal epidemic of

respiratory syncytial virus (RSV) in Israel was temporarily delayed due

to the A(H1N1) pandemic.5 Potential mechanisms including competi-

tions within hosts (e.g., infecting cells) and population-level interac-

tions have been proposed to explain such virus interactions.4

However, the specific interactions among different respiratory viruses

and the impact on their collective transmission dynamics have not

been well characterized.

Before the COVID-19 pandemic, influenza was the foremost pub-

lic health concern among all respiratory infections. As such, much

research effort has been devoted to understand the transmission

dynamics of influenza viruses and their interactions with other respi-

ratory viruses.4 In contrast, many other infections such as human

endemic coronaviruses have received far less attention. In addition,

previous studies tend to ignore the different subtypes of respiratory

viruses and only examine interactions at the level of genus. However,

subtypes from the same virus group may have different seasonality

(e.g., the four subtypes of parainfluenza viruses) and competitions

within genus tend to be more intense (e.g., influenza A[H1N1] and A

[H3N2]).6 As such, combining all subtypes of a virus regardless of their

circulation patterns may mask the true interactions.

Following its emergence in late 2019, the severe acute respira-

tory syndrome coronavirus 2 (SARS-CoV-2) has spread to 214 coun-

tries and territories, causing the coronavirus disease 2019 (COVID-

19) pandemic.7 The widespread prevalence of SARS-CoV-2 may affect

the circulation of other respiratory viruses, via virus interactions. In

addition, during the COVID-19 pandemic, non-pharmaceutical inter-

ventions (NPIs) such as social distancing, school closure, travel ban,

and mask-wearing that aimed to mitigate SARS-CoV-2 transmission

had also limited the transmission of other respiratory viruses. Seasonal

respiratory viruses such as influenza were found to be at low circula-

tion during the 2020 respiratory virus season amid the COVID-19

pandemic.8,9 However, to what extent the COVID-19 pandemic has

impacted the circulation of common respiratory viruses and potential

differences by virus remains unclear.

In this work, we analyzed incidence data for seven groups of

respiratory viruses in New York City (NYC) before and during the

COVID-19 pandemic. We first used elastic net regression to iden-

tify potential interactions among the viruses at the subtype level

(13 in total). We further hypothesized that strong interactions

should allow models incorporating the relationship to more accu-

rately predict the incidence of related respiratory viruses. To exam-

ine the robustness of the found interactions, we thus built and

compared the performance of Seasonal Auto Regressive Integrated

Moving Average (SARIMA) models with and without the interac-

tions. Lastly, we used the best-performing models to estimate the

impact of the COVID-19 pandemic on circulation of each of the

13 respiratory viruses.

2 | METHODS

2.1 | Virus surveillance data

The virus surveillance data were collected from a subset of NYC partic-

ipating laboratories that test for multiple respiratory viruses in addition

to influenza and RSV. Tested viruses included adenovirus (Adv), coro-

navirus (CoV), human metapneumovirus (HMPV), rhinovirus (RV), para-

influenza (PIV), RSV, and influenza virus (IV) overall and by subtype

(Table 1). The data included the number of respiratory pathogen panel

tests requested each week and the number tested positive for each

virus during Week 40 of 2015 to Week 20 of 2021. Prior to the

COVID-19 pandemic, the total number of samples tested each respira-

tory virus season (defined as the 40th week of the year to the 39th

week the next year) increased over time with the expansion of testing

(Figure S1). Previous studies have used the percent positivity (i.e., the

ratio of positive samples to total samples) to account for such changes

in testing. However, during the summer when fewer respiratory

viruses are in circulation and fewer people seek testing, the much

smaller sample sizes (Figure S1) tend to result in very high percent pos-

itivity for some viruses (e.g., RV in Figure S2), which may not reflect

the true circulation levels of these viruses in the population. Thus, to

account for the testing time trend and better represent the viral circu-

lation levels, here, we adjusted the weekly incidence by multiplying the

ratio of the number of samples tested during the season to that num-

ber in season 2015–2016 (the first season of data collection). For the

COVID-19 pandemic period (Week 10 of 2020 to Week 20 of 2021;

note the first COVID-19 case was reported in NYC during Week 10 of

202010), the number of samples tested each week fluctuated substan-

tially from week to week (in particular, there were initial increases

followed by a large drop during early weeks of the COVID-19 pan-

demic period; see Figure S1). To account for this short-term fluctua-

tion, we adjusted the incidence during COVID-19 pandemic period

week by week relative to the corresponding week during season

2015–2016. A comparison of the adjusted weekly incidence using this

method and the percent positivity for each virus is shown in Figure S2.

2.2 | Selection of key viral interactions during the
pre-COVID period

We used elastic net regression models11 to preliminarily identify, for

each virus, the set of other viruses consistently included as interacting

viruses, during Week 40 of 2015 to Week 9 of 2020, that is, before

the first COVID-19 case was reported in NYC.10 To avoid spurious

correlation due to a common winter-time seasonality shared by some

viruses,12 we first used a linear regression model to identify and

remove the seasonal trend for each virus. The model took the follow-

ing form:

654 YUAN ET AL.



Y�Week_of_Year, ð1Þ

where Y is the adjusted weekly incidence (see Section 2.1) and

Week_of_Year is an indicator variable for each week of the calendar

year (1:52 for annual seasonal cycle and 1:104 for biennial cycles). For

each virus, we fitted both annual and biennial cycles and used the

adjusted R2 to determine the most likely seasonal cycle for each virus

for removal of seasonal trend.

We then regressed on the detrended time series (i.e., the

residuals after removing the seasonal trend) with an elastic net

penalty:

Yi,detrended ¼
X

j≠ i
βjXj,detrended, ð2Þ

where Yi, detrended is the detrended weekly incidence for a given virus

of interest, i, and Xj, detrended is the detrended weekly incidence for

other viruses (i.e., for any j ≠ i); βj is the corresponding regression

coefficient. Similar to lasso (i.e., least absolute shrinkage and selec-

tion operator) and ridge regressions, elastic net shrinks regression

coefficients by imposing a penalty on their size. However, instead

of penalizing by the sum of absolute coefficients (L1—lasso penalty)

or the sum-of-squares coefficients (L2—ridge penalty), elastic net

regression penalizes with both L1 and L2 and the penalty function

is formulated as

λ
Xp

j¼1

αβ2j þ 1�αð Þ βj
�� ��� �

, ð3Þ

where λ controls the amount of shrinkage, α controls the distribution

between L1 and L2, and βj represents the regression coefficients that

minimize the penalty (i.e., formula 3). Since elastic net shares traits of

both ridge and lasso regression, while it selects covariates like lasso, it

also allows coefficients of correlated covariates to shrink together and

provide a more stable selection result.

We fitted 500 elastic net regressions with tenfold cross-validation

and pooled all interactions selected at least in half of the 500 runs for

further testing (see the next section). Thirteen models were devel-

oped, one model each for Adv, HMPV, RV, RSV, and IV and for each

of four subtypes of CoV and PIV. For influenza, due to the more

erratic circulation pattern of different types and subtypes and short

study period with available data (i.e., 5 years), we combined all types

and subtypes.

2.3 | Testing the identified interactions

To further test the identified interactions from the elastic net regres-

sion models, we examined if inclusion of any of the found interactions

in an SARIMA model with exogenous variables (SARIMAX) model13

T AB L E 1 Model-identified potential viral interactions during the pre-COVID period

Respiratory virus (sub)type Virus interactions

Out-of-fit model validation: Observed incidence vs.
out-of-fit estimates (week 40 of 2019 – Week 9 of
2020)

Observed
Estimated
(SARIMA)

Estimated
(SARIMAX)

Adenovirus (Adv) IV, RSV, CoV-NL63, RV, HMPV 416.27 518 (190, 862) 601 (274, 934)

Human endemic

coronavirus (CoV)

CoV-NL63 CoV-OC43 314.65 493 (205, 846) 475 (193, 825)

CoV-HKU IV, CoV-NL63 553.51 470 (315, 678) 442 (303, 626)

CoV-OC43 CoV-229E, RV, IV, Adv, CoV-NL63, HMPV, RSV 138.74 269 (77, 557) 269 (69, 529)

CoV-229E CoV-OC43, PIV-2 43.03 15 (2, 180) 6 (2, 138)

Human Metapneumovirus (HMPV) IV, PIV-3, CoV-OC43 271.15 373 (123, 671) 439 (221, 677)

Rhinovirus (RV) PIV-2, PIV-3, Adv, PIV-4, CoV-OC43,

CoV-NL63

2484.9 2664 (1097, 4231) 2105 (824, 3455)

Parainfluenza (PIV) PIV-1 RV, Adv 179.01 120 (25, 250) 126 (39, 247)

PIV-2 RV 17.27 15 (2, 134) 17 (2, 132)

PIV-3 RV, PIV-4, CoV-229E, CoV-HKU, HMPV, IV,

CoV-OC43, PIV-1

63.96 118 (2, 693) 31 (2, 450)

PIV-4 CoV-NL63, PIV-2, RSV 177.08 90 (7, 254) 64 (3, 229)

Respiratory Syncytial Virus (RSV) CoV-OC43, Adv, RV, IV, PIV-4 1242.7 1545 (879, 2257) 1416 (820, 2049)

Influenza virus (IV) HMPV, Adv 2024.45 1540 (213, 4070) 1422 (196, 3812)

Note: Column “virus interactions” show identified interactions from the initial selection by the elastic net regression and the stepwise forward selection for

the SARIMAX model (i.e., these were the final variables included in the SARIMAX model). Estimated strengths of interactions are shown in Table S2. The

third panel shows comparison between the observed cumulative incidence and model out-of-fit estimates (mean and prediction intervals in parentheses)

during the testing period (i.e., Week 40 of 2019 to Week 9 of 2020). In this model validation, the prediction intervals included the observed value for all

model out-of-fit estimates; thus, all were deemed accurate.
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improves model fit, compared to an SARIMA model. Here, we used

seasonal models because a seasonal trend was identified for all viruses

using Equation 1. For the seasonal component, we applied seasonal

differencing once to each incidence time series with the same sea-

sonal period as the identified seasonal cycle from Equation 1; for sim-

plicity, we did not include any seasonal autoregressive or seasonal

moving average terms. After the seasonal differencing, the SARIMA

model took the following form:

y0t ¼
Xp

i¼1

ϕiy
0
t�iþ

Xq

i¼1

θiεt�iþεt, ð4Þ

where y0 is a differenced time series with a seasonal differencing

degree of 1 and non-seasonal differencing degree d; p is the order of

autoregressive (AR) model; q is the order of moving average

(MA) model; ϕi (i = 1, …, p) are the coefficients for the AR terms;

θi i¼1,…qð Þ are the coefficients for the MA terms; and ε is the error

term. Parameters d, p, and q were selected based on model fit, and the

values from the best-fit model for each virus are shown in Table S1.

Similarly, after the seasonal differencing, the SARIMAX model

was formulated as

y0t ¼
Xr

i¼1

βixi,tþ
Xp

i¼1

ϕiy
0
t�iþ

Xq

i¼1

θiεt�iþ εt, ð5Þ

where xi i¼1,…, rð Þ are the exogenous variables (here, virus interac-

tions identified by the elastic net regression) and βi i¼1,…, rð Þ the

corresponding coefficients. For each virus, we set d, p, and q to the

same values as the best-fit SARIMA model (Table S1) and used for-

ward stepwise selection to identify the exogenous variables (i.e., virus

interactions). That is, virus interactions that do not improve model fit,

based on the Akaike information criterion (AIC),14 are excluded in this

step. Viruses included in the SARIMAX model with the lowest AIC are

identified as potential interactions and presented in Table 1.

2.4 | Model validation

We tested the SARIMA and SARIMAX models using data prior to the

COVID-19 pandemic (i.e., Week 40 of 2015 to Week 9 of 2020). Spe-

cifically, we divided this pre-COVID dataset into a training (Week

40 of 2015 to Week 39 of 2019, i.e., four full respiratory seasons) and

a testing (Week 40 of 2019 to Week 9 of 2020, i.e., the last respira-

tory season before the COVID-19 pandemic) subset. The models

(either SARIMA or SARIMAX) were first fit to the training subset; the

trained models were then used to estimate the weekly incidence for

each virus during the testing period for out-of-fit model validation.

We compared model performance based on relative Root Mean

Square Error (rRMSE) during the testing period. In addition, as the

weekly incidence tended to be low, we also evaluated the models

based on the cumulative incidence during the testing period and the

95% prediction interval; if the observed cumulative incidence fell

within the 95% prediction interval, the model was deemed accurate.

2.5 | Estimating the impact of COVID-19
pandemic on circulation of non-SARS-CoV-2 viruses

We used the validated models (SARIMA or SARMIAX) to generate

counterfactual estimates for each virus during the pandemic period—

that is, the expected cumulative incidence should there be no pan-

demic. To enhance model performance, we refitted the validated

models using data during the entire pre-COVID period (i.e., through

Week 9 of 2020) and used them to predict the incidence for each

virus during the COVID-19 period (here Week 10 of 2020 to Week

20 of 2021). We then compared the model counterfactual estimates

of cumulative incidence during the COVID-19 period (Ccounterfactual) to

the observations (Cobserved) to estimate the impact of the COVID-19

pandemic. We computed the percent reduction in cumulative inci-

dence due to the COVID-19 pandemic for each virus as

reduction %ð Þ¼Cobserved�Ccounterfactual

Ccounterfactual
�100%: ð6Þ

3 | RESULTS

3.1 | Respiratory virus circulation before and after
the introduction of SARS-CoV-2

During the pre-COVID period, influenza viruses were the most com-

monly detected in our dataset (up to 400 adjusted case counts per

week), followed by RV (up to �250 per week), CoV and RSV (both up

to �150 per week); in comparison, other viruses (HMPV, Adv, and

PIV) tended to have low cases detected (around 40–60 cases during

peak weeks; Figure S2). Most of the respiratory viruses (IV, Adv, CoV,

RSV, and HMPV) included here had outbreaks in the winter every

year (Figures 1 and 2). In contrast, RV cases were detected year-round

and tended to have two comparable epidemics each year—one in the

winter and one in the summer (Figure 1). PIV cases were also detected

throughout the year, but the outbreak patterns were less obvious

(Figure 3). For the same virus group, different subtypes tended to

alternate in circulation and recurred biennially with irregular peaks

(e.g., the four coronaviruses in Figure 2; PIV-1 and PIV-2 in Figure 3).

In addition, among the four coronaviruses, weekly case counts were

highly correlated for virus pairs belonging to different genera

(r = 0.82 between CoV-OC43 and CoV-229E and 0.76 between CoV-

NL63 and CoV-HKU). In contrast, the circulation of different influenza

types and subtypes and PIV-4 appeared less regular, with few cases

detected in some years.

3.2 | Potential virus interactions

The elastic net regression combining with the SARIMAX model selec-

tion identified several potential associations among the respiratory

viruses (Tables 1 and S2). However, the patterns of found interactions

656 YUAN ET AL.



were not readily clear (Table S2). Overall, found interactions appeared

stronger and more robust (e.g., bidirectional interaction for both

involved viruses) for virus-pairs from the same virus type. For

instance, the models estimated that there were positive, bidirectional

interactions between CoV-NL63 and CoV-OC43 and between CoV-

229E and CoV-OC43. This likely reflects the stronger interactions

among closely related viruses. In addition, the models identified

potential positive interactions among two viruses (RV and Adv) that

tended to circulate year-round and three PIVs (PIV-1, PIV-2, and PIV-

3) that tended to circulate during the summer and/or early fall

(Table S2 and Figure S2).

Further examination using the time series models indicated

that, for three coronaviruses (i.e., CoV-NL63, CoV-HKU, and

CoV-OC43), RV, PIV-1, and RSV, the inclusion of the identified

interacting viruses in the SARIMAX model generated more accurate

out-of-fit estimates than the SARIMA model (Table S3). However,

this improvement was not substantial (2.31–15.85% reduction in

rRMSE, see Table S3), likely because epidemics of these respiratory

viruses were strongly driven by their underlying seasonality. For

the remaining viruses, the inclusion of the interactions did not

improve the performance of the SARIMAX model. Overall, out-

of-fit estimates of weekly incidence (Figures S3–S5) and cumulative

incidence during the testing period (Week 40 of 2019 to Week

9 of 2020, i.e., the main part of the last respiratory virus season

before the COVID-19 pandemic; Table 1) were similarly accurate

for both time series models. As such, below we present results

from both models.

3.3 | Impact of the COVID-19 pandemic on non-
SARS-CoV-2 viruses

Most respiratory viruses included here appeared to have had lower

circulation during the COVID-19 pandemic than would be expected

(comparing the observed incidence and model counterfactual esti-

mates in Figures 1–3). This is likely due to the continued NPIs

implemented in NYC during March 2020 to May 2021 (the end of our

study period; see Figures 1–3 for major NPIs implemented). In particu-

lar, the circulation of CoV-OC43, CoV-229E, HMPV, PIV-2, PIV-4,

RSV, and IV all reduced significantly during the COVID-19 pandemic

period—the observed cumulative incidence during this period fell out-

side the model predicted 95% intervals and the estimated mean

reduction was around 70–90% for these viruses (Table 2). In contrast,

Adv and RV appeared to be less affected (Figure 1A,D). Incidence of

F I GU R E 1 Model fit and counterfactual-estimates of weekly incidence for adenovirus (Adv; A), respiratory syncytial virus (RSV; B), human
metapneumovirus (HMPV; C), rhinovirus (RV; D), and influenza virus (IV; E) using SARIMA and SARIMAX models. Crosses (“x”) show scaled
weekly incidence. Blue lines (mean) and shaded areas (95% confidence intervals) show model fit (solid lines) and counterfactual-estimates (dashed
lines) using the SARIMA models; red lines (mean) and shaded areas (95% confidence intervals) show model fit (solid lines) and counterfactual-
estimates (dashed lines) using the SARIMAX models. Vertical dashed lines indicate the start of each respiratory virus season, and vertical black
lines mark timing of major COVID-19 events; gray bars on the top of the plot indicate different reopening phases in NYC (see criteria of
reopening and phases at https://forward.ny.gov). Note the x-axis scale for the pandemic counterfactual-estimates is expanded to show more
details
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these two viruses, while low, was nonzero during most weeks of the

pandemic period (59 and 63 out of 63 weeks, respectively), and

for RV, incidence increased substantially during the summer of

2020, despite the implemented NPIs (Figure 2D). For CoV-NL63 and

CoV-HKU, the models did not detect a significant reduction,

likely because epidemics of these viruses tended to recur every other

year and their lull periods coincided with the pandemic period

(Figure 2A,B).

4 | DISCUSSION

In this study, we utilized viral surveillance data collected in NYC

before and during the COVID-19 pandemic to examine potential

interactions among seven groups of respiratory viruses and the impact

of the COVID-19 pandemic on their circulation in the population. We

identified several potential interactions, particularly, for three cor-

onaviruses (CoV-NL63, CoV-HKU, and CoV-OC43), PIV-1, RV, and

RSV. In addition, we found a significantly lower number of cases were

detected for several viruses (i.e., CoV-OC43, CoV-229E, HMPV,

PIV-2, PIV-4, RSV, and IV) in 2020–2021, suggesting reduced circula-

tion of these viruses, during the COVID-19 pandemic. Consistently,

other studies have also found that circulation of influenza, seasonal

coronaviruses, RSV, PIV, and HMPV reduced substantially in the

United States8 and Canada15 and that RV was less affected,8,15 during

2020–2021.

Our analysis found multiple potential interactions among the

13 viruses and that most associations were positive, before the

COVID-19 pandemic (Table S2). While these findings are based on

population-level data and cannot be interpreted directly as viral inter-

ference, the identified associations appear to in part reflect the under-

lying viral interactions. In particular, we note two factors that may

have contributed to the found positive associations. First, for viruses

of the same group, stronger competition between those within the

same genus may reduce their chance to cocirculate and indirectly

result in co-circulation of the ones from different genera (e.g., the esti-

mated positive associations between the beta-coronavirus CoV-OC43

and the two alpha-coronaviruses CoV-NL63 and CoV-229E, sepa-

rately). Second, many viral infections share similar transmission routes

and/or environmental factors16 and, as a result, are more likely to

occur around the same time. For instance, here, we found positive

associations between RV and three PIVs (i.e., PIV 1–3), all of which

could circulate during the summer or early fall. The underlying mecha-

nisms warrant further study. Nonetheless, these patterns could help

inform public health response to groups of viruses that tend to circu-

late around the same time.

During the COVID-19 pandemic, while most respiratory viruses

had reduced circulation in NYC, epidemic dynamics of individual

F I GU R E 2 Model fit and counterfactual-estimates of weekly incidence for human endemic coronaviruses: Cov-NL63 (A), Cov-HKU (B), Cov-
OC43 (C), and Cov-229E (D) using SARIMA and SARIMAX models. Blue lines (mean) and shaded areas (95% confidence intervals) show model fit
(solid lines) and counterfactual-estimates (dashed lines) using the SARIMA models; red lines (mean) and shaded areas (95% confidence intervals)
show model fit (solid lines) and counterfactual-estimates (dashed lines) using the SARIMAX models. Vertical dashed lines indicate the start of each
respiratory virus season, and vertical black lines mark timing of major COVID-19 events; gray bars on the top of the plot indicate different
reopening phases in NYC (see criteria of reopening and phases at https://forward.ny.gov). Note the x-axis scale for the pandemic counterfactual-
estimates is expanded to show more details
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F I GU R E 3 Model fit and counterfactual-estimates of weekly incidence for parainfluenza viruses: PIV-1 (A), PIV-2 (B), PIV-3 (C), and PIV-4
(D) using SARIMA and SARIMAX models. Blue lines (mean) and shaded areas (95% confidence intervals) show model fit (solid lines) and
counterfactual-estimates (dashed lines) using the SARIMA models; red lines (mean) and shaded areas (95% confidence intervals) show model fit
(solid lines) and counterfactual-estimates (dashed lines) using the SARIMAX models. Vertical dashed lines indicate the start of each respiratory
virus season, and vertical black lines mark timing of major COVID-19 events; gray bars on the top of the plot indicate different reopening phases
in NYC. (see criteria of reopening and phases at https://forward.ny.gov). Note the x-axis scale for the pandemic counterfactual-estimates is
expanded to show more details

T AB L E 2 Estimated impact of the COVID-19 pandemic on circulation of non-SARS-CoV-2 viruses in NYC

Respiratory virus (sub)type

Cumulative incidence during the COVID-19 period

Observed

SARIMA model counterfactual estimates SARIMAX model counterfactual estimates

Modeled % reduction Modeled % reduction

Adenovirus (Adv) 360.33 1,061 (146, 2,185) �66% (�84%, 147%) 930 (114, 2,056) �61% (�82%, 216%)

Human endemic

coronavirus

(CoV)

CoV-NL63 148.49 495 (25, 1,679) �70% (�91%, 494%) 363 (16, 1,516) �59% (�90%, 828%)

CoV-HKU 124.09 246 (4, 975) �50% (�87%, 3,002%) 165 (7, 820) �25% (�85%, 1,673%)

CoV-OC43 132.53 921 (505, 1,790) �86% (�93%, �74%) 504 (239, 1,247) �74% (�89%, �45%)

CoV-229E 78.36 675 (431, 1,125) �88% (�93%, �82%) 535 (336, 950) �85% (�92%, �77%)

Human Metapneumovirus

(HMPV)

154.72 1,278 (591, 2,197) �88% (�93%, �74%) 1,051 (512, 1,829) �85% (�92%, �70%)

Rhinovirus (RV) 2709.14 7,045 (2,472, 11,837) �62% (�77%, 10%) 5414 (1,754, 9,398) �50% (�71%, 54%)

Parainfluenza (PIV) PIV-1 23.51 227 (23, 647) �90% (�96%, 2%) 68 (3, 396) �65% (�94%, 684%)

PIV-2 52.05 290 (122, 614) �82% (�92%, �57%) 242 (105, 534) �78% (�90%, �50%)

PIV-3 85.25 862 (78, 2,558) �90% (�97%, 9%) 232 (2, 1,418) �63% (�94%, 4,162%)

PIV-4 20.43 237 (50, 762) �91% (�97%, �59%) 189 (37, 735) �89% (�97%, �45%)

Respiratory Syncytial Virus (RSV) 250.3 1,814 (561, 4,205) �86% (�94%, �55%) 1,453 (519, 3,507) �83% (�93%, �52%)

Influenza (IV) 258.09 2,924 (584, 10,831) �91% (�98%, �56%) 1,941 (424, 9,033) �87% (�97%, �39%)

Note: Column “Observed” shows the scaled cumulative incidence as recorded during the COVID-19 period (March 2020 to May 2021) for each virus

(listed in column “Respiratory Virus (Sub)type”). The “Modeled” columns show model-counterfactual estimates (mean and 95% prediction interval in

parentheses) using the SARIMA or SARIMAX model (specified in the row above), and the “% Reduction” columns show estimated percent reduction (mean

and 95% confidence interval) during the COVID-19 pandemic period, per Equation 6. Significant reductions are bolded.
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viruses differed. Influenza viruses, human endemic coronaviruses, and

RSV typically circulate during cold months (from late fall to early

spring the next year in NYC). Thus, circulation of all three groups of

viruses was in decline at the start of the first pandemic wave

(i.e., March 2020). As a result, the full impact of the COVID-19 pan-

demic on these viruses did not manifest until the following respiratory

virus season (beginning in October 2020), during which significant case

reductions were found. Influenza cases remained low while RSV began

to surface in the spring of 2021 (Figure 1B). In addition to reduced

contact among individuals due to social distancing and infection reduc-

tion due to mask-wearing, the reduced importation of new virus strains

from travelers may have also played a role in the observed outcomes

for these viruses. In particular, for influenza, seeding of new A(H3N2)

strains emerged globally has been shown to play an important role in

starting new epidemics in North America.17 As such, given the likely

high population susceptibility to these viruses after the skipped 2020–

2021 season, it is important to monitor the circulation of these viruses

(particularly influenza) in the population, severity of cases, concentra-

tion in geographical area and/or settings (e.g., congregate facilitates),

and age groups in future years. This would enable the implementation

of more timely infection mitigation measures (e.g., targeted messaging

including vaccination promotion).

For PIV, HMPV, and RV, because their epidemic timing coincided

with the first COVID-19 pandemic wave in NYC (spring 2020), all

three viruses saw the most dramatic case declines in the first few

months of the pandemic. However, as NYC partially reopened in the

summer of 2020, the epidemic trajectories of these viruses evolved

differently, likely due to the differences in infection demographics.

Both PIV and HMPV predominantly infect young children18,19 and, to

a lesser extent, older adults.20,21 As such, their transmission was

reduced to minimal levels in both key infection age groups when

schools closed and intergenerational interactions (i.e., between grand-

children and grandparents) reduced during the pandemic. Interest-

ingly, circulation of both viruses remained low after daycares and

schools partially reopened, likely due to required preventive measures

such as physical distancing and mask wearing in schools. This low

transmission in young children may have in part reduced the risk of

transmission to and among older adults. Future work using more

detailed data (e.g., household data) may further examine the impor-

tance of intergenerational transmission of these viruses and provide

insights into infection prevention for older adults, for whom infections

could lead to severe health outcomes.20

For RV, even though viral activities were also lower during the

COVID-19 period, case increases were observed during the summer

of 2020 when NPIs were relaxed (Figure 1D). Similarly, continued

transmission of RV was reported during and after the 2009 influenza

A(H1N1) pandemic.22 Rhinovirus infections occur in most age groups,

and infection of one serotype confers little immune protection against

others.23–25 This wider infection demographics and the large breadth

of RV serotypes (around 160 discovered by 201824) likely facilitated

its transmission locally in the population.

Our study has several limitations. First, the data analyzed here are

a subset of all tests done in NYC (i.e., only those from laboratories

using the expanded respiratory panel tests) and thus may not be fully

representative of the entire population. Second, even though the

selection criteria have not changed during the study period, underly-

ing patient characteristics may differ among specimens tested before

and during the COVID-19 period, due to changing medical seeking

behaviors in response to COVID-19 (e.g., people with mild respiratory

symptoms may be more likely to seek testing at the early stage of the

pandemic due to concern of COVID-19); this in turn may temporally

change the composition of underlying sample population. Third, fewer

specimens were tested each week during the early phase of the pan-

demic due to limited testing supplies and human resources; this

reduced sampling likely increased model uncertainty. Fourth, the iden-

tified associations (Tables 1 and S2) were based on population-level

epidemic time series and do not imply any causal interactions

between each included virus pairs. Future research at the individual

level (e.g., frequency of co-infection or subsequent infections by mul-

tiple viruses in the same individuals) is warranted to further examine

the potential viral interactions reported here. Finally, although we

found substantial case reductions during the pandemic for several

non-SARS-CoV-2 respiratory viruses, it is difficult to distinguish the

impact due to the introduction and circulation of the SARS-CoV-2

virus in the population and that due to the NPIs. Long-term viral sur-

veillance post-pandemic may allow further study on the interactions

between SARS-CoV-2 and other respiratory viruses without the pres-

ence of NPIs and in turn better understanding of the impact of NPIs

on each virus.
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