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Abstract

Several polymorphic gene variants within one-carbon metabolism, an essential pathway for

nucleotide synthesis and methylation reactions, are related to cancer risk. An aberrant DNA

methylation is a common feature in cancer but whether the link between one-carbon metab-

olism variants and cancer occurs through an altered DNA methylation is yet unclear. Aims of

the study were to evaluate the frequency of one-carbon metabolism gene variants in hepato-

cellular-carcinoma, cholangiocarcinoma and colon cancer, and their relationship to cancer

risk together with global DNA methylation status. Genotyping for BHMT 716A>G, DHFR

19bp ins/del, MTHFD1 1958G>A, MTHFR 677C>T, MTR 2756A>G, MTRR 66A>G, RFC1

80G>A, SHMT1 1420C>T, TCII 776C>G and TS 2rpt-3rpt was performed in 102 cancer

patients and 363 cancer-free subjects. Methylcytosine (mCyt) content was measured by

LC/MS/MS in peripheral blood mononuclear cells (PBMCs) DNA. The MTHFD1 1958AA

genotype was significantly less frequent among cancer patients as compared to controls (p

= 0.007) and related to 63% reduction of overall cancer risk (p = 0.003) and 75% of colon

cancer risk (p = 0.006). When considering PBMCs mCyt content, carriers of the MTHFD1

1958GG genotype showed a lower DNA methylation as compared to carriers of the A allele

(p = 0.048). No differences were highlighted by evaluating a possible relationship between

the other polymorphisms analyzed with cancer risk and DNA methylation.

The MTHFD1 1958AA genotype is linked to a significantly reduced cancer risk. The

1958GG genotype is associated to PBMCs DNA hypomethylation as compared to the A

allele carriership that may exert a protective effect for cancer risk by preserving from DNA

hypomethylation.
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Introduction

One-carbon metabolism is a complex pathway involved both in the nucleotide synthesis and

biological methylation reactions [1, 2]. For the implication of this metabolism in cellular devel-

opment, proliferation and differentiation, polymorphic variants of genes encoding for

enzymes related to one-carbon metabolism have been largely studied for their relationship

with cancer disease [3–6]. The molecular mechanisms underlying such association are, how-

ever, not clearly defined yet, while it is known that one-carbon metabolism modulates a major

epigenetic mechanism as DNA methylation [7, 8] that is strongly linked to cancer [6]. DNA

methylation is the major and the most studied among the epigenetic mechanisms in mamma-

lian cells consisting in the covalent binding of a methyl group to the 5’ carbon position of cyto-

sine, mostly occurring at CpG dinucleotide sequences with a function for gene expression

regulation and maintainance of genomic stability [9]. DNA methylation is a heritable and

reversible phenomenon with potential implications for the understanding of molecular mech-

anisms and disease prevention strategies in complex diseases such as cancer [6]. Both global

and gene-specific DNA methylation show altered patterns in cancer disease and, in particular,

a global DNA hypomethylation has been described as an almost universal finding in cancer

cells [10]. There is evidence that global DNA hypomethylation in peripheral blood mononu-

clear cells (PBMCs) may be associated to an increased cancer risk and may be useful as a bio-

marker for cancer susceptibility [11]. Significantly reduced methylcytosine (mCyt) levels in

PBMCs DNA from cancer patients were previously observed [8, 12, 13], where low levels of

global DNA methylation was related to future cancer development and therefore might be

considered as a potentially useful epigenetic marker for cancer risk [8]. Cancer is a major pub-

lic health issue [14]. Among other types of cancer, primary liver cancers, i.e. hepatocellular car-

cinoma (HCC) and cholangiocarcinoma (CC), and colon cancer, are common malignancies

worldwide [14, 15]. In particular, the worldwide mortality rate of liver cancer is 14.6% in

males and 5.7% in females, and the mortality of colon cancer is 9.7% in males and 7.0% in

females [14].

A potential underlying mechanism in colon and liver carcinogenesis relates to one-carbon

metabolism for its function in providing methyl groups for DNA methylation [2]. A research

hypothesis is that functional genetic defects in one-carbon enzymes, by inducing an aberrant

DNA methylation, may eventually lead to cancer development, though evidences in this regard

are still limited (Fig 1) [16].

Aim of the present study was precisely to evaluate the possible association among the most

common, functional genetic variants of one carbon-metabolism enzymes, global DNA methyl-

ation and their potential association with risk for primary liver and colon cancer.

Materials and methods

Study subjects

The study was approved by the Institutional Review Board Ethical Committee of the Univer-

sity of Verona School of Medicine Hospital (Verona, Italy). Written informed consent was

obtained from each patient after a detailed explanation of the study.

Four hundred and sixty-five subjects were enrolled, precisely 102 cancer patients (38 HCC,

21 CC, and 43 colon cancer) and 363 cancer-free subjects [17]. The patients affected by cancer

were enrolled from April 2009 to March 2013 among those referring to the Division of General

and Hepatobiliary Surgery of the Verona University Hospital, for curative surgery interven-

tion. The patients admitted to the study were�18 years old with the following surgical resect-

ability criteria: preserved liver function, class A Child-Pugh score, absence of extrahepatic
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Fig 1. Hypothesis for a role of main functional genetic variants in one-carbon metabolism and cancer risk through

DNA methylation. Polymorphic genetic variants in one-carbon enzymes can affect the balance between biological

methylation and nucleic acids synthesis pathways inducing an aberrant DNA methylation and eventually leading to cancer

development. BHMT, betaine-homocysteine S-methyltransferase; DHFR, dihydrofolate reductase; MTHFD1,

methylenetetrahydrofolate dehydrogenase 1; MTHFR, methylenetetrahydrofolate reductase; MTR, 5-methyltetrahydrofolate-
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metastases. Exclusion criteria comprised: a coexisting human immunodeficiency (HIV), hepa-

titis B (HBV) or hepatitis C (HCV) viruses infection; presence of relevant concurrent medical

conditions such as acute or chronic inflammatory diseases or haematological disorders, auto-

immune liver diseases and hemochromatosis, decompensate liver cirrhosis (Child-Pugh B, C).

A trained physician recorded a detailed clinical history data reporting also lifestyle habits. The

cancer-free control group was of 363 age- and sex-matched subjects [17]. Key eligibility criteria

were age�18 years, absence of neoplasia of any type, no history of viral infections (HBV,

HCV) and absence of other relevant medical conditions. All subjects under B vitamins supple-

mentation and/or using drugs known to interfere with folate-related one-carbon metabolism

in the month before enrolment were excluded.

Biochemical analysis

Samples of venous blood were drawn from each subject after an overnight fasting for a com-

plete blood count and determination of serum C-reactive protein (CRP), creatinine, aspartate

transaminase (AST), alanine transaminase (ALT), gamma-glutamyltranspeptidase (gGT),

alkaline phosphatase (ALP), total bilirubin, albumin, glicemia, total cholesterol, triglycerides,

prothrombin time-international ratio (PT-INR), ferritin, and tests for hepatitis B and C viruses

serology, by using routine laboratory test analyses. Plasma folate and vitamin B12 were mea-

sured by an automated chemiluminescence method (ChironDiagnostics, East Walpole, MA)

and total plasma homocysteine (tHcy) concentrations were determined by high-performance

liquid chromatography (HPLC) with fluorescent detection [18].

Genotyping of one-carbon metabolism genes

From each subject venous blood was drawn into Vacutainer1 tubes containing EDTA as anti-

coagulant after an overnight fasting and DNA was extracted by Wizard Genomic DNA Purifi-

cation Kit (Promega Corporation, Fitchburg, WI, USA). The one-carbon metabolism gene

variants most commonly described with a functional effect were analyzed by different meth-

ods, as follows: DHFR 19bp ins/del (rs70991108)[19] and TS 2rpt-3rpt by PCR[20], MTHFD1
1958 G>A (rs2236225)[21], MTHFR 677 C>T (rs1801133)[22], MTR 2756A>G (rs12749581)

[23], MTRR 66 A>G (rs1801394)[24], RFC1 80G>A (rs1051266)[25], and SHMT1 1420 C>T

(rs1979277)[26] by PCR-restriction fragment length polymorphism assays, and the BHMT 716

A>G (rs3733890) and TCII 776 C>G (rs1801198) by allelic discrimination Real Time-PCR

technology by using the C_11646606–20 assay and the C_325467–10 Taqman1 SNP Genotyp-

ing assays, respectively (Applied Biosystems™, ABI Prism 7500). The mean genotyping call rate

among all the studied gene variants was 97.2%.

Global DNA methylation

Global DNA methylation was determined using a liquid chromatography/mass spectrometry

(LC/MS/MS) method and mCyt levels expressed as percent (%)mCyt = [(mCyt)/(mCyt+Cyt)]

x 100, as previously described [7, 27, 28]. The analysis was performed in the PBMC DNA of all

the cancer-free subjects (n = 363) and in a subgroup of cancer patients (n = 62). Briefly, global

DNA was extracted and hydrolyzed to nucleosides using 2 units of nuclease P1, 0.002 units of

venom phosphodiesterase I and 0.5 units of alkaline phosphatase. Isotope-labeled internal

homocysteine methyltransferase; MTRR, 5-methyltetrahydrofolate-homocysteine methyltransferase reductase; RFC1,

reduced folate carrier 1; SHMT1, serine hydroxymethyltransferase 1; TCII, transcobalamin II; THF, tetrahydrofolate, and TS,

thymidylate synthase.

https://doi.org/10.1371/journal.pone.0185792.g001
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standards for deoxycytidine and 5-methyl-deoxycytidine were added to samples before run-

ning in a 3200 Q Trap MS-MS system coupled with an Agilent 1100 Series liquid

chromatograph.

Statistical analysis

All the statistical computations were performed by using the IBM SPSS Statistics software ver-

sion 22 for Windows (IBM Inc., Armonk, NY, USA). Continuous variables were expressed as

mean values and standard deviations (SD), while those showing a skewed distribution were

log-transformed and, thus, expressed as geometric means with 95% confidence interval (CI).

Continuous variables were tested by Student’s t-test or analysis of variance (ANOVA) with

Tukey’s post-hoc comparison when appropriate. Categorical variables were analyzed using a

χ2-test. All genotype distributions were assessed according to Hardy-Weinberg equilibrium.

The strength of association of gene variants with the risk of cancer was estimated by means of

sex- and age-adjusted logistic regression and Odds Ratios (ORs) with 95% CI are reported. A

value of p<0.05 was considered significant.

Results

Clinical characteristics of the subjects

Table 1 reports the main clinical and biochemical characteristics of the cancer patients and

cancer-free subjects and, as shown, the two groups were age- and sex-matched. No differences

were observed in terms of plasma folate and vitamin B12 concentrations between cases and

controls while the groups differed for CRP, haemoglobin, platelets count, AST, ALT, ALP,

gGT, homocysteine, albumin, total cholesterol, triglycerides, creatinine, and ferritin levels

(Table 1). Serologic tests for HBV and HCV were negative for all patients according to the

enrolment criteria, and indexes of hepatic function confirmed a compensated status of liver

disease in all patients (Table 1).

One-carbon genetic variants and cancer risk

The genotype distribution of the gene polymorphic variants was in agreement with the Hardy-

Weinberg equilibrium both among cases and controls, except for the distribution, in the can-

cer group, of the MTRR 66A>G that was, therefore, excluded from subsequent analysis.

Table 2 reports the distribution of polymorphic variants frequencies in cancer patients and in

cancer-free subjects. As shown, there were no differences in the genotype distribution for all of

the one-carbon pathway polymorphic variants analysed except for the MTHFD11958AA geno-

type that was significantly less frequent among cancer patients as compared to cancer-free sub-

jects (p = 0.008) and such difference was confirmed even after adjustments for sex and age

(p = 0.007). The association with risk of cancer was then evaluated by setting the MTHFD1
1958GG genotype subjects as the reference group (OR = 1). The presence of the 1958A allele

was associated with a lower risk for cancer in a graded manner so that the heterozygous vari-

ant, i.e. the 1958GA, was associated with a 51% risk reduction (OR = 0.49, CI 0.28–0.86,

p = 0.012) and the 1958AA homozygous genotype was associated to a 63% reduction of cancer

risk (OR = 0.37, CI 0.19–0.71, p = 0.003) (Fig 2). The risk for cancer was then analysed taking

into account the 1958A allele carriership and the presence of the 1958A allele was associated to

a lower cancer risk (OR = 0.46, CI 0.28–0.78, p = 0.005).

The analysis for the distribution between cancer patients and cancer-free subjects did not

detect any differences for the other polymorphic variants analysed.

MTHFD1 1958G>A, DNA methylation and cancer
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Table 1. Clinical and biochemical characteristics of cancer patients and cancer-free subjects.

Reference values Cancer patients Cancer-free subjects p-value˚

n = 102 n = 363

Age (years) 66.2 (10.9) 65.0 (5.9) 0.139

Gender (% males) 66.7% 70.5% 0.455§

CRP (mg/L) <5.0 7.79 (5.75–10.18) 2.89 (2.61–3.13) < 0.0001

Hb (g/dL) 13.5–16.0 13.1 (1.72) 14.2 (1.27) < 0.0001

MCV (fL) 86.0–98.0 91.2 (6.68) 91.2 (5.36) 0.969

WBC (109/L) 4.3–10.0 7.00 (2.77) 6.89 (1.70) 0.701

Platelet count (109/L) 150–400 254 (111) 212 (61) < 0.0001

AST (U/L)* 8–50 40.9 (35.2–47.5) 21.3 (20.5–22.2) < 0.0001

ALT (U/L)* 8–45 36.2 (30.0–43.4) 23.3 (22.2–24.5) < 0.0001

ALP (U/L)* 30–130 98.5 (87.4–111.1) 74.4 (72.2–76.7) < 0.0001

gGT (U/L)* <50 73.7 (60.3–89.1) 30.9 (28.8_33.1) < 0.0001

Total bilirubin (mg/dL)* 0.11–1.05 0.66 (0.59–0.74) 0.67 (0.64–0.70) 0.852

PT (INR)* 0.82–1.14 2.25 (1.05–1.12) 2.39 (1.06–1.12) 0.773

Albumin (g/L) 35–50 39.8 (6.00) 41.8 (3.59) < 0.0001

Total cholesterol (mg/dL) <200 173.4 (48.7) 231.3 (44.0) < 0.0001

Triglycerides (mg/dL)* <150 116.8 (107.8–126.5) 142.6 (135.6–148.4) < 0.0001

Creatinine (mg/dL)* 0.59–1.29 0.85 (0.79–0.92) 1.09 (1.06–1.13) < 0.0001

Glucose (mmol/L) 3.5–5.5 5.85 (1.41) 6.17 (1.94) 0.121

Folate (nmol/L)* 10.4–42.4 13.2 (10.9–15.8) 12.1 (11.6–12.7) 0.390

tHcy (μg/L)* < 15.0 11.9 (10.2–13.9) 15.8 (15.2–16.4) <0.0001

VitaminB12 (pmol/L)* 142–724 323.8 (290.0–361.4) 287.2 (275.9–301.9) 0.056

Ferritin (μg/L)* 30–400 98.5 (89.1–108.9) 164.0 (127.7–210.6) < 0.0001

Continuous variables with normal distribution are expressed as mean (standard deviation).

*: log-transformed variables are shown as geometric mean with 95% confidence interval

˚: by Student’s t-test for comparison between cancer patients and cancer-free patients
§: χ-squared test

https://doi.org/10.1371/journal.pone.0185792.t001

Table 2. Comparison of polymorphic variants frequencies between cancer patients and cancer-free subjects.

Cancer patients

N = 102

Cancer-free subjects

N = 363

p-value

w/w w/m m/m w/w w/m m/m

BHMT 716 G>A 46.4 44.3 9.3 44.8 40.3 14.8 0.355

DHFR 19bp ins/del 41.2 42.3 16.5 35.3 49.4 15.3 0.180

MTHFD1 1958 G>A 29.6 49.0 21.4 16.2 52.9 30.9 0.007 *

MTHFR 677 C>T 41.2 39.2 19.6 34.5 49.6 15.9 0.189

MTR 2756 A>G 67.3 31.6 1.0 66.7 28.6 4.8 0.226

RFC1 80 G>A 25.5 56.1 18.4 25.1 51.0 23.9 0.486

SHMT1 1420 C>T 44.2 46.3 9.5 53.9 40.7 5.3 0.136

TCII 776 C>G 32.7 50.0 17.3 31.5 51.4 17.1 0.967

TS 2rpt/3rpt ** 19.6 45.4 35.1 20.2 47.2 31.7 0.887

Abbreviations: w = major allele, m = minor allele, N.S. = not statistically significant;

* after adjustment for age and sex;

** 0.9% of cancer-free subjects were carriers of the 2rpt/4rpt and 3rpt/4rpt genotype.

https://doi.org/10.1371/journal.pone.0185792.t002
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The MTHFD1 1958G>A genotypes according to cancer type and cancer

risk

The MTHFD1 1958G>A genotype frequencies were then analysed according to the different

types of cancer. Among HCC patients the frequencies were 24.3% (GG), 43.2% (GA) and

32.4% (AA); among CC patients the frequencies were 31.6% (GG), 57.9% (GA) and 10.5%

(AA); as for the colon cancer patients group, the frequencies were 31.7% (GG), 52.2% (GA)

and 17.1% (AA).

The MTHFD1 1958AA homozygous genotype was significantly less frequent among

patients affected by colon cancer as compared to cancer-free subjects (17.1% versus 30.9%,

p = 0.025) and this difference was confirmed when considering MTHFD1 1958A allele carrier-

ship (68.3% in colon cancer versus 83.8% in controls, p = 0.014). In HCC and CC patients no

statistically significant differences were observed in terms of distribution, as compared to can-

cer-free subjects. The association with risk of colon cancer was evaluated by setting the

MTHFD1 1958GG subjects as the reference group (OR = 1) and the adjustment for sex and

age was then performed. When the heterozygous MTHFD1 1958GA variant was evaluated

according to cancer risk, the analysis did not reach statistical significance (OR = 0.48, CI 0.22–

1.03, p = 0.058) whereas the homozygotic condition, i.e. 1958AA, was associated to a 75%

reduction of colon cancer risk (OR = 0.25, CI 0.09–0.68, p = 0.006) (Fig 3). Moreover, the

1958A allele carriership was linked to a noticeable lower risk for colon cancer (OR = 0.45, CI

0.27–0.76, p = 0.003).

Global methylation in PBMCs DNA

Methylcytosine was measured in PBMCs of a subgroup of subjects and no significant differ-

ences were observed between cancer- (n = 62) and cancer-free subjects (n = 363) (5.34% versus

5.38%, p = 0.38). A similar level of mCyt content characterized the three groups affected by the

different types of cancer (HCC 5.34%, CC 5.33%, colon cancer 5.35%, p>0.2). The global

Fig 2. MTHFD1 1958G>A genotypes and cancer risk. The MTHFD1 1958A allele is associated to a lower

cancer risk as expressed by means of Odds Ratio (OR) adjusted for sex and age.

https://doi.org/10.1371/journal.pone.0185792.g002
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DNA methylation in PBMCs was then analysed according to the MTHFD1 1958G>A geno-

types. When the cancer patients group was considered as a whole, no differences were associ-

ated to mCyt levels among the three genotypes, as compared to the cancer-free subjects

(p = 0.13). Then the mCyt levels were analyzed according to the presence of the 1958A allele

(A carriers versus GG genotype) in all the study subjects (cancer patients and cancer-free sub-

jects). The A allele carriers and the GG genotype subjects varied significantly for mCyt levels

(5.38% versus 5.31%, p = 0.048) (Fig 4). Then mCyt levels were analysed according to

MTHFD1 1958G>A genotypes in the three different type of cancer. Among colon cancer

patients (n = 15) mCyt levels resulted higher in MTHFD1 1958A carriers as compared with

GG genotype, although the difference did not reach the statistical significance (5.42% versus
5.10% respectively, p = 0.086).

Discussion

Ten major polymorphisms related to one-carbon metabolism genes were analysed for the pos-

sible association with cancer risk, in particular HCC, CC and colon cancer risk. No differences

in genotype distribution for all of the ten polymorphic variants analysed was, however,

observed, neither there was an association with cancer risk, except for the MTHFD1
1958G>A. Furthermore, no differences were observed for folate and vitamin B12 levels

between cancer and cancer-free subjects. This finding was, however, not surprising consider-

ing that both cancer and cancer-free subjects show folate and vitamin B12 status within a nor-

mality range.

This study demonstrates that the MTHFD1 1958GG genotype shows a higher frequency

among cancer patients and it is associated, in all the study subjects, to PBMCs DNA hypo-

methylation as compared to the A allele carriers.

One-carbon metabolism is an essential crossroad in the balance between nucleotide synthe-

sis and methylation reactions including that of DNA, known to be a key epigenetic mechanism

Fig 3. MTHFD1 1958G>A genotypes and colon cancer risk. The MTHFD11958AA genotype is associated

to a significantly reduced colon cancer risk by means of Odds Ratio (OR) adjusted for sex and age.

https://doi.org/10.1371/journal.pone.0185792.g003
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in carcinogenesis [2, 12, 13]. Moreover, functional genetic variants of genes pertaining to one-

carbon pathway are considered as potential risk factors for cancer disease (Fig 1) [5, 29]. Few

data are available, so far concerning the mechanisms underlying the role of one-carbon metab-

olism variants in affecting cancer risk through the modulation of DNA methylation [8, 12, 13].

The MTHFD1 enzyme catalyzes three sequential and reversible reactions in the pathway of

conversion of tetrahydrofolate (THF), the active form of folate, into substrates essential for the

de novo purine and thymidylate synthesis [30] (Fig 5). Moreover, the MTHFD1 indirectly pro-

vides one-carbon units for methylation reactions by the synthesis of 5,10 methylene-THF[30].

Due to its role in nucleotide synthesis, the MTHFD1 enzyme may modulate cell division[31],

it is therefore feasible that the functional alteration caused by the 1958G>A polymorphism

may influence DNA synthesis reactions and cell development, eventually affecting carcinogen-

esis. The G>A substitution at position 1958 of the gene sequence leads to an arginine to gluta-

mine substitution at 653 amino acid position in the enzyme synthase domain [21]. In a murine

cell line model, the MTHFD1 1958AA genotype was associated to a 25% decreased purine syn-

thesis [32] likely by affecting the supply of 10-formyl THF moieties for purine synthesis [33].

The function of the synthase domain was recently described to play an essential role in cellular

proliferation by affecting nucleotide synthesis in rapidly dividing cells [34]. The MTHFD1
1958G>A variants have been mainly studied in relation to neural tube defects and embryonic

development [31, 33, 35], but it has been also described as associated to cancer disease,

although with not univocal results [3, 36, 37]. Wang and colleagues showed that the polymor-

phic 1958AA variant was linked to a significantly increased risk for gastric cancer as compared

with the 1958GG or 1958AG genotypes [38], whereas most of the recent studies failed to dem-

onstrate a significant association between the MTHFD11958 G>A polymorphic variants and

different types of cancers [3, 36, 37]. As it refers to colon cancer disease, several studies failed

to find a statistically significant association between MTHFD1 1958 G>A and either colon

Fig 4. Global DNA methylation levels in PBMCs according to the MTHFD1 1958G>A genotypes. Global

DNA methylation levels according to the MTHFD1 1958G>A genotypes in cancer patients and cancer-free

subjects. GG: n = 72, GA+AA: n = 332. The error bar represents standard deviation (SD).

https://doi.org/10.1371/journal.pone.0185792.g004
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cancer risk [5, 39, 40] or risk for colonic adenoma, a precursor lesion of colorectal cancer [41].

Interestingly, the present study showed a significantly different distribution of the MTHFD1
1958G>A genotypes between cancer and cancer-free subjects. In particular, there was a lower

frequency of the MTHFD1 1958AA genotype among cancer patients as compared to cancer-

free subjects and this difference was associated with a 63% reduction of the overall cancer risk.

Even more intriguing was the significantly reduced MTHFD1 1958AA frequency in colon can-

cer patients as compared to controls and its association with a 75% reduction of colon cancer

risk. Therefore our study demonstrates that the MTHFD1 1958AA is associated to a reduction

for cancer risk, in particular for colon cancer. When global DNA methylation was analysed

according to MTHFD1 1958G>A genotypes, the 1958GG genotype was either significantly

more represented in patients affected by cancer, and associated with lower mCyt levels in

PBMCs DNA. These results are in agreement with the previous observation of global DNA

hypomethylation in cancer tissues [6, 12, 13] as well as in PBMCs DNA of patients affected by

cancer [8]. In the subgroup of patients affected by colon cancer, the association between the

presence of MTHFD1 1958GG genotype and DNA hypomethylation in PBMCs did not reach

statistical significance probably due to the small sample size. The reported findings of the sig-

nificantly lower frequency of the MTHFD1 1958AA genotype in patients affected by cancer

disease and the association of this genotype with a lower risk for cancer appear suggestive for a

protective role of this polymorphic variant, particularly in the development of colon cancer.

The mechanism underlying this hypothesis may be a reduced synthase activity associated with

the homozygous 1958AA genotype [32], which may slow down the cell proliferation processes

and hinder the tumour initiation. Moreover, the present results suggest that both MTHFD1
1958AA and 1958GA genotypes could be protective for cancer through modulation of DNA

methylation. In colon cancer patients the difference between mCyt levels in association with

the 1958GG and the 1958 GA+AA genotypes respectively, may be due to the small sample size,

thus further investigations are warranted.

Fig 5. Pattern of reactions and functions of Methylene tetrahydrofolate dehydrogenase 1 (MTHFD1). The MTHFD1

enzyme catalyzes three sequential and reversible reactions in the pathway of conversion of tetrahydrofolate (THF), the active form

of folate, into substrates essential for the de novo purine and thymidylate synthesis.

https://doi.org/10.1371/journal.pone.0185792.g005
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In conclusion, the MTHFD1 1958AA genotype is less frequent among cancer patients and

it is associated to a lower risk for cancer that is even more decreased specifically for colon can-

cer. Moreover, the association of A allele with the presence of higher DNA methylation levels

in PBMCs suggests a possible protective role of this variant against DNA hypomethylation. On

the other hand, the MTHFD1 1958GG genotype, more frequent among cancer patients, indi-

cates a trend towards global PBMCs DNA hypomethylation as commonly observed in cancer.

The link between the MTHFD1 1958AA genotype with a decreased cancer risk may be

explained by its possible modulatory effect between DNA methylation and nucleotide synthe-

sis. Further studies are certainly needed to better unravel the role of MTHFD1 1958 A>G in

cancer risk.
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