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Dysregulation of miRNAs-COUP-TFII-FOXM1-CENPF
axis contributes to the metastasis of prostate cancer
Shih-Chieh Lin1,2, Chung-Yang Kao1, Hui-Ju Lee1, Chad J. Creighton3, Michael M. Ittmann4, Shaw-Jenq Tsai2,5,

Sophia Y. Tsai1,6 & Ming-Jer Tsai1,6

Although early detection and treatment of prostate cancer (PCa) improves outcomes, many

patients still die of metastatic PCa. Here, we report that metastatic PCa exhibits reduced

levels of the microRNAsmiR-101 and miR-27a. These micro-RNAs (miRNAs) negatively

regulate cell invasion and inhibit the expression of FOXM1 and CENPF, two master regulators

of metastasis in PCa. Interestingly, the repression of FOXM1 and CENPF by these miRNAs

occurs through COUP-TFII, a member of the orphan nuclear receptors family. Loss of miR-101

positively correlates with the increase of COUP-TFII-FOXM1-CENPF activity in clinical PCa

data sets, implicating clinical relevance of such regulation. Further studies show that

COUP-TFII is a critical factor controlling metastatic gene networks to promote PCa

metastasis. Most importantly, this miRNA-COUP-TFII-FOXM1-CENPF regulatory axis is also

involved in the development of enzalutaminde resistance. Taken together, our findings

highlight the contribution of specific miRNAs through the regulation of the

COUP-TFII-FOXM1-CENPF cascade in PCa metastasis and drug resistance.

DOI: 10.1038/ncomms11418 OPEN

1 Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA. 2 Department of Physiology, College of Medicine,
National Cheng Kung University, Tainan Taiwan 701, ROC. 3 Department of Medicine, Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of
Medicine, Houston, Texas77030, USA. 4 Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA. 5 Institute of
Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan Taiwan 701, ROC. 6 Department of Medicine and Program in
Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA. Correspondence and requests for materials should be addressed to
S.Y.T. (stsai@bcm.edu) or to M.-J.T. (email: mtsai@bcm.edu).

NATURE COMMUNICATIONS | 7:11418 | DOI: 10.1038/ncomms11418 | www.nature.com/naturecommunications 1

mailto:stsai@bcm.edu
mailto:mtsai@bcm.edu
http://www.nature.com/naturecommunications


P
rostate cancer (PCa) is the second commonly diagnosed
cancer in men worldwide1. Most men with low-grade
confined primary PCa are generally curable by surgery and

radiotherapy2,3. However, the clinical challenge is to provide
effective means for treatment of patients whose cancer advances
to a deadly, late-stage, metastatic PCa. Identifying the
characteristics of primary lesions that ultimately give rise to
lethal metastatic phenotypes is necessary to devise innovative
therapy for these patients. Although many genes and signalling
pathways involved in metastasis have been reported in PCa4–7, it
is still unclear how cancer cells acquire these traits.

Emerging evidence has shown that micro-RNAs (miRNAs) are
involved in different stages of PCa progression including initiation,
propagation and metastasis8. As of today, the majority of miRNA
acts as tumour suppressor and its major cellular function is to
inhibit cell growth, epithelial–mesenchymal transition (EMT), cell
migration and invasion9–12. These findings suggest that
dysregulation of miRNAs may promote PCa progression from a
localized to a metastatic tumour. Therefore, identification of critical
miRNAs involved in the transition from localized PCa to
metastatic PCa as well as understanding their underlying
molecular mechanisms would likely help us in developing better
therapeutic strategies for prevention of metastasis.

COUP-TFII, an orphan nuclear receptor, has been shown to be
overexpressed in a large cohort of primary PCa specimens and its
expression further increased in metastatic PCa13. In addition,
overexpression of COUP-TFII in the mouse prostate epithelium
accelerates prostate tumour progression in the PTEN null prostate
tumour model13. Importantly, molecular analysis reveals that
overexpression of COUP-TFII in mice overcomes the TGF-b-
induced growth barrier by interacting with SMAD4 and inhibiting
SMAD4-induced TGF-b signalling in PCa13. These findings
suggest that COUP-TFII plays an indispensable role during PCa
progression. However, the potential factors causing COUP-TFII
overexpression and the role of COUP-TFII in the late stage of
prostate tumour metastasis have yet to be determined.

FOXM1, a forkhead domain transcriptional factor, is frequently
overexpressed in different kinds of cancers, including PCa14,15.
Elevated levels of FOXM1 have been shown to contribute to all
major hallmarks of cancer including cellular proliferation, genomic
instability, angiogenesis, metastasis and drug resistance15,16.
CENPF, a structural protein of kinetochore and a known target
of FOXM1, has also been shown to be upregulated and plays an
important role in PCa development17,18. Recently, FOXM1 and
CENPF have been identified as synergistic master regulators of PCa
malignancy and as prognostic indicators of poor survival and
metastasis19. Most intriguingly, both FOXM1 and CENPF levels are
further increased in metastatic PCa19. These findings suggest that
FOXM1 and CENPF might be critical drivers for PCa development.
However, the underlying mechanism that causes dysregulation of
FOXM1 and CENPF in PCa remains largely undefined.

In the present study, we identified several miRNAs, whose
expressions were downregulated in PCa patients, especially in
metastatic PCa. We further demonstrated that these miRNAs
suppress PCa metastasis at least partially through inhibiting
COUP-TFII expression, which in term directly regulates the
expression of CENPF and FOXM1 as well as many genes
important for PCa metastasis.

Results
Loss of upstream miRNA causes COUP-TFII overexpression.
Recently, a number of miRNAs have been implicated to play
crucial roles during prostate tumour progression; however, there
is no systematic analysis of their function in prostate tumour
metastasis at present. Since the underlying mechanism for the

upregulation of COUP-TFII expression in PCa is not known, we
ask whether dysregulation of miRNA is the potential reason
causing COUP-TFII overexpression and promoting metastasis in
PCa. To test this hypothesis, we used three different bioinformatic
prediction tools to analyse if miRNA-binding sites are present in
the COUP-TFII 30-untranslated region (UTR) region and iden-
tified 17 miRNAs-binding sites (Fig. 1a). To assess the potential
clinical relevance of these miRNAs that targeted COUP-TFII to
impact metastatic PCa, we used an in silico approach to sys-
tematically analyse the changes in levels of miRNAs in metastatic
PCa employing two different public miRNA data sets (GSE21036
and GSE26964) and used a criteria of false discovery rate (FDR)
o0.05 and more than twofold change. As shown in the
Supplementary Table 1, 31 downregulated miRNAs and two
upregulated miRNAs were identified in metastatic PCa. Among
these miRNAs, miR-101, miR-27a and miR-27b have putative
binding sites at the 30-UTR region of COUP-TFII mRNA as
indicated in Fig. 1a. We then re-analysed the expression profiles
of miR-101, miR-27a and miR-27b in the Taylor data set20, which
contains normal and PCa tissues. Heatmap and quantified results
indicated that the levels of miR-101, miR-27a and miR-27b were
reduced in the primary PCa samples and the expressions were
further reduced in the metastatic PCa samples (Fig. 1b). Most
importantly, COUP-TFII levels were negatively correlated with
miR-101, miR-27a and miR-27b levels in clinical PCa specimens
(Fig. 1c). This result suggests that the decreased expression of
miR-101, miR-27a and miR-27b might contribute to the observed
overexpression of COUP-TFII in PCa patients. If regulation of
COUP-TFII by miR-101, mR-27a and miR-27b is indeed
important for PCa metastasis, we expect that these miRNA
levels will have a strong negative correlation with COUP-TFII
levels in metastatic PCa patients. Indeed, there were strong
negative correlations between COUP-TFII, miR-101 and miR-
27a, but not miR-27b (Fig. 1c and Supplementary Fig. 1) in
metastatic PCa specimens. In addition, Gene Set Enrichment
Analysis (GSEA) of the molecular signatures’ database indicated
that downstream target genes of miR-101, miR-27a as well as
COUP-TFII mRNA and its signatures were significantly depleted
(miR-101 and miR-27a) or enriched (COUP-TFII) in the
metastatic PCa patient (Fig. 1d). Therefore, we focus our study
on the roles of the miR-101, and miR-27a in regulating COUP-
TFII expression in PCa metastasis.

COUP-TFII is negatively regulated by miR-101 and miR-27a.
To assess whether miR-101 and miR-27a regulate COUP-TFII
expression through their putative binding sites located in the 30-UTR
region of COUP-TFII mRNA (Fig. 2a), we screened the expression
levels of COUP-TFII in normal epithelial and PCa cell lines first
(Supplementary Fig. 2A). Since the expression of COUP-TFII is low
in C4-2 and 22RV-1 cells, we asked whether blockade of endogenous
miR-101 and miR-27a by inhibitors (antisense RNA) in these cells
could increase COUP-TFII expression. As shown in Fig. 2b, indeed
inhibition of endogenous miR-101 and miR-27a markedly increased
COUP-TFII expression. In contrast, overexpression of miR-101 and
miR-27a significantly reduced COUP-TFII levels (Supplementary
Fig. 2B) in LNCaP and PC3 cells, which have higher COUP-TFII
expressions. Most importantly, miR-101 and miR-27a have at
least additive effects on inhibition of COUP-TFII expression
(Supplementary Fig. 2C,D).

To further evaluate the function of putative binding sites in the
COUP-TFII 30-UTR region, we inserted the wild-type (WT) or
mutated COUP-TFII 30-UTR region into a reporter construct and
performed reporter assays using LNCaP and PC3 cells. Figure 2c
shows that overexpression of either miRNAs significantly reduced
reporter activity in the WT COUP-TFII 30-UTR construct.
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However, the inhibitory effects exerted by miR-101 and miR-27a
were abrogated when their binding sites were mutated. These
results suggest that miR-101 and miR-27a work through these
sites to control COUP-TFII expression. To further investigate
whether these miRNAs interact with COUP-TFII mRNA inside
the cell, PC3 cells were first treated with miR-101 mimic before
Ago2-RNA-immunoprecipitation (RIP) assay was carried out.
Ago2 is a component of the RNA-induced silencing complex
which forms at the miRNA inhibiting sites. Thus, we designed a
primer to amplify the region containing miR-101-binding sites
within the COUP-TFII 30-UTR region (Fig. 2d). Real-time
quantitative PCR (RT-qPCR) analysis shows that Ago2 is present
at the COUP-TFII 30-UTR and overexpression of miR-101
further increased the interaction between Ago2-miR-101 com-
plexes and COUP-TFII mRNA (Fig. 2d). Similar results were also
observed for miR-27a (Fig. 2e). These results suggest that
miR-101 and miR-27a interact with COUP-TFII mRNA at the
30-UTR binding site in PCa cells.

Loss of miRNA promotes metastasis by inducing COUP-TFII.
Analysis of miR-101, miR-27a and COUP-TFII signatures

revealed their potential roles in metastatic PCa. Since COUP-TFII
is shown to be the downstream target of miR-101 and miR-27a,
we hypothesize that miR-101 and miR-27a may regulate metas-
tasis through modulation of COUP-TFII expression. To investi-
gate whether miR-101 and miR-27a are involved in the metastatic
process, we first performed gain- and loss-of function experi-
ments using in vitro migration and invasion assays. Results
demonstrate that overexpression of miR-101 and miR-27a in
LNCaP and PC3 cells significantly inhibit cell migration and
invasion (Supplementary Fig. 3A and Fig. 3a), while knockdown
of those miRNAs promote cell migration and invasion
(Supplementary Fig. 3B,C). These results are consistent with our
previous findings that overexpression of COUP-TFII promotes
PCa metastasis by inhibiting the TGF-b-induced barrier13. Here,
we further found that COUP-TFII is important for EMT since
knockdown of COUP-TFII led to induction of E-cadherin and a
reduction of vimentin expression (Fig. 3b). Furthermore, loss of
EMT is reflected by the reduction of cell invasion (Fig. 3c),
suggesting a critical role for COUP-TFII in EMT and cell
invasiveness. To ascertain that upstream miRNA indeed
negatively regulates COUP-TFII expression to inhibit cell
invasion, we used the doxycycline (Dox) inducible system to

DIANA-micro T(70)

TargetScan (79)

miRanda (60)

20 9
37

7

41

14
17

MicroRNA potentially
targeting COUP-TFII

hsa-miR-101
hsa-miR-10a
hsa-miR-10b
hsa-miR-144
hsa-miR-155
hsa-miR-183
hsa-miR-200b
hsa-miR-200c
hsa-miR-203
hsa-miR-27a
hsa-miR-27b
hsa-miR-302a
hsa-miR-302b
hsa-miR-302c
hsa-miR-302d
hsa-miR-365
hsa-miR-429

Normal

Nor
m

al

Primary

Prim
ar

y

Metastasis

Metastasis
COUP-TFII

miR-101
miR-27a
miR-27b

M
et

as
ta

sis

miR-101

miR-101

miR-27a

miR-27a

miR-27b

miR-27b

N
or

m
ai

ze
d 

m
iR

N
A

ex
pr

es
si

on
 v

al
ue

s

2,500 5,000 10,000

8,000

6,000

4,000

2,000

0

4,000

3,000

2,000

1,000

0

2,000

1,500

1,000

500

0

Nor
m

al

Prim
ar

y

M
et

as
ta

sis

Nor
m

al

Prim
ar

y

M
et

as
ta

sis

*
*

*

*
*

*

–1 +10

110 Human prostate cancers

r = 1
r = –0.286, P < 0.01
r = –0.250, P < 0.05
r = –0.346, P < 0.01

miR-101_down_signature
miR-27a_down_signature

0.5
0.4

0.4

0.3
0.3

0.2
0.2

0.1
0.1

0.0 0.0

NES=1.65, P = 0.029
NES=1.53, P = 0.045 NES=1.898, P = 0.0019

Metastatic PCa Metastatic PCa Metastatic PCaPrimary PCa Primary PCaPrimary PCa

0.5
0.6

0.4
0.3
0.2
0.1
0.0

COUP-TFII_up_signature

a b

c

d

–2.5 –2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 1 | miR-101 and miR-27a loss which correlates with COUP-TFII de-repression promotes metastasis. (a) COUP-TFII 30-UTR region was used for
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stably induce the expression of miR-101 in PC3 cells. Western
blot indicated that induction of miR-101 levels decreased COUP-
TFII expression and impeded cell invasion (Fig. 3d). Upon
ectopic re-expression of COUP-TFII, cell invasion ability was
restored (Fig. 3d). Conversely, treatment with miR-101 inhibitor
enhanced COUP-TFII expression and thus promoted cell
migration (Supplementary Fig. 4A) and cell invasiveness
(Fig. 3e), while knockdown of COUP-TFII by siRNA-
eliminated cell invasiveness induced by the downregulation of
miR-101 (Fig. 3e). Similar results were shown when the functions
of both miR-101 and miR-27a were blocked in LNCaP cells
(Supplementary Fig. 4B). These in vitro results suggest that effects
of cell invasiveness by miRNAs are in part through regulating
COUP-TFII expression. To directly test whether miRNA-
regulated COUP-TFII levels are functionally important for PCa
metastasis in vivo, inducible knockdown of COUP-TFII in
LNCaP cells carrying anti-miR-101 and anti-miR-27a
constructs were orthotopically injected into mouse prostate.
Results demonstrated that inhibition of both miR-101 and miR-
27a not only markedly increased tumour growth but also

promoted lymphatic metastasis as indicated by androgen
receptor (AR) or GFP staining, confirming that metastatic loci
in the mouse lymph node came from LNCaP cells (Fig. 3f–h and
Supplementary Fig. 4C). Most importantly, knockdown of
COUP-TFII abrogated anti-miRNA affects tumour growth and
lymphatic metastasis (Fig. 3f–h). Similar results employing PC3
cells expressing anti-miR-101 and anti-miR-27a markedly
accelerated tumour growth and promoted lymphatic metastasis
through the usage of the orthotopic injection mouse model with
GFP as a marker for injected cells (Supplementary Fig. 5). Taken
together, these results suggest that loss of upstream miRNA
results in metastasis of PCa through de-repression of COUP-TFII
expression.

COUP-TFII inducing FOXM1 and CENPF to promote metastasis.
Recently, FOXM1 and CENPF have been identified as critical
drivers in PCa progression in both human and in mouse, and
their co-expression is a prognostic indicator of poor survival and
metastasis19. Most importantly, their expression levels are further
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elevated in metastatic PCa from different public data sets19.
However, the upstream factor that controls the expression of
FOXM1 and CENPF has yet to be identified. Here, we found that
knockdown of COUP-TFII significantly reduced the expressions
of FOXM1, CENPF and their downstream target genes in our
previous microarray data (Fig. 4a), suggesting that FOXM1 and
CENPF are likely downstream of COUP-TFII. To elucidate how
COUP-TFII regulates FOXM1 and CENPF expressions to
promote metastasis, we knocked-down COUP-TFII by two
different siRNAs in PC3 cells and detected a significant
reduction of the expression levels of FOXM1, CENPF and
consequently their downstream targets (Fig. 4b and
Supplementary Fig. 6A). Similar results were also observed in
LNCaP cells (Supplementary Fig. 6B). In contrast, upregulation of
COUP-TFII expression increased their expressions in PC3 cells
(Supplementary Fig. 7A,B). Finally, we asked whether COUP-
TFII regulates these target genes through FOXM1 and CENPF.
For this purpose, we engineered PC3 cells with Dox inducible
expression of COUP-TFII. Using these cells, we found that indeed
COUP-TFII regulates these genes’ expression through FOXM1
and CENPF (Supplementary Fig. 6C).

To further evaluate whether COUP-TFII directly regulates
FOXM1 and CENPF levels, we checked our previous COUP-TFII
chromatin-immunoprecipitation (ChIP)-seq data (Supplementary
Fig. 7C,D) and found that COUP-TFII-binding sites were located in
the gene locus of FOXM1 and CENPF. Using ChIP-qPCR analysis,
we further demonstrated robust recruitment of COUP-TFII to its
binding sites on the FOXM1 and CENPF promoter in comparison
with the IgG control (Fig. 4c). In contrast, knockdown of COUP-
TFII by two different siRNAs largely abolished its recruitment. These
results indicate that COUP-TFII is recruited to the promoter to
directly regulate the expression of these two genes. To further
substantiate this conclusion, luciferase reporter assays were carried
out to show that expression of COUP-TFII can indeed stimulate
FOXM1- and CENPF-promoter driven reporter activities (Fig. 4d),
while knockdown of COUP-TFII reduced their promoter activities
(Fig. 4e). These results strongly support the conclusion that COUP-
TFII is recruited to the promoter of FOXM1 and CENPF to regulate
their expression at the transcriptional level. Since COUP-TFII
positively regulates FOXM1 and CENPF levels, we further examined
whether COUP-TFII promotes cell invasion through FOXM1 and
CENPF. For this purpose, we stably induced COUP-TFII expression
in PC3 cells. Induction of COUP-TFII increased FOXM1 and
CENPF expression and enhanced cell invasion (Fig. 4f). However,
knockdown of FOXM1 or CENPF by itself or knockdown of both
together abrogated COUP-TFII-induced cell invasion (Fig. 4f).
Collectively, these results indicate that COUP-TFII-induced cell
invasion is largely mediated by the induction of FOXM1 and
CENPF expression.

miRNA represses FOXM1/CENPF level via COUP-TFII. Since
miR-101 and miR-27a directly inhibited COUP-TFII expression,
and FOXM1 and CENPF were downstream targets of COUP-
TFII, we hypothesized that repression of FOXM1 and CENPF
expression by miR-101 and miR-27a might be mediated via
COUP-TFII. To test this hypothesis, we first analysed the cor-
relation between miR-101, miR-27a, FOXM1 and CENPF
expressions in clinical PCa specimens. Results show that the levels
of FOXM1 and CENPF individually had negative correlation with
miR-101 and miR-27a expressions (Supplementary Fig. 8A).
Moreover, overexpression of miR-101, and miR-27a reduced
FOXM1 and CENPF expressions in LNCaP cells (Fig. 5a). In
contrast, inhibition of miR-101 and miR-27a increased the levels
of FOXM1 and CENPF in 22RV-1 cells (Fig. 5b). In addition,
downregulation of FOXM1 and CENPF had no effect on miRNA

expression (Supplementary Fig. 8B). Next, we asked whether
FOXM1 and CENPF are responsible for miRNA-mediated inhi-
bition of cell invasion. For this purpose, we used 22RV-1 cells
stably overexpressed an anti-miR-101 construct and manipulated
the expression of FOXM1 and CENPF through their siRNAs and
then performed cell invasion assay. Cell invasion increased when
miR-101 was inhibited (Fig. 5c). Such induction of cell invasion
was abolished by either individual or double knockdown of
FOXM1 and CENPF expression (Fig. 5c). Next, to address whe-
ther COUP-TFII mediates miRNAs inhibition of FOXM1 and
CENPF expression, we used inducible-miR-101 stable clone in
PC3 cells to assess whether restoring the expression of COUP-
TFII in miR-101 overexpressed cells could rescue the expressions
of FOXM1 and CENPF. Results obtained from RT-qPCR
(Fig. 5d) and western blot (Fig. 5e) analyses clearly show that
inhibition of expression of FOXM1 and CENPF by miR-101 was
nullified with re-expression of COUP-TFII. Similar results were
shown using an inducible-miR-27a stable clone (Supplementary
Fig. 9). Finally, to demonstrate the clinical relevance of the
miRNA-COUP-TFII-CENPF-FOXM1 regulation cascade, we
analysed their signatures in three large cohorts of clinical PCa
data sets. As shown in Fig. 5f, using three different clinical PCa
data sets, we found that the miR-101 signature had significantly
negative correlation with COUP-TFII, CENPF and FOXM1 sig-
natures in all the data sets analysed. Similar results were shown
using miR-27a signature (Supplementary Table 2). Furthermore,
this negative correlation was more obvious in the PCa specimens
with metastasis (Fig. 5f). Finally, we also demonstrated that reg-
ulation cascade of miR-101-COUP-TFII-CENPF-FOXM1 is a
general phenomenon occurring in many cancer types, not only in
PCa (Supplementary Fig. 10). Most importantly, COUP-TFII,
miR-101 and miR-27a were good indicators for predicting pro-
gression of malignant PCa (Supplementary Fig. 11 and
Supplementary Table 3). The expression level of COUP-TFII is
positively correlated with the Gleason score of PCa and with
metastasis of prostate, colon and breast cancer. Taken together,
these results reveal that loss of miR-101 or miR-27a expression
during PCa progression results in the upregulation of COUP-TFII
expression, which in turn upregulates the expression of two of the
most important oncogenes in PCa, FOXM1 and CENPF.

COUP-TFII is a master regulator of the metastatic network. To
further investigate the potential mechanisms of how FOXM1 and
CENPF mediated COUP-TFII function to promote tumour
metastasis, we specifically constructed a metastasis gene reg-
ulatory network in PCa using neoplasm metastasis-related genes
classified by MetaCore and crossing them with the gene list
changed in the metastatic PCa (Supplementary Fig. 12). On the
basis of the well-known function of FOXM1 in metastasis, we
selected some FOXM1 downstream targets, including two
important EMT transcriptional factors, ZEB1 and ZEB2, and four
effectors (matrix metalloproteinases 2 [MMP2], matrix metallo-
proteinases 9 [MMP9], chemokine lysyl oxidase [LOX] and (C-X-
C Motif) receptor 4 [CXCR4] as readouts to test whether COUP-
TFII could control the expression of the FOXM1 downstream
target genes. Both mRNAs for ZEB1 and ZEB2 were decreased
upon knockdown of COUP-TFII (Supplementary Fig. 13A). In
parallel, overexpression of COUP-TFII increased their expression
(Supplementary Fig. 13B). Since COUP-TFII-induced ZEB1 and
ZEB2 expression did not completely abolish with knockdown of
FOXM1 expression (Fig. 6a), we suspected that COUP-TFII may
regulate ZEB1 and ZEB2 by direct transcriptional regulation.
Indeed, COUP-TFII was recruited to promoter/enhancer regions
of ZEB1 and ZEB2 to induce their expression (Fig. 6b,c).
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MMP2, MMP9, LOX and CXCR4 play critical roles in
metastasis via degradation of the extracellular matrix, formation
of the pre-metastatic niche and homing to the bone marrow,
respectively21–27. To further investigate whether these genes are
regulated by COUP-TFII, we showed that knockdown of COUP-
TFII significantly reduced MMP2, MMP9, LOX and CXCR4
expressions (Supplementary Fig. 13C). Conversely, overexpression
of COUP-TFII markedly increased their expression (Supplementary
Fig. 13D) and knockdown of FOXM1 and CENPF abrogated
COUP-TFII effect on these genes’ expression (Fig. 6d). Furthermore,
the repressions of these gene expressions by miR-101 were lost upon
re-expression of COUP-TFII (Fig. 6e). In contrast, inhibition of both
miRNA-101 and miR-27a expression were shown to increase the
expression of MMP2, MMP9, LOX and CXCR4 and
downregulation of COUP-TFII expression abolished this increase
(Supplementary Fig. 14). Taken together, our results support the
notion that loss of upstream miRNA enhances the expression of
COUP-TFII, which serves as a master regulator to orchestrate a
metastatic network in PCa.

miRNA-COUPTFII-CENPF-FOXM1 promotes drug resistance.
Recently, resistance for enzalutamide (a second-generation anti-
androgen drug, also called MDV-3100) is a critical issue in
clinical therapy28. To answer whether androgen-deprivation
therapy would affect the regulation cascade of miRNA-
COUPTFII-CENPF-FOXM1, we selected several enzalutamide-
resistant clones by treating LNCaP cells with 10 mM enzalutamide
for at least 3 months. Results show that enzalutamide markedly
inhibited the growth of LNCaP cells (parental cells), but has no
effect on enzalutamide-resistant (EnzaR) clones (Fig. 7a). Using
these cells, we found that COUP-TFII, CENPF and FOXM1 were
markedly increased, while miR-101 and miR-27a expression
significantly decreased in EnzaR clones compared with parental
cells (Fig. 7b,c). Next, we investigated the migration ability in
EnzaR clones and their parental cells. Interestingly, results
showed that EnzaR clones have higher migration ability
compared with their parental cells (Fig. 7d). To further
investigate the roles of the miRNA-COUPTFII-CENPF-FOXM1
regulation cascade, we knocked down COUP-TFII, CENPF or
FOXM1 expression or overexpressed miR-101 or miR-27a in
EnzaR clones. Results revealed that overexpression of miR-101 or
miR-27a, and knockdown of COUP-TFII, CENPF or FOXM1 not
only reduced migration ability (Fig. 7e) but also increased efficacy
of enzalutamide treatment (Fig. 7f) in enzalutamide-resistant
clones. Taken together, these results indicate that regulation of
the miRNA-COUPTFII-CENPF-FOXM1 cascade may promote
the development of enzalutamide resistance in PCa. Thus,

targeting this regulation cascade may provide alternative
therapeutic means to alleviate enzalutamide resistance.

Discussion
Clinically, metastatic PCa remains an incurable disease. Although
numerous mediators of metastasis have been identified in PCa,
these factors are generally difficult to target. Recent advancement
in microRNA (miRNA) -based therapy has rendered it as a more
feasible way to target cancer and various delivery strategies have
since been developed29–31. Therefore, it is important to identify
the critical miRNAs that are associated with the metastatic
process of PCa, so that efficacious therapeutic agents could be
appropriately tested. Because of the above reasons, the goal of our
current study is to identify the critical miRNAs that targeted
COUP-TFII and impacted on the metastatic process of PCa.

Earlier studies commonly used PCa cell lines or small cohorts
of PCa specimens without metastatic PCa to identify the
candidate miRNAs involved in metastasis32–36. Therefore,
results from previous miRNA profiling are frequently
controversial and difficult to identify the miRNAs that impact
PCa metastasis. Whether those miRNAs truly have clinical
relevance needs to be further validated before they can become
useful therapeutic targets. Here, we analysed miRNA targeting
sites located in the COUP-TFII 30-UTR region using three
different bioinformatic tools and combined analytical results of
miRNA expression profile in a large cohort of PCa specimens
containing normal, localized and metastatic tissues from the
Taylor data set20 to identify clinical relevance of miRNA targeted
to COUP-TFII in PCa. Our results demonstrated that loss of
miR-101 and miR-27a expressions in the PCa specimens,
especially in metastatic PCa, de-repressed the expression of
their downstream targets and significantly augmented the
metastatic phenotype. These findings suggest that loss functions
of miR-101 and miR-27a may play critical roles in PCa
metastasis. To further verify their roles in PCa metastasis, we
showed that these miRNA not only negatively regulated PCa cell
invasion ability but also COUP-TFII expression through binding
to the miRNA recognition sites located in the COUP-TFII
30-UTR region.

Recently, FOXM1 and CENPF have been reported as master
regulators in human and mouse PCa using cross-species
computational analysis, and their higher levels can be used as a
prognostic indicator for poor outcome and metastasis19.
However, the factors that cause dysregulation of FOXM1 and
CENPF in PCa remain elusive. Here, we demonstrated that
FOXM1 and CENPF were not directly regulated by miR-101 and
miR-27a since there was no miR-101 and miR-27a-binding sites

Figure 3 | Loss of miR-101 promotes cancer metastasis through de-repression of COUP-TFII expression. (a) LNCaP and PC3 cells were individually

treated with 50 nM of miR-101 and miR-27a mimic for 48 h and then invasion assays were performed for an additional 16 h (n¼ 3). *Po0.05 (two-sided

Student’s t-test) compared with the control group. (b) Representative western blot showed the levels of COUP-TFII, E-cadherin, vimentin and b-actin in

PC3 cells stably knocked down by COUP-TFII. (c) LNCaP and PC3 cells stably knocked-down of COUP-TFII were used to perform cell invasion assay.

Invaded cells were stained and counted (lower panel) (n¼ 3). Representative western blot showed the knockdown efficiency of COUP-TFII (upper panel).

*: Po0.05 (two-sided Student’s t-test) compared with control group. (d) PC3 cells carrying an inducible miR-101 in the absence and presence of

doxycycline, and re-expression of COUP-TFII were used to perform invasion assays (n¼ 3). Representative western blot showed the levels of COUP-TFII

and b-actin (left). Invaded cells were counted and results are shown in the right panel. *: Po0.05 (two-sided Student’s t-test) (e) 22RV-1 cells were treated

with miR-101 inhibitor (antisense RNA) in conjunction with knockdown of COUP-TFII and used for invasion assays (n¼ 3). Representative western blot

show the levels of COUP-TFII and b-actin (left). Invaded cells were counted and result is shown in the right panel. *: Po0.05 (two-sided Student’s t-test).

(f) LNCaP cells containing a construct with inducible expression of COUP-TFII shRNA and constructs expressing with anti-miR-101 and anti-mir-27a were

orthotopically injected into NOD-SCID mouse prostate. In addition these cells also contain a luciferase reporter to detect cancer cells. After the tumour size

was bigger than 50 mm3, drinking water with or without doxycycline (1 mg ml� 1) was given to the mice for 6 weeks to induce the COUP-TFII shRNA

to repress COUP-TFII expression. Representative bioluminescence results show the status of tumour growth in different groups. (g) Quantification

result of luminance from IVIS (control: n¼ 5; anti-miR-101/27a(� ): n¼ 6; anti-miR-101/27a(þ ): n¼ 7. *: Po0.05 (two-sided Student’s t-test).

(h) Immunohistochemical stain showed the metastatic tumour cells located in the mouse lymph node are positive for AR. Scale bar: 100mM (low power);

and 200mM (high power). SCID, severe combined immunodeficient.
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gene symbol of FOXM1 and CENPF genes after knockdown of COUP-TFII are annotated in red colour. The others were FOXM1 and CENPF co-regulated

genes annotated in black colour. siCtrl: knockdown scramble control; siCII: knockdown of COUP-TFII. (b) A representative western blot shows the level of

COUP-TFII in PC3 cells transfected with two different siRNAs against COUP-TFII for 72 h (upper panel). Levels of FOXM1 and CENPF are quantified by RT-

qPCR (lower panel) (n¼ 3). *Po0.05 (two-sided Student’s t-test) compared with the control group (siCON). (c) A cartoon shows the FOXM1 and CENPF

loci. COUP-TFII-binding sites are annotated by a black rectangle (upper panel). ChIP results are shown in the PC3 cells treated with control and two

different siRNAs against COUP-TFII for 72 h (lower panel) (n¼ 3). *Po0.05 (two-sided Student’s t-test) compared with control. (d) FOXM1 and CENPF
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*Po0.05 (two-sided Student’s t-test). (e) FOXM1 and CENPF promoter activities were measured in control or stably knocked-down COUP-TFII in PC3 cells
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*Po0.05 (two-sided Student’s t-test) compared with control.
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identified in their 30-UTR regions. Instead, FOXM1 and CENPF
are direct targets of COUP-TFII whose expression is suppressed
by miR-101 and miR-27a. Thus, the expression of FOXM1 and
CENPF is indirectly regulated by miR-101 and miR-27a through
COUP-TFII. Most importantly, we showed that the miRNA-
COUP-TFII-CENPF-FOXM1 regulatory cascade was clearly
evident in clinical PCa specimens as revealed by the close
correlation between their gene signatures in PCa patients. In

addition, to address whether this regulatory cascade is prostate
specific or a general phenomenon, we performed signature
correlation analysis in other cancer types. Results demonstrate
that miR-101-COUP-TFII-CENPF-FOXM1 regulation cascade is
not specific to PCa, but it also occurs in many other cancer types.
Taken together, to our knowledge, this is the first report that
shows how both FOXM1 and CENPF are dysregulated and
overexpressed in PCa.
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Metastasis is a multiple-step process that includes intravasa-
tion, circulation, extravasation and colonization37. Many gene
products and signalling pathways involved in different steps have
been reported37. However, most studies focused on a single gene
function in a particular step of metastasis, making it difficult to
formulate a comprehensive gene network that impacts on
metastasis. A particular interesting finding in this study is that
we compared genes changed in the clinical metastatic PCa with
metastasis-related genes classified by MetaCore to construct the
metastatic gene network specifically in PCa. We found that
COUP-TFII promoted EMT transition through both direct and
indirect regulation of the expression of ZEB1 and ZEB2, which
are downstream targets of FOXM1 (refs 38,39). In addition,
COUP-TFII also positively regulates genes important for
metastasis, including MMP2, MMP9, LOX, CXCR4 and

CXCL12. MMP2 and MMP9 are matrix metalloproteinases
responsible for degradation of the extracellular matrix, and their
expressions correlate with PCa metastasis21,22. LOX, a copper
dependent amine oxidase, can promote collagen crosslinking at
pre-metastatic organs to form a receptive niche for arriving tumour
cells26,27. The CXCR4/CXCL12 axis is known to play a major role
in haematopoietic stem cell (HSC) homing to the bone marrow,
normally. Interestingly, CXCR4 levels are significantly increased in
PCa specimens, especially in metastatic PCa24. Recent studies
further demonstrated that disseminated PCa cells can target to the
HSC niche and compete with HSC cells for the niche via the
CXCR4/CXCL12 axis to facilitate metastasis5. Taken together,
COUP-TFII, sitting on the top of the regulatory network, could be
considered a pivotal factor important for promoting PCa
metastasis through a diverse signalling cascade.
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Androgen-deprivation therapy is the mainstream treatment
strategy for PCa patients. Although it is effective to suppress
tumour progression in the majority of PCa patients, most of them
eventually develop hormone resistant PCa. This aggressive and
incurable disease is considered as castration-resistant PCa
(CRPC). Within the CRPC group, the majority of patients
(B90%) will finally develop bone metastasis which is called
metastatic CRPC (mCRPC)40. Since CRPC often remains
dependent on AR signalling, there are several second-
generation anti-androgen drugs that are approved by the US
Food and Drug Administration (FDA), such as enzalutamide
(also called MDV3100)41. Enzalutamide can bind to the ligand

binding domain of the AR and prevent translocation of AR into
the nucleus. It can improve overall survival of men with
mCRPC41,42. However, many CRPC patients who are initially
responsive to the enzalutamide treatment acquire resistance to
this second-generation drug28. Recently, AR mutation43 and
induction of glucocoticoid receptor (GR), which can bypass
androgen signalling44, have been proposed to be the underlying
mechanisms contributing to enzalutamide resistance. Here, we
provide an alternative mechanism involved in enzalutamide
resistance through dysregulation of the miRNAs-COUP-TFII-
FOXM1-CENPF axis. Furthermore, re-expression of those
miRNAs or repression of COUP-TFII expression can reduce
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migration ability and increase enzalutamide efficacy to the
resistant cells. Thus, upregulation of these miRNAs and
downregulation of the COUP-TFII-FOXM1-CENPF axis could
be combined with enzalutamide treatment to increase its
therapeutic efficacy.

In conclusion, we showed that loss of function of miR101 and
miR27a as revealed by the clinical PCa data set, not only leads to
overexpression of COUP-TFII, FOXM1 and CENPF but also
enhances PCa metastasis and drug resistance. Since metastatic
PCa and drug resistance are great challenges for clinical therapy,
our findings shed light on understanding how localized PCa
acquires necessary traits to become metastatic PCa and develop
drug resistance. These findings suggest that miR-101, miR-27a,
and COUP-TFII are potential novel targets for PCa therapy.
Future advancement in specific delivery of miRNAs to PCa
patients and identification of small molecules that inhibit
COUP-TFII function will enhance the potential of development
of more efficient cancer therapy for PCa.

Methods
Cell culture and treatment. LNCaP, PC3, C4-2 and 22RV-1 PCa cells were
purchase from ATCC and maintained in Tissue and Cell Culture Core Facility at
Baylor College of Medicine. Cells were cultured in RPMI1640 medium with 10%
FBS and antibiotics (100 mg ml� 1 streptomycin and 100 U ml� 1 penicillin G) in a
humidified atmosphere of 5% CO2 and 95% air at 37 �C. LNCaP-abl cells were
cultured in RPMI1640 medium with 10% charcoal-stripped FBS. Fresh medium
were changed after three days of incubation. Cells were routinely checked for
mycoplasma contamination by using MycoAlert Mycoplasma Detection Kit
(LONZA). Short-tandem repeat analysis was performed by the service of Core
Facility in MD Anderson Cancer Center for the authentication of the cell lines. For
the enzalutamide experiment, 2� 103 LNCaP parental and enzalutamide-resistant
cells were plated into 96-well-plates and treated with 10 mM enzalutamide (pur-
chased from Selleck Chemicals) for the indicated time points.

siRNA and microRNA transfection. COUP-TFII, FOXM1 and CENPF siRNAs
and miRNA mimics and inhibitors were purchased from Invitrogen. PCa cells were
transiently transfected with 50 nM siRNA or miRNA reagents for 3 days using
Lipofetamine 2000. To generate stable inhibition of endogenous miRNA function,
lentiviral-based miRzip control vectors carrying GFP reporter genes and miRzip
containing anti-miRNA sequences were purchased from System Biosciences. Virus
was packaged in 293 T cells and PCa cell lines were infected with the virus for 2
days. Positive clones were then selected by puromycin selection.

RT- qPCR. Total RNA was isolated by extraction with TRIzol reagent (Invitrogen)
according to the protocol provided by the manufacturer. An amount of 100 or
500 ng total RNA was used for reverse transcription of miRNA and cDNA by
TaqMan, MicroRNA Reverse Transcription Kit (Invitrogen) and MMLV reverse
transcriptase (Promega), respectively. Subsequently, miRNA and mRNA tran-
scripts were quantified by Applied Biosystems StepOnePlus real-time PCR (Invi-
trogen). Each reaction contained 40 ng miRNA-RT products, 1� specific miRNA-
PCR primer (Invitrogen) and 10 ml 2X Taqman reagent (Invitrogen) for miRNA
detection. 50 ng cDNA products, 0.3 mM specific primer (Supplementary Table 4)
and 10ml SYBR Green mix (Roche) were used in each reaction for mRNA
detection.

Western blotting and immunohistochemical (IHC) staining. Total cell lysates
were collected by RIPA buffer containing commercial protease inhibitors. 30 mg of
protein was separated by SDS-polyacrylamide gel electrophoresis, and transferred
to a polyvinylidene difluoride membrane. The membrane was blocked in 5% nonfat
milk at room temperature for 1 h, followed by incubation with primary antibody
prepared in 1� PBST (PBS with 0.25% Tween 20) (COUP-TFII, 1:1000,
PP-H7147-00, R&D systems; CENPF, 1:2000, Ab5, Abcam; FOXM1, 1:2000, #5436,
Cell Signaling Technology; E-cadherin, 1:2000, #3195, Cell Signaling Technology;
Vimentin, 1:2000, #5741 Cell Signaling Technology; GR, 1:2000, #12041, Cell
Signaling Technology and AR, 1:2000, sc-816, Santa Cruz Biotechnology Inc.) at
4 �C overnight. Signals were developed using an enhanced chemiluminescence
detection kit (PerkinElmer). For IHC staining, AR (1:1,000) antibody was pur-
chased from Santa Cruz Biotechnology Inc (sc-816) and GFP (1:1,000) antibody
was purchased from ThermoFisher (A11122). Uncropped scans of blots are shown
in Supplementary Figs 15–17.

Construction of an inducible plasmids and cell line. To set up inducible miR-
101, miR-27a and COUP-TFII constructs, miRNA expression vectors were pur-
chased (Origene Technologies, Inc) and construction of a COUP-TFII expression

vector was described previously13. miR-101, miR-27a and COUP-TFII cDNAs
were then amplified by primers (Supplementary Table 4) and cloned into pLVX-
tight-Puro vector (Clontech Laboratories, Inc.). To set up the inducible stable
clones, PC3 cells were infected with virus carrying rtTA constructs and selected by
G418. PC3 Cells with rtTA were then infected with virus carrying pLVX-tight-
miR-101, -miR-27a or -COUP-TFII before selection by puromycin. To generate
inducible knockdown of COUP-TFII cells, shRNA against COUP-TFII was put
into pLKO-Tet-on vector. LNCaP cells were infected with virus carrying inducible
knockdown of COUP-TFII construct and stable clones were selected by neomycin.

Reporter assays. A detailed procedure for cloning WT human COUP-TFII
30-UTR into a PIS2 vector was illustrated previously45. Mutation of miR-101 and
miR-27a recognition sites were generated by site-directed mutagenesis. The
mutated primers were designed by QuikChange Primer Design Program provided
by Agilent Technologies and listed in the Supplementary Table 4. To perform
reporter assay, LNCaP and PC3 cells were transiently transfected with miRNA
mimics, WT or mutated COUP-TFII-3’UTR constructs and b-gal as an internal
control. After incubation for 48 h, luciferase and b-gal activities were measured.

Cell invasion assays. Invasion chamber was prepared according to the datasheet
(R&D Systems). A total of 5� 104 PCa cells were plated into the invasion chamber
containing culture medium without FBS. Culture medium with 10% FBS was then
added to the well and incubated for 16 h. After incubation, cells invaded to the
bottom chamber were fixed with 4% paraformaldehyde and cells in the top
chamber were removed. Invaded cells were stained by ReadyProbes reagent (Life
Technologies Corporation) and counted from pictures taken at 9–11 different
areas.

Ago2-RNA-immunoprecipitation assay. Ago2-RIP experiment was performed
by purchasing Ago2 antibody and RIP-assay kit from MBL International Cor-
poration. The detailed procedures were as described in the datasheet. Protein and
total RNA were extracted and assayed by western blot and RT-qPCR, respectively.
The primers were individually designed to contain miR-101 or miR-27a recogni-
tion sites located in the COUP-TFII 30-UTR region.

Chromatin-immunoprecipitation assays. The ChIP assays were performed using
PierceTm Magnetic ChIP kit (Thermo Scientific). The procedure was as described
in the kit provided by the manufacturer. Briefly, PC3 cells were fixed by 1%
formaldehyde, fragmented by a combination of MNase and sonication. COUP-
TFII antibody (R&D Systems) was then used for immunoprecipitation of DNA-
COUP-TFII complexes. After washing and reverse-crosslinking, the precipitated
DNA was amplified by primers and quantified by the StepOnePlus real-time-PCR
machine. Primer sequences can be found in the Supplementary Table 4

Animal models. All experiments were approved by the Animal Center for
Comparative Medicine at Baylor College of Medicine. For the ex vivo metastasis
model, 2� 106 PC3-Luciferase or 5� 106 LNCaP-Luciferase cells were injected
into 6-week-old NOD-severe combined immunodeficient male mice via orthotopic
injection. When tumour size reached 50 mm3, mice were randomly grouped and
doxycycline (1 mg ml� 1) was added into drinking water (For LNCaP cells). After
incubation for 4 weeks (PC3) or 6 weeks (LNCaP), bioluminescence of LNCaP-
Luciferase was measured by the in vivo imaging systems (IVIS).

Expression profile and correlation as well as GSEA analysis. Two miRNA
microarrays (GSE21036 and GSE26964) containing primary and metastatic PCa
specimens were downloaded from GEO data sets and analysed by the GenePattern
program. FDR o0.05 and fold change 42-fold were used as criteria to find the
candidate miRNAs changed in metastatic PCa. Next, signatures for miR-101 and
miR-27a were derived from GSE13674 and GSE65874 (genes with Po0.05, fold
change 41.5-fold), respectively and further analysed by GSEA in a metastatic
phenotype data set (GSE32269). For the correlation analysis, the levels of candidate
miRNAs and genes were presented in a heatmap format.

Signature analysis in prostate cancer patients. Gene transcription signature
analysis of COUP-TFII, FOXM1, CENPF or miR-101 was based on previously
described t-score metric13,46,47. COUP-TFII signature was derived from our
previous data set GSE33182. FOXM1, CENPF and FOXM1-CENPF co-regulated
signatures were downloaded from the Supplementary Table in Aytes19. miR-101
and miR-27a signatures (genes with Po0.01, fold change 41.5-fold) were derived
from GSE13674 and GSE65874, respectively. PCa patient data sets were obtained
from GSE21034 (Taylor), GSE10645 (Nakagawa) and TCGA PCa data sets. All the
detail data set information was organized in the Supplementary Table 5.

Metastatic gene regulatory network. To construct the metastatic gene regulatory
network, genes involved in the cancer metastasis were exported from the MetaCore
(578 genes) database and crossed to the gene list specifically changed (fold
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change41.5-fold) in the clinical data set of metastatic PCa compared with the
primary PCa. (GSE32269). Specific genes involved in the clinical metastasis of PCa
were shown based on above criteria. Then, these selected genes automatically
formed the metastatic gene regulatory network according to the literature reference
from the Metacore database (shown in grey colour line). The relationships between
upstream miRNA, COUP-TFII, FOXM1, CENPF and EMT regulators were
annotated in solid black colour based on our findings. Red lines indicate the
suppressive effect while green lines indicate the active effect. A solid black line
indicates direct regulation.

Statistical analysis. All numerical data are expressed as mean±s.e.m. For RT-qPCR,
migration, invasion and proliferation assays, a paired two-tailed Student’s t-test was
used to compare differences between two groups and one-way AVNOVA followed by
Dunnett post-analysis was used to compare differences more than two groups. Gene
expression and signature correlations were performed by Pearson’s correlation analysis.
All the statistical analysis was performed by using commercial statistical software
(GraphPad Prism 5.01, GraphPad Software). For all analyses, statistical significance was
set at Po0.05.

Data availability. Data referenced in this study are available in the GEO under the
accession codes GSE21036, GSE26964, GSE13674, GSE65874, GSE32269,
GSE33182, GSE21034 and GSE10645.
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