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Chia, a large annotated corpus of 
clinical trial eligibility criteria
Fabrício Kury1,4, Alex Butler1,4, Chi Yuan1,4, Li-heng Fu1, Yingcheng Sun1, Hao Liu1,2, Ida Sim   3,  
Simona Carini3 & Chunhua Weng1 ✉

We present Chia, a novel, large annotated corpus of patient eligibility criteria extracted from 1,000 
interventional, Phase IV clinical trials registered in ClinicalTrials.gov. This dataset includes 12,409 
annotated eligibility criteria, represented by 41,487 distinctive entities of 15 entity types and 25,017 
relationships of 12 relationship types. Each criterion is represented as a directed acyclic graph, which 
can be easily transformed into Boolean logic to form a database query. Chia can serve as a shared 
benchmark to develop and test future machine learning, rule-based, or hybrid methods for information 
extraction from free-text clinical trial eligibility criteria.

Background & Summary
Clinical trial eligibility criteria specify rules for screening clinical trial participants and play a central role in clin-
ical research in that they are interpreted, implemented, and adapted by multiple stakeholders at various phases in 
the clinical research life cycle1. After being defined by investigators, eligibility criteria are used and interpreted by 
clinical research coordinators for screening and recruitment. Then, they are used by query analysts and research 
volunteers for patient screening. Later, they are summarized in meta-analyses for developing clinical practice 
guidelines and, eventually, interpreted by physicians to screen patients for evidence-based care. Hence, eligibility 
criteria affect recruitment, results dissemination, and evidence synthesis.

Despite their importance, recent studies highlight the often negative impact these criteria have on the general-
izability of a given trial’s findings in the real world2,3. When eligibility criteria lack population representativeness, 
the enrolled participants cannot unbiasedly represent those who will be treated according to the results from 
that study4. Given that eligibility criteria are written in free text, it is laborious to answer this representativeness 
question at scale5. A related challenge is to assess the comparability of trial populations, especially for multi-site 
studies: e.g.,, given two clinical trials investigating the same scientific question, can we tell if they are studying 
comparable cohorts? The manual labor required from domain experts for such appraisal is prohibitive. Another 
challenge is patient recruitment, or finding eligible patients for a clinical trial, which remains the leading cause 
of early trial termination6,7. Unsuccessful recruitment wastes financial investment and research opportunities, on 
top of missed opportunities, inconvenience, or frustration of patients when the clinical trial is terminated early 
or cancelled.

Computable representations of eligibility criteria promise to overcome the above challenges and to improve 
study feasibility and recruitment success8. The Biomedical Informatics research community has produced var-
ious knowledge representations for clinical trial eligibility criteria9, though nearly all of them predate the cur-
rent state-of-the-art in machine learning, and some even predate contemporary electronic health records9. Early 
efforts to create annotated datasets in eligibility criteria have used a variety of methods including ad-hoc anno-
tation10, manual annotation of standardized biomedical concepts11, as well as leveraging biomedical knowledge 
resources such as UMLS for automatic semantic pattern extraction12. The annotations in these datasets do not 
capture sufficient information to form the logical statements of a database query, and few annotated datasets 
are publicly available. Ross et al. published a dataset with 1,000 eligibility criteria and analyzed their semantic 
complexity, but the data were not amenable for machine learning13. 79 eligibility criteria were annotated by Weng 
et al. with semantic tags and relations, but these are too few to serve as a sufficiently large training resource12. 
The most robustly annotated and the only publicly available corpus to date was produced by Kang et al.14, who 
annotated eligibility criteria from 230 clinical trials, though all on Alzheimer’s Disease. Hence the corpus lacks 
generalizability to other diseases. These and other works have focused on bridging the gap between eligibility 
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criteria and logical queries (Table 1), but the percentage of criteria that could be fully represented using these 
annotation models and used in database queries (here referred to as criteria coverage) is variable, ranging from 
18% to 87%5,14–18.

A shared, sufficiently large dataset is much needed to boost machine learning natural language processing 
of eligibility criteria text. In this study we present Chia, a large annotated corpus of clinical research eligibility 
criteria from 1,000 diverse clinical studies. The annotations specify (a) the boundaries and semantic categories 
of named entities and (b) the Boolean operators needed to form the database query logic. As the first public large 
annotated corpus for clinical trial eligibility criteria, Chia can serve as a shared benchmark to develop and test 
future machine learning, rule-based, or hybrid methods for information extraction from free-text clinical trial 
eligibility criteria.

Methods
Chia’s Annotation Model (CAM).  The annotation model was developed by two annotators (FK and LHF), 
both with medical training, and one machine learning researcher (CY), following an iterative process. The entity 
categories are aligned with the domain names defined by the Observational Health Data Sciences and Informatics 
(OHDSI) OMOP Common Data Model (CDM), which is widely used in the medical research community for 
health data standardization19. Our annotation model is described in full in the Appendix. A brief description is 
provided below with a focus on its three main components: Entities, Relationships, and the resulting Annotation 
Graph.

Entities.  Entities are concepts (e.g., hypertension, platelet count) and fall into one of the three types: Domain, 
Field, and Construct. Domain entities are the essential components of eligibility criteria, while Field entities and 
Construct entities are optional, depending on the semantic categories of Domain entities. Domain entities repre-
sent eight domains, i.e., observation, condition, person, device, drug, visit, procedure, and measurement. A Field 
entity represents a property of an applicable domain entity. For example, rule “Hemoglobin <8 g/dL” includes a 
Domain entity “Hemoglobin” and a Field entity “ <8 g/dL.” A Construct entity defines modifiers such as negation 
and repetition. For example, the Negation entity inverts the Boolean logic of the Domain entity being modified: 
no history of heart disease.

Relationships.  Relationships express general Boolean algebra operators (AND or OR) between pairs of entities, 
as well as type-specific relationships (e.g.,, has_value, has_temporal etc.). This dataset represents 12 relationships: 
AND, OR, SUBSUMES, HAS_NEGATION (target argument is negation), HAS_MULTIPLIER (target argument 
is multiplier), HAS_QUALIFIER (target argument is qualifier), HAS_VALUE (target argument is value), HAS_
TEMPORAL (target argument is temporal), HAS_INDEX (target argument is reference_point), HAS_MOOD 
(target argument is mood), HAS_CONTEXT (target argument is observation and not included in above relation-
ships), and HAS_SCOPE (target argument is scope). The Boolean operator NOT, as mentioned in the previous 
section, is an entity instead of a relationship. When considering general Boolean relationships, both entities are 
independent, and the truth value of each term (i.e., is an entity “true”?) are resolved before applying Boolean logic 
to the relationship. For example, in “Patients with diabetes or hypertension,” “diabetes” and “hypertension” are 
independent Domain entities linked by an OR relationship between them.

Annotation graph.  The entities and relationships in each trial’s eligibility criteria can be represented as two 
Annotation Graphs (AGs) (one for inclusion criteria and one for exclusion criteria) to computationally represent 
the query logic, that is, how all entities and relationships should be used to construct an executable query. The 
entities form the nodes and the relationships form the edges in the graph, and each entity evaluates to true if 
matching data can be found to satisfy it. Parsing of a graph runs from root to leaf nodes, forming a single Boolean 
expression. If that expression evaluates to true when fed the data from one patient, it means such patient is eligible 
(if inclusion criteria) or is ineligible (if exclusion criteria). An example annotation graph can be seen in Fig. 1.

Scope objects.  As eligibility criteria are used to identify patients eligible for a given trial, complex logic is often 
employed to ensure clinical judgments can be made with a high degree of accuracy. In some criteria, this complex 
logic can be considered ‘nested’ as a single entity is explained in greater detail and is provided with additional 
parameters whereby the entity could evaluate to true. An example is “patient has hypertension (systolic blood 
pressure >135 mmHg or diastolic blood pressure >85 mmHg).” Here, the central entity is hypertension, which can 

Citation
Annotation 
Method Coverage Availability

Criteria 
Count

Chondrogiannis et al., 20175 Manual 87% Online View Only 2,000

Tu et al., 2011 (ERGO)15 Manual 62% Methods Only 1,000

Zhang et al., 201816 Manual 85% None 1,043

Milian et al., 201517 Automated 18% Methods Only 1,773

Lonsdale et al., 200618 Automated 34% Methods Only 1,545

Kang et al., 2017 (EliIE)14 Automated 71% Available Upon Request 3,619

Chia Annotation Model Manual 86.8% Publicly available 12,409

Table 1.  Annotated eligibility criteria with citations, methods of annotation, coverage, availability and size.

https://doi.org/10.1038/s41597-020-00620-0


3Scientific Data |           (2020) 7:281  | https://doi.org/10.1038/s41597-020-00620-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

be evaluated using the specified systolic and diastolic pressure ranges. We can treat both blood pressure meas-
urements connected by an OR relationship as a single logical statement by labeling it a Scope object. Thus, this 
criterion can be rewritten to “patient has hypertension, or [systolic blood pressure > 135 mmHg or diastolic blood 
pressure > 85 mmHg].” The hypertension entity is thus linked to this Scope object whereby satisfying either item 
results in the statement resolving to a single value of True.

The annotation processes.  Sampling of trials and loading into the annotation tool.  We searched 
ClinicalTrials.gov on August 2, 2018 for actively recruiting, interventional (clinical trial), phase 4 studies, and 

Item Entity Text or Relation arg1 arg2
T12 Observation history
T13 Condition adverse gastrointestinal 

events
T14 Qualifier serious
R3 has_qualifier T13 T14
T15 Condition bleeding
T16 Condition perforation
* or T15 T16
T17 Scope bleeding or perforation
R5 subsumes T13 T17
T18 Condition coagulopathy
T19 Observation history
R4 has_temporal T13 T12
R6 has_temporal T18 T19
T20 Drug anti-coagulant
T21 Temporal current
R7 has_temporal T20 T21
* or T20 T13

select distinct person_id
from CONDITION_OCCURRENCE
where condition_concept_id in ({serious adverse gastrointestinal 
events})
or condition_concept_id in ({bleeding})
or condition_concept_id in ({perforation})
or condition_concept_id in ({coagulopathy})
union
select distinct person_id
from DRUG_EXPOSURE
where drug_concept_id in ({anti-coagulant})
and drug_exposure_start_datetime in ({current})
and drug_exposure_end_datetime in ({current})

a) Visualization in brat:

b) Annotation graph:

c) Pseudo-SQL query:

Fig. 1  Sample eligibility criterion with associated visual annotation (a), annotation graph (b), and pseudo-SQL 
query for relational patient database (c).
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obtained 2,913 trials, from which a random sample of 1,000 clinical trials was drawn. We focused on current 
studies as opposed to historic ones, assuming reporting quality is generally better in more current trials20, and pri-
oritized phase 4 since they are more likely to be replicated via pure observational data analyses21. From each trial, 
a script downloaded and extracted every eligibility criterion (roughly defined as one line of free text), exported 
plain text files, and loaded them into the brat annotation tool (http://brat.nlplab.org/). That script is in R language 
and is available at https://github.com/WengLab-InformaticsResearch/CHIA.

Annotation of the eligibility criteria from the selected trials.  The creation of Chia was performed by medical 
professionals (FK and LHF). Each annotator received a separate set of criteria loaded in brat22 and hand-created 
the entities and relationships as expressed above. In case of doubt for some concept, the annotator searched ter-
minology at http://athena.ohdsi.org, which provides searching of concepts in the OMOP CDM. For the first 200 
trials, both annotators regularly discussed adaptations to the annotation model based on their experience and 
re-annotated criteria as needed according to the changes being made. Once a satisfactory model was attained 
based on the consensus of both annotators, modifications were suspended and the task of annotation proceeded 
until the completion of the 1,000 trials. The final Chia dataset contains the summed and collectively revised work 
of the two annotators.

Post-processing the annotations.  Minor post-production was performed to transform the ANN files produced 
by brat into a single long table in CSV format containing the entire dataset. That table also contains a number of 
variables that can be programmatically inferred from the annotations, e.g.,, which entities are roots in their anno-
tation graphs. Additional post-processing was performed to generate two distinct datasets: one titled With Scopes 
and the other Without Scopes differing only in their utilization of Scope entity within the annotation model. 
Greater discussion of the reasoning behind the two distinct datasets is included in the Appendix, and all code 
used to generate these two models is available at https://github.com/WengLab-InformaticsResearch/CHIA.

To identify the target diseases of the 1,000 annotated trials, additional dataset enrichment was accomplished 
by leveraging the Aggregate Analysis of ClinicaTrials.gov (AACT) database23. This publicly available relational 
database contains all information about every study registered in ClinicalTrials.gov and is provided by the Clinical 
Trials Transformation Initiative (CTTI). The list of 1,000 unique NCT IDs included in our dataset was extracted 
and matched with their corresponding target conditions using the conditions table in the AACT database.

Parsing the annotation graph.  A distinguishing feature of our dataset is its capacity to support the parsing of the 
entities and their relationships into a Boolean expression containing the logic of the database query that replicates 
the eligibility criteria of each clinical trial. A sample annotation alongside its associated annotation graph and 
pseudo-query is provided in Fig. 1.

Data Records
The free-text of selected eligibility criteria, brat configuration files, and the annotated data files are all availa-
ble on figshare at https://doi.org/10.6084/m9.figshare.1185581724. There are two folders of annotation files titled 
With Scope and Without Scope, describing the inclusion or exclusion of Scope entities (additional information in 
Appendix).

Free-text (.txt) Files.  Extracted free-text eligibility criteria from the 1,000 selected trials. Each text file 
adheres to the following naming format: [NCT Number][Inclusion/Exclusion Status].txt. Each row contains a 
single eligibility criterion.

Annotation (.ann) Files.  Non-post-processed annotations in brat’s native ANN output format. Each anno-
tation file adheres to the following naming format: [NCT Number]_ [Inclusion/ExclusionStatus].ann. As per the 
ANN format, each line corresponds to a single entity or relationship, except for OR relationships as explained 
below. For entities, the fields are as follows: item ID (e.g., T1), entity type (e.g., Condition), string start index (e.g., 
28), string end index (e.g., 55), text (e.g., ‘metastatic carcinoid tumors’). For relationships, the fields are as follows: 
item ID (e.g., R1), relationship type (e.g., has_value), root argument (e.g., T3), target argument (e.g., T2). For OR 
relationships, the second field lists the relationship type and subsequent columns list all items connected by this 
OR relationship. In order to visualize the annotations, one needs brat. Simply open, in brat, Chia’s entire unzipped 
folder. Instructions for downloading and installing brat are available at http://brat.nlplab.org/.

Configuration (.conf) Files.  These are the brat configuration files used to produce annotations following 
the definitions of CAM. They are used to load the.ann files into brat for viewing or editing them.

Technical Validation
Inter-annotator agreement.  To evaluate the inter-annotator agreement of CHIA, we randomly selected 50 
trials out of the 1,000 trials, constituting 5% of the whole dataset with 604 inclusion criteria and 1,034 exclusion 
criteria. The same 50 trials were provided to the two annotators (FK and AB) to annotate independently using 
the Brat annotation tool. To facilitate our agreement evaluation, the obtained raw annotations were converted 
into two formats: the CONLL-2003 BIO format25 and the token-level format with annotated label on each token. 
For example, in the CONLL-2003 BIO format, Diabetes mellitus is annotated as “diabetes B-Condition mellitus 
I-Condition”. In the token-level format, Diabetes mellitus is annotated as “diabetes Condition mellitus Condition”. 
An agreement was reached if both annotators annotated the whole span of Diabetes mellitus as Condition. These 
two formats enable us to evaluate both phrase-level agreement and token-level agreement rates. We calculated 
the Cohen’s kappa scores and Precision, Recall, and F1 as the measure of inter-annotator agreement. At the 
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phrase-level, the Cohen’s kappa score is 0.8043 with Precision 81.39%, Recall 80.30% and F1 80.84. At the token-
level, the Cohen’s kappa score is 0.8489 with Precision 81.67%, Recall 86.68% and F1 84.10.

Dataset exploration and validation.  Descriptive statistics were generated to report counts of entities, 
relationships, and combinations of both. A coverage statistic was used to compare this dataset with previous 
efforts. In an effort to assess the accuracy and immediate utility of individual annotations, the raw unprocessed 
annotated entities were mapped to standardized medical concepts. To do this we utilized an open-source concept 
mapping tool called Usagi (https://www.ohdsi.org/web/wiki/doku.php?id=documentation:software:usagi)26 to 
map free-text strings to medical concepts in the OMOP CDM and to provide a ‘mapping accuracy score’ based on 
string similarity that is automatically generated by the Usagi tool. All Domain entities were converted to lowercase 
and then input into Usagi v1.2.7 with the following restrictions: (1) ‘Filter standard concepts’ was unselected to 
allow for mapping to Standard and Classification Concepts, (2) ‘Filter by Domain’ was selected and the selected 
options included only the labeled Domain (e.g., Condition).

Descriptive statistics.  Chia contains 65,886 annotations for 12,409 inclusion and exclusion eligibility 
criteria from 1,000 trials targeting 1,130 unique diseases, with the most common one being Coronary Artery 
Disease (24 trials). 196 of the trials included healthy volunteers. 1,606 of the annotated eligibility criteria were 
determined as not being useful for patient-focused database queries for reasons highlighted in Table 2. Of those, 
462 contained multiple entity annotations (e.g.,, “1. Signed informed consent” was annotated with parsing_error, 
non-query-able, and informed_consent) so the sum of annotations in Table 2 is greater than 1,606. 10,768 eligi-
bility criteria had evaluable annotations, accounting for 86.8% of all the eligibility criteria (Table 1). When com-
paring it to the dataset prepared by Kang et al. in 201714 (called EliIE), Chia is larger in size in terms of number 
of annotations, number of entity and relationship types, and criteria coverage. A top-level comparison of these 
datasets is shown in Table 3.

Of the 41,699 entity annotations, 63.5% fall into the Domain category, 18.4% in the Field category, 17.5% in 
the Construct category and 0.4% were concepts unable to be annotated or deemed ‘unqueryable’ – additional 
information on these categories is included in the Appendix. Condition is the most common entity and OR the 
most common relationship. The most common relationship triplet is Measurement-has_value-Value; the second 
most common is Condition-has_qualifier-Qualifier. The most common relationship types are listed in Table 4 and 
the most common relationship triplets are listed in Table 5. OR relationships were not included in calculating the 
most common triplets as they do not always follow the root-relationship-target structure. 29.9% of OR relation-
ships linked more than 2 entities and maximally linked 25 entities. All type-specific relationships contained the 
respective target entity type (e.g., has_value to Value entity) except for has_temporal (86.7% Temporal, 13.3% 

Entity Type
Count (%; 
n = 1,606) Example

Non-query-able 557 (34.7%) In clinical judgement of study doctor, participant should not participate

Post-eligibility 425 (26.5%) Unable to adhere to follow up schedule and treatment

Informed_consent 223 (13.8%) Inability to give informed consent

Pregnancy_considerations 172 (10.7%) Are not willing to use a reliable method of barrier contraception during the study

Parsing_Error 135 (8.4%) 3. Medications:

Non-representable 120 (7.4%) Subjects who are incarcerated or wards of the state

Competing_trial 86 (5.4%) Participation in other drug clinical trial within the last 4 weeks

Context_Error 61 (3.8%) Hematologic laboratory values as outlined in the protocol

Subjective_judgement 43 (2.7%) Viable tumor resection confirmed by two highly qualified surgical doctors

Not_a_criteria 33 (2.1%) Screening tool: physical assessment (EKG), medical history

Undefined_semantics 21 (1.3%) Presence of clinical contraindications for treatment with MTX

Intoxication_considerations 5 (0.3%) Active alcohol or drug use or dependence which may interfere with adherence to 
study requirements

Table 2.  Total count and percentage of unevaluable criteria using unevaluable entity annotations.

Statistic EliIE Chia

Disease Domain Alzheimer’s Representative of all diseases

No. of Trials 230 1,000

No. of Criteria 3,619 12,409

No. of Annotations 15,596 65,886

No. of Entity Types 8 15

No. of Relationship Types 3 12

Criteria Coverage 71% 85.9%

Table 3.  Comparison of EliIE and Chia Annotated Datasets.
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Observation) and has_mood (97.7% Mood, 2.3% Observation), though these different target types reflect the flex-
ibility of the Observation Domain. For example, “history of ” is considered an Observation despite its role in the 
has_temporal relationship. Concept mappings to the OMOP CDM with a score greater than or equal to 0.7 were 
considered strong matches. In total, 65.9% of raw annotated entities within the 8 Domain entity categories were 
considered strong mappings to the OMOP CDM. The percentage of strong mappings in each Domain category is 
shown in Table 6. Finally, the 15 most frequent tokens within the most common entity types are listed in Table 7 
(fuzzy string-matching was used to generate token-level information).

The Chia dataset contains a total of 4,161 annotated Scope objects with 1,009 having an incoming subsumes or 
multi relationship, serving a body of original and useful knowledge for electronic phenotyping (discussed further 
in Use Case 2 below). A few examples of Scope objects are presented in Table 8. The average number of entities 
contained within these Scope objects is 3.51 with a maximum of 82. Additionally, 2,318 subsumes or multi rela-
tionships are available throughout the dataset with that number increasing to 2,521 in the dataset without Scope 
objects (post-Scope decomposition).

Usage Notes
Use case analyses.  To demonstrate the utility of Chia, we propose two motivating use cases for this anno-
tated corpus that can be explored in future research efforts.

Relationship Count Percent (n = 25,017)

OR 4,939 19.8%

has_value 3,806 15.2%

AND 3,679 14.7%

has_qualifier 3,535 14.1%

has_temporal 3,336 13.3%

Table 4.  Most common relationship entities including overall count and percentage of all relationships.

Root Type Relationship Target Type Count Percent (n = 20,078)

Measurement Has_value Value 2799 13.94%

Condition Has_qualifier Qualifier 2445 12.18%

Condition Has_temporal Temporal 1323 6.59%

Temporal Has_index Reference_point 889 4.43%

Procedure Has_temporal Temporal 857 4.27%

Person Has_value Value 752 3.75%

Condition AND Drug 645 3.21%

Condition Subsumes Condition 624 3.11%

Drug Has_temporal Temporal 532 2.65%

Condition AND Procedure 514 2.56%

Procedure Has_qualifier Qualifier 465 2.32%

Condition AND Condition 459 2.29%

Condition AND Measurement 408 2.03%

Condition Has_negation Negation 380 1.89%

Procedure AND Condition 315 1.57%

Table 5.  Most common relationship triplets (excluding OR relationships) including overall count and 
percentage of all relationship triplets.

Entity Category Percent of Entities with Confidence Score ≥ 0.70

Condition 74.9%

Procedure 66.5%

Drug 64.8%

Device 62.1%

Person 61.8%

Measurement 55.2%

Observation 39.8%

Visit 31.3%

Table 6.  Mapping accuracy to OMOP CDM via Usagi per Entity Category.

https://doi.org/10.1038/s41597-020-00620-0


7Scientific Data |           (2020) 7:281  | https://doi.org/10.1038/s41597-020-00620-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

Use Case 1: Machine learning model training for information extraction from eligibility criteria.  Machine learning 
technologies can assist in parsing eligibility criteria. In previous research, Conditional Random Fields (CRFs)27, 
Convolutional Neural Networks (CNNs)28, Support Vector Machines (SVMs)14, hierarchical clustering29, distant 
supervision30, and other machine learning approaches have been used to extract entities and relationships from 
the free-text eligibility criteria to obtain structured representations. These extraction methods typically result 
in satisfactory accuracy but relatively low recall, such as the 94% accuracy and 18% recall described by Milian 
et al. in 201517. There are a few possible explanations for this low recall. The first is that the training corpus lacks 

Condition Qualifier Drug Procedure

Concept Count Concept Count Concept Count Concept Count

pregnancy 442 severe 326 systemic corticosteroids 81 treatment 174

allergy 269 significant 117 medication 72 surgery 99

contraindications 197 active 114 anticoagulants 55 chemotherapy 81

infection 129 other 112 prednisone 49 radiation therapy 62

malignancy 104 uncontrolled 106 antibiotics 48 general anesthesia 58

hypertension 92 clinically significant 83 study medications 45 physical examination 42

lactation 90 chronic 57 antidepressants 40 cardiac surgery 41

heart failure 89 serious 55 aspirin 39 contraception 39

stroke 88 symptomatic 54 opioids 39 intubation 38

diabetes 82 moderate 47 vaccine 36 transplant 36

lactating 82 acute 43 statin 32 implantation 35

myocardial infarction 81 elective 40 warfarin 27 liver transplant 35

cardiovascular disease 64 untreated 39 insulin 27 dialysis 34

liver disease 63 stable 38 rifampin 27 hysterectomy 33

Measurement Person Observation Device

Concept Count Concept Count Concept Count Concept Count

serum creatinine 77 age 577 breastfeeding 68 pacemakers 18

body mass index 65 female 355 life expectancy 64 intrauterine device 12

blood pressure 64 male 355 informed consent 29 prosthetic valve 12

weight 59 older 67 family history 18 prosthetic material 11

hemoglobin 57 adult 54 english speaking 16 prosthetic mesh 11

bilirubin 55 years 47 smoking 15 contraceptive implant 10

systolic blood pressure 52 children 32 childbearing potential 13 drug-eluting stent 9

diastolic blood pressure 52 patients 16 alcohol abuse 9 metal implants 9

pregnancy test 48 prisoners 13 evidence 8 device 8

platelet count 45 smokers 7 nursing 7 cochlear implants 8

creatinine clearance 44 infants 6 contraception 7 condom 7

ast [aspartate 
aminotransferase] 43 newborns 5 lactating 6 joint prosthesis 7

hba1c [hemoglobin a1c] 41 donor 5 last vaccination intervals 6 aneurysm clips 6

alt [alanine 
aminotransferase] 41 liver transplant 

recipients 5 suspected 6 metal in the body 6

asa [american society of 
anesthesiologists] 40 adolescents 5 sexually active 6 bare-metal stent 5

Table 7.  Most common annotated entities by Domain.

Trial Number Inc/Exc Line Sample Criterion

NCT02781610 Exclusion 5 …worsening lower respiratory symptoms (e.g.,, pulmonary clean out, distal intestinal obstruction 
syndrome (DIOS), sinusitis)

NCT02596555 Exclusion 13 …strong inhibitors of P-glycoprotein like ketoconazole, cyclosporin, itraconazole or dronedarone

NCT00650312 Inclusion 4
…judged normal and healthy during a pre-study medical evaluation (physical examination, 
laboratory evaluation, 12-lead ECG, hepatitis B and hepatitis C tests, HIV test, and urine drug 
screen including amphetamine, barbiturates, benzodiazepine, cannabinoid, cocaine, opiates, 
phencyclidine, and methadone)

NCT01373684 Exclusion 13 …immunodeficiency syndromes (e.g., HIV positivity, auto-immune diseases, organ transplants 
other than cornea and hair transplant)

NCT02531971 Inclusion 2 …including tobacco products (e.g., cigarettes, cigars, chewing tobacco, gum, patch or electronic 
cigarettes)

Table 8.  Examples of Scope objects in Chia (contained on Scope object).
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diversity in the types of eligibility criteria, as described in more detail in the Background section of this article. 
The second explanation is that most of the criteria (~85%) are very complex with various semantic patterns, 
including 35% of criteria containing more than one type of semantic pattern13,31. Finally, incomplete sentence 
structure and word ambiguity can also lead to extraction failures as described by Yuan et al. in 201932.

A larger dataset of eligibility criteria with samples from a broad range of clinical trials is necessary to train 
a more accurate and robust extraction model. With 41,699 entities and 25,017 relationships annotated, Chia 
provides ample training data for machine learning research for identifying not only the boundaries and classes 
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Fig. 2  Comparisons of Chia annotation model to previous annotation efforts using identical sample eligibility 
criteria text. (a) EliIE annotation model proposed by Kang et al., (b) hepatitis C trials outlined by Zhang et al., 
(c) ERGO annotation model proposed by Tu et al.

https://doi.org/10.1038/s41597-020-00620-0


9Scientific Data |           (2020) 7:281  | https://doi.org/10.1038/s41597-020-00620-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

of named entities within medical text, but also the dependencies between these concepts. Further, when compar-
ing to previous annotation efforts outlined in the Background section, the richness of the Chia model becomes 
clear as highlighted in Fig. 2. This direct criterion-to-criterion comparison allows for better appreciation of the 
increased level of connectivity between concepts (section A), simplicity in structure and format (section B), and 
improved granularity (section C) provided by Chia.

Chia’s non-flat annotation scheme is also noteworthy. Most corpuses for Named Entity Recognition (NER) 
training have adopted the flat annotation, disallowing discontinuous, nested, or overlapping entities33, whereas 
Chia represents them and supports the use case Electronic Phenotyping described below. Discontinuous and over-
lapping entities are required to capture coordination ellipsis, such as “presence of pulmonary, hepatic or hemato-
logical cancer.”, which is one type of ellipsis used in coordinating structure to achieve textual concision by omitting 
repeated words34. Coordination ellipses are more frequently used in medical language than in the general domain. 
More granular results are required for downstream tasks such as free-text based phenotyping. Existing anno-
tated corpus containing overlapping entities are derived from biomedical literature, including GENIA and NCBI 
Disease corpora35. GENIA corpus is focused primarily on biological entities such as DNA, RNA, and protein36, 
and NCBI Disease is focused on disease mentions. To the best of our knowledge, Chia is the first clinical corpus of 
considerable size that is annotated in a non-flat fashion and supports annotation nesting and joining.

Use Case 2: Electronic phenotyping.  Electronic phenotyping plays an essential role in disease knowledge discov-
ery, application, and clinical research2,37. Electronic phenotyping supports cross-sectional and epidemiological 
studies, association studies, clinical risk factor analyses, and cohort identification2. In some cases, the phenotype 
definition is fairly simple (e.g., diagnosis of rheumatoid arthritis), but it can become more nuanced and com-
plex (e.g., moderate or severe COPD exacerbation [requiring corticosteroids or increased dosage of corticoster-
oids and/or antibiotics or hospitalization]). Manual knowledge engineering to establish the linkage between the 
concepts in a phenotype is neither scalable nor efficient. Hierarchical relationships between annotated entities 
are explicitly defined in Chia via Scope objects, subsumes relationships and multi relationships, which provide 
reusable phenotyping knowledge. These annotations often indicate one concept (or group of concepts) that can 
be substituted for another because their meanings are inherently interconnected – oftentimes because the latter 
are clarifications or specifications of the former. For example, Systolic Blood Pressure > 130 and Diastolic Blood 
Pressure >85 can be used to define the condition Hypertension. There are 2,197 cases of subsumes in Chia, and 
Table 9 gives a few examples. Further, as eligibility criteria themselves serve to define a patient cohort, they can be 
considered to be small electronic phenotypes.

Code availability
All code used to generate and process the datasets described above is freely available at https://github.com/
WengLab-InformaticsResearch/CHIA in the file titled chia.R. It was written in R version 3.3.3.
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