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Abstract

Knowledge of genes that are critical to a tissue’s function remains difficult to ascertain and

presents a major bottleneck toward a mechanistic understanding of genotype-phenotype

links. Here, we present the first machine learning model–FUGUE–combining transcriptional

and network features, to predict tissue-relevant genes across 30 human tissues. FUGUE

achieves an average cross-validation auROC of 0.86 and auPRC of 0.50 (expected 0.09).

In independent datasets, FUGUE accurately distinguishes tissue or cell type-specific genes,

significantly outperforming the conventional metric based on tissue-specific expression

alone. Comparison of tissue-relevant transcription factors across tissue recapitulate their

developmental relationships. Interestingly, the tissue-relevant genes cluster on the genome

within topologically associated domains and furthermore, are highly enriched for differen-

tially expressed genes in the corresponding cancer type. We provide the prioritized gene

lists in 30 human tissues and an open-source software to prioritize genes in a novel context

given multi-sample transcriptomic data.

Author summary

While the identity of most human genes is known, their function is far from established.

Even more serious, we do not often know whether a gene serves any function in a specific

tissue or context. However, we do know which genes are expressed in a context, and in

the absence of any further information regarding their functionality, one simply assumes

that the genes that are highly or specifically expressed in a context are functional. While

this approach is reasonable in many instances, it is far from ideal, and many genes known

to be important are neither highly nor specifically expressed in a context. Here, we focus

on this very challenge, and investigate various contextual properties of a gene that can be

used to ascertain its functionality. Using several gene features that account for their con-

textual interaction partners, we propose a machine learning approach to ascertain gene

functionality. We show that the resulting tool–FUGUE–improves upon the conventional

approach, and by prioritizing the most likely functional genes in dozens of human tissues,
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we further find interesting properties of such genes in terms of their genomic organiza-

tion, their links with cancer and tissue evolution.

Introduction

While the list of genes in human and model organisms are fairly complete, our knowledge of

their function is far from it; even in the highly studied bacterium E. coli, 35% of all genes lack

any experimental evidence for function [1]. Functional pleiotropy of genes further complicates

the matter. Moreover, while a gene’s function is expected to be highly context-specific, the

functional annotations in standard databases such as GO (geneontology.org) are often devoid

of context. Here, however, we focus on a more basic question, namely, Is a given gene function-
ally relevant in a particular context? The majority of genes are expressed at physiological levels

in any given tissue, but it is not clear if they are relevant to the tissue’s function. Context-spe-

cific effects of mutations prominently support the context-specific functionality of genes; for

instance, while BRCA1/2 are expressed in many tissues, their mutations are associated with

primarily breast and ovarian cancer [2]. In the absence of additional information, the conven-

tion is to focus to genes that are most highly or most specifically expression in a tissue or con-

text, however, this proxy is far from perfect. A fundamental challenge then is, given tens of

thousands of genes expressed in a tissue, to identify those that are likely to be relevant to the

tissue’s function, i.e., inactivation of the gene has a phenotypic effect observable at the tissue

level. Addressing this question has broad implications in interpreting the results of genetic

association studies and understanding the mechanisms underlying various diseases, including

cancer.

Previous works toward identifying functional genes have been either at cellular level or at

organism level. Single gene knockouts have been performed at cellular level, either in human

cell line, or in bacteria and yeast, to identify essential genes, based on cellular viability and/or

growth rate [3–5]. On the other extreme, single-gene knockout mouse lines (for non-lethal

genes) have been studied to identify genes affecting a small set of physiological and behavioral

phenotypes [6]. While the cell-based studies are limited to identifying genes essential for cell

survival and growth, the organism-level studies are limited in scope to predetermined pheno-

types. On the other hand, genome-wide association studies (GWAS) can reveal genes associ-

ated with a particular trait or disease, followed by a variety of integrative approaches relying on

gene expression, pathways, and networks, to prioritize disease genes [7]. However, GWAS

does not immediately suggest the tissue(s) mediating the observed associations, except in the

cases where the studied trait is unambiguously ascribed to a specific tissue. As such, there are

no standard approaches to assess whether a gene is functionally relevant in a tissue, motivating

the current study.

One challenge in developing a model to prioritize tissue-relevant genes (TRGs) is the pau-

city of a ‘gold set’, i.e, a set of gene-tissue pairs where the functional relevance of the gene in

the specific tissue is experimentally established. Here we integrate established disease-tissue

maps with the disease genes to compile a high-confidence set of tissue-relevant genes across 29

human tissues (Bladder did not have any relevant genes) and develop a machine-learning

model—FUGUE, based on several biologically relevant features, to prioritize functionally rele-

vant genes in each tissue. FUGUE exhibits an overall cross-validation accuracy of 0.86 area

under the Receiver Operating characteristic Curve (auROC) and 0.50 area under the Precision

Recall Curve (auPRC) (expected 0.09), and equally importantly, for a given gene, FUGUE can

distinguish the tissues where the gene is functionally relevant. We provide a functionally prior-

itized list of genes in 30 human tissues. As expected, the TRGs reveal tissue-relevant functions.
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In particular, tissue-relevant transcription factors (TRTFs) include well-established lineage-

specifying regulators, and interestingly, cross-tissue comparison of TRTFs recapitulates, to a

large extent, tissue developmental hierarchy and their structural relationships. We further

found that TRGs tend to be significantly clustered on the genome, in particular within topo-

logically associated domains. Finally, we found that the TRGs are enriched among the differen-

tially expressed genes in the corresponding tissue-specific cancers.

Overall, our work (i) presents the first computational model to prioritize functionally rele-

vant genes in a tissue, (ii) provides prioritized genes lists in 30 human tissues, (iii) along with

software pipeline to gene prioritization in a novel tissue or context, and (iv) shows a link

between tissue-relevant genes and tissue development, structure, and cancer.

Results

Overview of the FUGUE approach

Fig 1 illustrates the overall pipeline. We obtained processed and normalized gene expression

profiles of 56202 genes across 11690 samples in 30 tissues from GTEx V8 [8]. We integrated

(1) a previously reported literature-based tissue-disease mapping [9], (2) disease-gene mapping

curated from OMIM (omim.org) and HPO [9,10], and (3) Human Protein Atlas [11], to curate

Fig 1. FUGUE Overview. Left Panel: Given multi-sample gene expression samples for a tissue, and a human protein interaction network, we derive several

expression-based and network-based features for every gene. Right Panel: We compile a set of positive and negative gene-tissue pairs by integrating (i) previously

curated disease-tissue map, (ii) OMIM database, (iii) HPO database, and (iv) HPA database. Using the compiled gene-tissue pairs we train a XGBOOST model and

apply it to prioritize all unlabeled genes in a tissue.

https://doi.org/10.1371/journal.pcbi.1009194.g001
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a gold set of 6812 positive gene-tissue pairs and 66250 negative gene-tissue pairs, covering

8325 unique genes across 30 tissues (Methods). We additionally constructed a set of 380393

unlabeled gene-tissue pairs (S1 Data, Methods). S1 Table provides the counts and mean

expression of genes in the negative, positive, and the unlabeled genes in each tissue. Next, for

14 biologically motivated features, derived either from tissue-specific gene expression or tis-

sue-specific protein interaction networks (Methods), we assessed the extent to which each fea-

ture discriminated between the positive and negative gene-tissue pairs. Finally, combining the

features we developed a XGBoost classification model [12] and assessed its performance at

three different levels: (1) overall discrimination between positive and the negative gene-tissue

pairs, (2) for each gene, discrimination between the relevant tissues and the other tissues, and

(3) for each tissue, discrimination between the tissue-relevant genes and the rest.

A machine learning model to predict a gene’s relevance in a tissue

We first assessed each of the 14 features individually and found that for 12 out of 14 features,

the feature value was significantly different (Wilcoxon p-value < = 0.05) between the positive

and the negative gene-tissue pairs (Table 1). The 2 remaining features—NeighborMean-

Breadth (mean expression breadth of the protein interaction neighbors of the gene) and

NeighborMeanZscore (mean expression Z-score of the protein interaction neighbors of the

gene), although not statistically significant across the pooled positive and negative samples,

nevertheless exhibited significant difference between positive and negative genes when tested

tissue-wise across the tissues (S1 Fig). We additionally quantified each feature’s ability to dis-

tinguish between pooled sets of the positive and the negative gene-tissue pairs using area

under the receiver operating curve (auROC), as well as area under precision-recall curve

(auPRC) (Table 1). The auROC ranged from 0.61 to 0.73, and the auPRC ranged from 0.13 to

0.24 across the features; expected auPRC given the size of positive and negative instances is

0.09. Overall, all investigated features can significantly discriminate, albeit to varying degrees,

the positive gene-tissue pairs from the negative control.

Given the modest, but significant, discriminative power of individual features, we devel-

oped a machine learning tool—FUGUE, by combining all features in a XGBoost (gradient

boosted decision tree) model [12] (Methods). We first quantified FUGUE’s ability to

Table 1. Biological features and their potential to discriminate positive and background gene-tissue pairs. P-value: Wilcoxon test significance comparing the feature

values for the positive and the negative gene-tissue pairs. auROC: Area under the receiver operating characteristic curve. auPRC: Area under the precision recall curve.

Feature p-value auPRC auROC Neg Mean (N) Pos Mean (P) Effect size = P/N

MeanExp 4.47E-250 0.19 0.72 39.74 215.37 5.42

SDofExp 7.29E-177 0.16 0.68 31.49 148.56 4.72

ZScore 4.26E-18 0.24 0.73 -0.13 0.30 2.30

MedianExp 1.54E-265 0.18 0.72 31.57 180.90 5.73

Breadth 1.47E-06 0.17 0.62 0.48 0.52 1.08

CV 3.54E-154 0.13 0.63 1.36 0.68 0.50

MAD 1.38E-250 0.17 0.70 19.87 120.41 6.06

Centrality_coeff 1.13E-15 0.15 0.65 0.00 0.00 1.02

Clustering_coeff 5.71E-11 0.15 0.66 0.10 0.11 1.04

Degree (NumOfNeighbors) 2.26E-43 0.18 0.69 41.51 56.01 1.35

NumOfKinaseNbs 6.79E-13 0.17 0.61 1.75 2.17 1.24

NumOfTFNeighbors 9.34E-38 0.17 0.65 3.93 5.60 1.42

NeighborMeanBreadth 1.00E+00 0.16 0.65 0.51 0.43 0.83

NeighborMeanZscore 1.00E+00 0.14 0.61 -0.02 -0.06 3.47

https://doi.org/10.1371/journal.pcbi.1009194.t001
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discriminate between pooled positive and negative gene-tissue pairs. We performed 5-fold

cross validation for 100 ensembles, yielding an overall average auROC score of 0.86 and

auPRC of 0.50 (5-fold greater than random expectation). In a given tissue, for a gene to be

marked as negative, we require that the gene’s protein product is not detected in the corre-

sponding tissue in HPA database. This raises a possibility of ascertainment bias in Z-score dis-

tribution between the positive and the negative gene-tissue pairs. First, we note (S1 Table) that

the genes in N exhibit a range of mean mRNA expression values in the GTEx dataset, and

notably, in some tissues the mean expression of genes in N are comparable or even greater

than the mean expression in the positive (P) set. To rule out Z-score as a major contributor to

our prediction accuracy, we randomly subsampled the negative gene-tissue pairs to match

their Z-score distribution to the positive gene-tissue pairs. Even in this matched data, FUGUE

achieves a cross-validation auROC of 0.8 (random expectation 0.5) and auPRC of 0.55 (ran-

dom expectation 0.2). We further assessed the discrimination between the P and unlabeled

(U) genes (representing the genes that have detectable proteins in the tissue in HPA). Although

a bit lower than the P~N performance, the P~U discrimination accuracy was nevertheless rea-

sonable high with auROC of 0.78 and auPRC observed/expected = 4.6.

Next, we assessed FUGUE’s ability to prioritize the functionally relevant genes in each tis-

sue individually (Methods). In each of the 20 tissues (having both positive and negative genes),

we quantified the normalized ranks (based on FUGUE score) of the positive and the negative

genes; to avoid overfitting, the model was trained on all the tissues except the one being tested.

In all 20 tissues, the positive genes were ranked (based on FUGUE scores) significantly higher

than the negative genes (p-value < = 0.05); normalized mean ranks of tissue-specific positive

and negative genes are shown in Fig 2A. The outlier tissue in Fig 2A having a lower average

rank for positive genes is Pituitary gland; upon closer inspection, this tissue has the lowest

number (2) of positive genes and 65 negative genes, and thus is not a representative. We fur-

ther assess merits of an integrative model relative to the conventional Z-score based ranking,

we directly compared FUGUE and Z-score ranks for the positive genes in each tissue

(excluded from the training set). Of the 25 tissues having positive genes, we found that in 11

tissues FUGUE ranks were better (P< 0.05) than Z-score ranks. Notably, Z-score ranks were

not better than FUGUE ranks in any of the tissues; the numbers are 9 out of 13 tissues if we

only consider tissues with at least 100 positive genes.

Next, we assessed FUGUE’s ability to prioritize the functionally relevant tissues for each

gene. For each gene g, we trained the model on all genes except g, and then estimated the score

for g in all tissues. We then compared, for each gene, the normalized ranks of the gene in the

positive tissues with that in the negative tissues. Fig 2B suggests that across all genes, the ranks

in positive tissues are higher than in the negative tissues (paired Wilcoxon test p-value = 4.19e-

63). Fig 2C shows the relative contributions of top contributing features (Methods). Z-score is

the conventional measure to prioritize tissue-relevant genes [11], and as expected, it is highest

contributor to the model. However, notably, Coefficient of Variation (CV), which captures

expression variability across samples within a tissue, contributes almost as much, revealing

that tissue relevant genes have significantly lower inter-individual variation than other genes.

S2 Fig shows substantial variability in Z-scores among the top 5% FUGUE-ranked genes in

each tissue. We further assessed the incremental contribution of each feature by assessing the

overall auROC for select individual features and various feature groupings (Fig 2D). The figure

shows that even though the expression features perform as well as network features, there is a

value added in the combination. Overall, FUGUE provides an effective predictive model of tis-

sue-relevant genes. The FUGUE scores for every gene in all 30 tissues are provided in S1 Data.

While we have provided the FUGUE scores for all genes, for some of validations below, where

appropriate, we use the top 10% highest scoring genes as the nominal tissue relevant genes.

PLOS COMPUTATIONAL BIOLOGY Functional tissue relevant genes
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FUGUE validation in independent datasets and utility in mapping complex

traits to tissues

Next, we assessed the utility of our tissue-specific FUGUE-prioritized gene lists in independent

datasets. First, we compiled from the whole genome mouse knockout study [13], 191 genes

whose germline deletion lead to phenotypic aberration that could be unambiguously ascribed

to one of the 6 tissues—Heart, Breast, Thyroid, Muscle, Lung, and Ovary (S2 Table). After

mapping the mouse genes to their human orthologs [13], we found that for each of the 6 tis-

sues the experimentally identified genes were ranked significantly higher than other genes by

FUGUE (Fig 3A; Wilcoxon p-values ~ 0 in all cases). A direct comparison with Z-score

revealed that in 2 of the 6 tissues (Breast and Ovary), FUGUE rankings of the tissue-relevant

genes were significantly higher (p-value <0.05) than Z-score rankings and the converse was

Fig 2. FUGUE performance. (A) Positive genes in each tissue is ranked based on a model trained on other tissues. Mean rank of positive genes in each tissue (y-axis)

is consistently far higher than the negative genes in that tissue. (x-axis). (B) Similar to (A) but here each gene’s rank in Positive tissue (y-axis) is compared with the

same gene’s rank in negative tissues (x-axis); the model training excludes the gene of interest. (C) Each feature’s importance (F score) estimated by the model is

shown. (D) ROC for overall cross-validation accuracy for various combinations of features.

https://doi.org/10.1371/journal.pcbi.1009194.g002
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true in 1 tissue (Heart), while in the other 3 tissues (Thyroid, Muscle, and Lung), there was no

significant difference between the two. However, in general our result reveals numerous genes

that have low relative expression in a tissue and would therefore not be deemed interesting

based on Z-score but are nevertheless identified by our integrative model as being potentially

important for a tissue. Here we highlight a few examples. YME1L1, whose disruption is known

to cause cardiac dysfunction [14], has a z-score of -0.87 in heart tissue (S2 Table) but has

FUGUE score of 0.92. APC, a DNA repair gene linked to breast cancer [15] has a z-score of

-0.3 in breast while a FUGUE score of 0.7. PPP2R1B linked to lung cancer [16] has a z-score of

-0.08 in breast while a FUGUE score of 0.7. PUS1, whose deficiency affects muscle morphology

in mice [17], has a z-score of -0.78 in muscle but a FUGUE score of 0.94. KRAS, mutations in

which cause ovarian carcinoma [18], has a z-score of -0.12 in ovary and FUGUE score of 0.82.

In fact, KRAS is involved in several cancers, notably colorectal cancers [19]. Indeed, KRAS

normalized rank was above 0.9 in 13 tissues, including colon where it was 0.97. TGF-beta func-

tions in gonadal development [20]. It’s receptor TGFBR2 has a z-score of -0.92 in testis while a

FUGUE score of 0.82. These examples, and many more in our prioritized lists, strongly under-

score the value of our integrative model.

Fig 3. FUGUE validation and application to trait-tissue mapping. (A) In 6 tissues where the trait is unambiguously mapped to the tissue based on mouse

knockout, the tissue-relevant genes are ranked significantly higher (y-axis) than the random expectation. (B) Essential genes in human iPSCs are ranked much

higher than random expectation; here the model was trained on GTEx and applied to iPSC, minimizing overfitting. (C) Pipeline to map GWAS genes to specific

tissues based on the overlap of GWAS genes with the top ranked genes by FUGUE or by Z-score. (D) A few examples of trait-tissue mapping uniquely revealed by

FUGUE. The trait oval indicates the number of GWAS genes, the tissue oval indicates the top 10% TRGs and a couple of top ranked genes associated to the trait

are highlighted. These genes have direct literature evidence for involvement with the trait.

https://doi.org/10.1371/journal.pcbi.1009194.g003
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Next, we applied FUGUE (trained only on GTEx tissues) to 317 human Embryonic Stem

Cell (hESC) transcriptome [21](Methods), and tested whether the 500 genes deemed to be

most essential, based on CRISPR-Cas9 knockout in human pluripotent stem cells (hPSC) [22],

were ranked higher than expected. As shown in Fig 3B, this is indeed the case (Wilcoxon p-

value = 3.4E-19). However, Z-score ranks of the essential genes was higher than the FUGUE

ranks. We assessed whether superior performance of Z-score might be because of a small frac-

tion of genes that are highly specific to hPSC (i.e., highest Z-scoring genes). We found that if

we exclude the genes with top 5% Z-scores, then the FUGUE ranking is higher than Z-score

rankings (P = 2E-4) for the remaining genes, and if we exclude top 10% genes with highest Z-

score then the signal gets even stronger (1E-10). However, it is also possible that our FUGUE

model trained on differentiated tissues is not perfectly suited to ESC. We therefore further

tested the relative merits of an integrative model trained on hESC. We assessed the 5-fold

cross-validation accuracy of FUGUE on 317 hESC transcriptomic samples and found that an

integrative model achieved an auROC of 0.78 ± 0.02 and auPRC of 0.35 ± 0.04, compared to

Z-score which achieved an auROC of 0.67 ± 0.02 and auPRC of 0.22 ± 0.03. This confirms the

contributions of additional transcriptomic and network features in prioritizing the essential

genes in hESC.

The above validations suggest that while FUGUE performs better than Z-score alone in a

cross-validation fashion, in a new context, an independently trained FUGUE model is comple-

mentary to Z-score based ranking and does not necessarily supersede it. Next, we applied the

FUGUE as well as Z-score based ranking to map complex diseases and traits to specific tissues

based on the premise that the genes associated with trait based on GWAS studies ought to be

enriched among the top ranked genes in the relevant tissue(s). For a comprehensive list of 551

traits from the GWAS catalog [23] having at least 5 associated genes, in each of the 30 tissues,

we assessed whether the GWAS-linked genes significantly overlapped (odds ratio > 1.5 and

Fisher test p-value <0.05) with the top 10% FUGUE or top 10% Z-score ranked genes in the

tissue. On average per tissue Z-score ranking revealed 34 traits and FUGUE revealed 30 traits,

29% of which overlapped with Z-score (S3 Table). While some of the traits revealed individu-

ally by FUGUE or Z-score could be directly linked to corresponding tissue function either

under homeostatic conditions or in diseases, in many cases the specific contribution of the tis-

sue to the trait is difficult to rationalize and likely false positives. However, the intersection of

the mapping by FUGUE and Z-score are often supported by known biology. Next, we discuss

a few cases that are uniquely revealed by FUGUE ranking or by both rankings.

In Brain, Alzheimer’s disease and cognitive ability were uniquely revealed by FUGUE,

while Neuroticism was revealed by both. In Liver, both gene lists were sensitive enough to cap-

ture numerous metabolic functions. In Pancreas, FUGUE uniquely identified Type II diabetes.

Calcium level was revealed by FUGUE and Z-Score (>13 odds ratio), in line with essential role

of calcium levels in regulation and release of insulin by the pancreas and in its implication dur-

ing the development of type II diabetes [24]. In Heart, physiological traits, such as electrocar-

diographic traits including PR interval, resting heart rate, QRS duration, P wave duration, as

well as atrial fibrillation were associated with both gene lists. Genes linked with Apolipoprotein

A1 level were uniquely enriched among top FUGUE genes in heart. Apolipoprotein levels

have been implicated in atrial fibrillation and failing human hearts [25,26]. In Lung, asthma,

tuberculosis, respiratory diseases, etc were robustly captured by both gene lists. In blood, vari-

ous traits related to blood cell counts and white blood cell functions were associated with both

gene lists. In Ovary, resting TPE interval was enriched for by both gene lists. TPE intervals

have been implicated in premature ovarian failure [27]. A seemingly disconnected association

uniquely captured by the FUGUE is squamous cell lung carcinoma (SCLC). SCLC frequently

metastases to ovary and often the lung and ovarian tumors occur synchronously [28]. In Testis,
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counterintuitively, esophageal cancer and glioblastoma are uniquely mapped by FUGUE.

We find that as cancer-testis antigens are frequently implicated in both these cancer types

[29,30]. In Thyroid, thyroid stimulating hormone levels, creatinine levels and hyperurice-

mia are identified by both gene lists. These traits are directly related to the function of thy-

roid tissue and are dysregulated in diseases associated with thyroid gland. In Prostate,

prostate cancer was associated with both gene lists. These and several additional examples

are listed in S3 Table.

TRGs recapitulate tissue-relevant functions and developmental and

structural tissue relationship

To assess whether TRGs reflect normal tissue functions, we assessed Gene Ontology (GO)

functional enrichment among the top 5% TRGs in each tissue, using PANTHER web server

[31] with the default background of all human genes, followed by Bonferroni Correction; only

GO terms with a family wise error rate< 0.05 were considered. For most tissues, the enriched

functions recapitulate the tissue-relevant biological processes (S2 Data). For instance, for the

brain tissue, top GO terms identified were overwhelmingly related to functions involving spe-

cific biological processes at the synapses (synaptic vessel endocytosis, recycling and localiza-

tion, regulation of synaptic vessel exocytosis, regulation of neurotransmitter receptor activity,

protein and receptor localization to the synapses, etc) along with functions related to ionotro-

pic glutamate receptor signaling pathways and NMDA receptor activity. Furthermore, for the

nerve tissue, we specifically found that GO terms for myelination in peripheral nervous system

(myelin maintenance and axon ensheathment related functions) and Schwann cell differentia-

tion and development were highly enriched, demonstrating the specificity of the identified

TRGs. Similarly, we found for the heart tissue, genes related to cardiac muscle contraction,

actin-myosin filament sliding, heart contraction, cardiac muscle cell development, etc. were signifi-

cantly enriched. Among other tissue specific biological functions, thyroid hormone generation for thy-

roid gland, pancreas development for the pancreas tissue, actin-myosin filament sliding for muscle

tissue, T cell and lymphocyte homeostasis in the blood, chylomicron assembly and remnant clearance

along with a vast number of carbohydrate, fatty acid and cholesterol metabolism related GO terms in

the liver, etc. were all significantly overrepresented among the top 5% TRGs. All these GO terms, along

with numerous others, point to the high level of specificity to tissue relevant functions of the identified

TRGs. On the other hand, housekeeping genes perform important functions in many tissues and are

therefore expected to be ranked highly in many tissues. Indeed, we found that the average pan-tissue

FUGUE scores of known housekeeping genes [32] is significantly higher than the rest of the genes

(Wilcoxon p-value ~ 0).

Next, we assessed whether the most relevant regulatory proteins, namely transcription fac-

tors, reveal known tissue development and biology. Upon closer inspection of the top TRGs,

we found a large number of master regulators highly characteristic of the tissue were scored

highly. For instance, PPARG and HNF1A, master regulators for adipogenesis and the hepatic

cell fate respectively [33], are among the top TRGs for the adipose and the liver tissues respec-

tively and are found to be implicated in NAFLD [34] and steatosis associated liver cancer [33].

Similarly, insulin is the highest scored gene (FUGUE score: 0.98) in the pancreas tissue. These

observations underscore the high degree of specificity of FUGUE identifying functionally rele-

vant tissue specific genes that are also implicated in various diseases.

We further assessed whether the tissue relevant regulators reveal developmental or func-

tional relationships among tissues. Toward this, we quantified similarity between each tissue

pair based on their Jaccard index of overlap in their top 20 FUGUE-ranked TRTFs, and per-

formed hierarchical clustering of tissues primarily derived from the endodermal (stomach,
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colon, esophagus, lung, kidney, liver and pancreas), mesodermal (muscle and heart) and the

ectodermal (brain and skin) lineages [35] (Fig 4A); top 20 TFs for each tissue is provided in S4

Table. Encouragingly, we found that the stomach and esophagus clustered together consistent

with the fact they are derived from the foregut [36] and away from colon which is derived

from the hindgut [36]. Furthermore, Lung and Kidney clustered together, consistent with

their developmental links [37]. However, we found that liver and pancreas, although clustered

together consistent with their developmental relationship [38], did not cluster closely with the

other endodermal lineage tissues. This is however consistent with potentially parallel develop-

ment of these two tissues from the gut tube as revealed recently by single cell analysis [39]. Not

surprisingly, Heart and Muscle, related tissues of mesodermal lineage [40], clustered together

but farther from the endodermal origin tissues. Similarly the brain and skin are clustered

together and separately from the mesodermal lineage and the endodermal lineage owing to the

fact that both these tissues are largely descendants of the ectodermal lineage [41]. Similarly, we

found that overlap among the top TRTFs could also classify the primary and secondary repro-

ductive organs based on their structural proximity (Fig 4B). Intriguingly we found adipose tis-

sue (not a primary/secondary reproductive organ) to cluster together with breast tissue. This

may reflect high adipose content in breast tissue. These results strongly suggest that the pre-

dicted TRGs provide insights into the tissue-relevant functions and TRTFs capture the devel-

opmental as well as structural relations among several mature tissues.

TRGs organize into genomic clusters and are perturbed in cancer

Functionally and transcriptionally related genes tend to cluster on the genome, both linearly

[42] as well as spatially mediated by chromatin structure [43]. We therefore assessed whether,

owing to their functional relatedness, top 5% TRGs exhibit linear or spatial clustering. To

assess genomic clustering of TRGs in each tissue, we first defined a genomic cluster as a set of

five or more genes where the consecutive genes were no more than 500 kb apart. We quanti-

fied genomic clustering as the fraction of TRGs covered by the defined clusters and estimated

the z-score and an empirical p-value based on chromosome-wise randomized gene sets (Meth-

ods). The z-score distribution (Fig 5A) strongly suggests that TRGs tend to cluster on the

Fig 4. Top TRTFs capture developmental as well as structural relations among several mature tissues. (A) Cluster dendrogram of tissues belonging to the

endodermal (purple), mesodermal (green) and the ectodermal (blue) lineages. (B) Cluster dendrogram of primary and secondary reproductive organs and

adipose tissue. As an illustration, we have shown for each tissue, two top TFs previously shown to be involved in the tissue development or homeostasis.

https://doi.org/10.1371/journal.pcbi.1009194.g004
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genome. Specifically, in 28 out of 30 tissues, clusters cover greater than expected fraction of

TRGs (z-score > 0), out of which 11 are significant (p-value < = 0.05; S5 Table). The above

trends were qualitatively similar when we define a cluster to be composed of 3 or more genes

(S5 Table).

Analysis of spatial chromatin interactions via Hi-C experiments reveal an organization of

chromatin into Topologically Associated Domains (TADs) on the linear genome within which

disproportionately large fraction of chromatin interactions reside, resulting in a coordinated

transcription within TADs [44,45]. We therefore assessed the extent to which TRGs are orga-

nized within TADs (Methods). Toward this, we measure the number of TADs covering the

TRGs—smaller the number, the greater the association between TRGs and TADs (Methods).

As above, we compare this metric against a randomized control, in a tissue-specific fashion, to

estimate a z-score and an empirical p-value. In 26 out of 30 tissues we observe a negative Z-

score (Fig 5B), 14 of which are significant (p-value < 0.05) (S6 Table). The TADs used for the

above analysis are not tissue-specific and in general TADs have been reported to be largely

invariable across tissues. To assess tissue-specificity of our observations, we leveraged the

recently reported tissue-specific enhancer-gene maps in EpiMap [46]. We obtained the tissue-

specific gene-enhancer maps for the 8 tissues that could be unambiguously mapped between

EpiMap and our study—Brain, Kidney, Heart, Liver, Lung, Muscle, Pancreas, and Spleen. We

expect TRGs to be under greater tissue-specific transcriptional control, i.e., interacting with a

greater number of enhancers. We tested this by comparing the number of enhancers linked

with TRGs with random gene sets. In 7 of the 8 tissues (except Brain), the tests strongly sup-

port our expectation.

Collectively these results suggest that TRGs have a strong propensity to cluster on the linear

genome, especially within TADs.

Given the observed potential role of TRGs in tissue development, and previously observed

links between development and cancer [47], we assessed the extent to which TRGs are per-

turbed in the corresponding cancer. Sixteen tissues in our study were mapped to 19 cancer

types in TCGA (www.cancer.gov/tcga). For each cancer we obtained the genes that are differ-

entially expressed DEGs) (both over-expressed and under-expressed) in the tumors compared

to corresponding control [48]. We tested for overlap between TRGs and DEGs separately for

up- and down-regulated DEGs. We found that in 16 out of the 19 cancers, the top 5% TRGs

were significantly enriched (Fisher exact test p-value < 0.05) in either up-regulated or down-

regulated DEGs (Fig 5C and S7 Table), suggesting that TRGs are more likely to be transcrip-

tionally perturbed during oncogenesis.

Fig 5. TRGs cluster both on the linear as well as in the 3D genome and are dysregulated in tissue specific cancer. (A) Z-

score distribution for fraction of TRGs contained in clusters (size> = 5 TRGs) compared to a null distribution along the linear

genome (top 5% TRGs considered; 5 or more genes in a cluster no more than 500kb apart) (B) Z-score distribution of number

of TADs containing more than 5% of TRGs (C) Odds ratio distribution for TRGs enrichment in dysregulated genes in cancer

types. Red line denotes the expected mean.

https://doi.org/10.1371/journal.pcbi.1009194.g005
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Discussion

Here we present the first machine learning model to assess whether a gene is relevant to a par-

ticular tissue’s function, based on multiple biologically grounded tissue-specific features of a

gene that rely both on expression as well as protein interaction networks. This represents a sig-

nificant step forward relative to the standard convention of using average expression of gene

in a tissue relative to other tissues, i.e., Z-score, to prioritize tissue-relevant genes. However, we

note that in an entirely new context, such as hPSC in our study, Z-score remains a potent char-

acteristic of functional gene and should be considered along with an integrative score. While

Z-score is indeed revealed in our model as an important feature, notably, low cross-sample

variability of the gene in the specific tissue turns out to be highly important. We also show that

features derived from tissue projection of the protein-interaction network alone are as effective

as the combined expression-derived features, in line with previous work, NetWAS [49], show-

ing that tissue-specific gene networks can identify disease-associated genes more accurately

than the GWAS. Gene-centric epigenomic features may further enhance our model accuracy;

however, such features are not widely available across all tissues, and furthermore, are reflected

to a large extent in the gene expression data.

Lack of sufficient number of positive and negative genes in each tissue has precluded us

from building tissue-specific models. However, we have shown that our model performs accu-

rately in a tissue even when that tissue’s data is excluded from the model training, suggesting

the model captures universal features of TRGs. This is also evident in our independent valida-

tions in mouse knockout, as well as hESC cells, that were not used for model training.

Our model prioritizes key transcription factors involved in development or functioning of

various tissues, such as HNF4 in liver [50], GATA4 in heart [51], MEF2C in muscle [52],

NR2F1 in nerve [53], FOXA2 in pancreas [54], etc. Interestingly, the similarity between tissues

in terms of most relevant TFs in each tissue recapitulates, to a large extent, the developmental

relationships between tissues. Our derived relationships among tissues separates endodermal

organs derived from foregut (stomach and esophagus) from those derived from the hindgut

(colon). While the separation of liver and pancreas from other endodermal lineages may seem

discordant, this may be explained by potentially parallel development of these two tissues from

the gut tube as recently suggested by single cell analysis [39]. Likewise, the two ectodermal line-

ages—skin and brain, are clearly separated from endodermal and mesodermal lineages. Apart

from developmental links, our derived tissue relationship clusters the secondary female repro-

ductive organs based on the structural proximity while separating out the primary reproduc-

tive organs (ovary and testis). Intriguingly, our model groups adipose tissue with breast, likely

capturing the largely adipose content in the breast tissue.

It is tempting to speculate that the requirement for TRGs to be robustly expressed together

in a tissue imposes some organizational constraints on their genomic location, because the

genome is organized into TADs within which there is a greater spatial interaction [55] as well

as greater co-expression [56]. These expectations bear out in our analysis showing that TRGs

tend to occur in genomic clusters, in particular within TADs. While these tendencies are statis-

tically significant, they are modest, suggesting that gene expression coordination among TRGs

are far more complex and genomic organization is likely one of many factors affecting it.

Numerous previous studies, dating as far back as 1858 (Virchow’s embryonal rest hypothe-

sis), have observed parallels between cancer and development [57–59], proposing that cancer

initiating cells are stuck at an earlier undifferentiated precursor developmental stage of the

respective cell type, with activated immune suppressive and mesenchymal gene programs

characteristic of early development [59]. This would suggest that genes with perturbed expres-

sion in cancer are likely to be involved in tissue development and function. Indeed, the most
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tissue-relevant genes as prioritized by FUGUE is highly enriched for differentially expressed

genes, either up or down, in the corresponding cancer.

Overall, we present the first integrative model–FUGUE, to prioritize tissue-relevant genes,

apply FUGUE to prioritize genes in 30 human tissues, provide a software to apply our model

to a novel context, show several interesting properties of TRGs—genomic clustering, associa-

tion with cancer, and their ability to reveal tissue developmental and structural relationships.

Methods

Tissue-specific protein interaction networks

We used HIPPIE v2.2 protein interaction dataset [60] consisting of 16573 genes and 374108

interactions. To generate the tissue-specific networks, we retain an edge between genes g1

and g2 if both genes’ expression is higher than their median (across all samples) gene expres-

sion in at least 25% of the samples in the particular tissue. In the tissue-specific networks, the

number of genes (nodes) across all tissues ranged from 13526 to 15619 with a mean of 15115

and the number of interactions across all tissues ranged from 87259 to 342339 with a mean of

270823.

Biological features

We consider the following biologically motivated transcriptomic and network-related tissue-

specific features of a gene:

1. Mean Z score. A gene is expected to be expressed at a high level in relevant tissue relative to

other tissues. We thus Z-transformed each gene’s expression across samples, and for each

gene-tissue pair, calculated the gene’s mean Z-score across all samples of the tissue. Note

that, even though we used the tissue-specific protein levels as a filter for our gold set

(below), because of imperfect correlation between protein and RNA levels [61], as well as a

limited number of samples in the protein atlas, the mean Z-score is not redundant, and pro-

vides independent information.

2. Expression breadth. We expect that the genes relevant to a tissue’s function will be broadly

expressed across individuals. Breadth was defined as the fraction of tissue samples in which

a gene’s expression was greater than its median expression estimated from all tissue

samples.

3. Mean Expression. Mean expression across all the samples for a given gene in Tissue.

4. Median Expression. Median expression across all the samples for a given gene in a Tissue.

Multiple previous studies have linked expression variability or dispersion with gene func-

tion [62,63], motivating the choice of next three features.

5. Median absolute deviation Median (MADM). The median of absolute differential expres-

sion of the gene in a sample to the median expression of the gene across the samples.

6. Standard Deviation. Standard deviation of the expression of a gene across all tissue

samples.

7. Coefficient of Variation (CV). The ratio of standard deviation and mean expression.

The following features are calculated over tissue-specific protein interaction networks, and

therefore tissue-specific.
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8. Centrality. Earlier studies [64] have shown that essential genes tend to have high centrality

in the protein interaction network. Centrality of a node is the fraction of all-pairs shortest

paths that pass through the node.

9. Clustering Coefficient. This measures whether a gene is part of a tightly connected commu-

nity of genes, and therefore likely to be functionally important. It is defined as the ratio of

number of interactions between neighbors to the total number of such possible interactions

between them.

10. Degree (Number of neighbors). Number of immediate neighbors of a gene. High degree

nodes, termed hubs, are known to be essential for cellular functions.

11. Number of Kinase neighbors. Considering the importance of kinases as regulators, we

measured for each gene the number of neighbors that are Kinases.

12. Number of TF neighbors. Analogous to Kinases, for transcription factors. These two fea-

tures capture the complexity of regulation of a gene.

13. Mean expression Z-score of neighbors. This feature extends the z-score of the gene’s

expression to its neighbors. We reasoned that the neighbors of critical genes may also

exhibit tissue-specific expression.

14. Mean expression breadth of neighbors. Analogous to the previous feature, but for expres-

sion breadth.

Gold set curation

There are a total of 453455 Gene-Tissue (G-T) pairs (the gene set varies across tissues). A pre-

vious study has linked human diseases to specific tissues based on manual curation [9]. We

integrated this tissue-disease mapping with disease-gene mapping in OMIM (omim.org) and

HPO [10] compiled in a previous work [9] to identify 6812 Positive G-T pairs across 29 tissues.

The number of Positive genes across the tissues ranges from 18 in Prostate to 1809 in Brain.

The remaining 446643 G-T pairs are ‘Unlabeled’ by default, some of which may be positive.

To identify a subset of the Unlabeled G-T pairs that are very likely to be non-functional, we

relied on Human Protein Atlas (HPA) [11]. If the gene is not expressed in any of the HPA

samples in the respective tissue, we consider the gene in that tissue to be a negative instance.

This yielded 66250 Negative G-T pairs overall.

Model building and prediction

Based on the aforementioned feature values computed for all G-T pairs, we implemented an

XGBoost classifier which predicts the probability of a G-T pair being positive. XGBoost is

robust even when features are highly multicollinear. Also, to make sure the model does not

overfit and generalize well, we chose the trees to be relatively shallow. We used maximum depth

of 3 with logistic loss as the objective. Since the ratio of Positives to Negatives is ~0.1, we

weighted the objective to penalize Positive class misclassification 10 times compared to Negative

class. We used 5-fold cross validation for 100 ensembles. To get an unbiased probability score

for each G-T instance, we implemented a leave-one-out approach to build the model on the rest

of the Positive and Negative G-T pairs and predict on the G-T instance in consideration.

Genome wide association study (GWAS) validation

We obtained the associated genes for 551 traits having at least 5 genes from the GWAS catalog

[23]. While there are multiple approaches used in the literature to estimate gene-centric
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association scores, we followed a stringent approach where only the SNPs within the gene

locus were used to associate a gene to a trait. A gene was linked to a trait if it harbored a SNP

with association p-value < e-10. For all 30 tissues in our dataset, and for each trait, we assessed

whether the trait-associated genes significantly overlap with the top 10% Z-score genes or top

10% of FUGUE genes or both with an odds ratio > 1.5 and p-value < 0.05. We only retained

the GWAS genes for which a FUGUE score was available.

Mouse knockout data validation

Mouse Genome Informatics database [65] provides anatomical phenotypes resulting from

genome-wide gene knockout studies, thus linking genes to phenotypes. We curated a list of

genes that when knocked out caused a disease/birth defect for 6 tissues—Heart, Breast, Muscle,

Lung, Ovary and Testis. We got the human orthologs for these genes and compared the ranks

of these genes relative to random expectation of 0.5.

ESC KO validation

Previous genome-wide CRISPR-Cas9 based gene knockout studies have quantified gene essen-

tiality in haploid human pluripotent cells (hPSC) [22]. We obtained gene expression raw

counts for 317 ESC samples from [21] and calculated the TPM values based on the transcript

lengths. We then calculated the expression and network features of all genes. Using the 500

most essential genes [22] that are present in the ESC expression dataset [21], we checked if our

independently trained model ranked the 500 genes higher than expectation.

Identifying the developmental lineage of tissues from tissue-relevant genes

For the tissues from the endodermal, mesodermal and ectodermal lineage, we extracted the

top 20 TFs [66] based on their FUGUE score. The distance between a pair of tissues was

defined as “1—Jaccard similarity index” of the two sets of 20 TFs. The distance matrix was

then subjected to hierarchical clustering (Euclidean distance using the Ward variance minimi-

zation algorithm) to infer a lineage tree for the tissues. A similar analysis was also done for the

primary and the secondary reproductive organs to obtain the corresponding lineage tree.

Genomic clustering of tissue-relevant genes

For a set G of genes, we define a cluster as a group of five (alternatively, three) or more conse-

cutive genes in G separated by no more than 500 kb. We then calculated the fraction f of genes

in G that are included in such clusters. A higher f indicates genomic clustering. We then gener-

ated a “null distribution” for f based on 1000 samples of a random gene set (from a universe of

19201 genes obtained using the biomaRt package in R) of the same size as G, additionally con-

trolling for the number of genes per chromosome. Based on the null distribution, the Z-score

and the empirical p-value for f were estimated. A Z-score > 0 indicates genomic clustering.

Clustering of tissue-relevant genes within TADs

We obtained the genomic coordinates of TADs mapped to the hg19 genomic coordinates from

[67]. For a gene set G, we computed the number of TADs that cover all genes in G—smaller this

number, the greater the clustering within TADs. We compare this number against a “null distri-

bution” generated as above, to estimate the Z-score and the p-value. A Z-score< 0 indicates

clustering.
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Overlap between TRGs and DEGs

Based on a mapping between tissues in GTEx and cancer types in TCGA, for 19 cancer types,

up- and down-regulated genes in each cancer type was obtained from [48]. For each tissue, we

assessed whether TRGs were enriched (using Fisher test) for up- or down-regulated genes in

the corresponding cancer. The odds ratio and p-value for each test was noted. An Odds-

ratio > 1 indicates enrichment.

Supporting information

S1 Fig. For two features, the figure shows the mean value of the feature (y-axis) among the

positive (P) and negative (N) genes in each tissue having positive and negative genes.

(TIF)

S2 Fig. The figure shows the z-score ranks of the top 5% TRGs as ranked by FUGUE.

(TIF)

S1 Data. Includes the positive, the negative, and the unlabeled genes in each tissue, along

with their FUGUE scores.

(TSV)

S2 Data. Enriched GO terms among the TRGs in each tissue, one tissue per sheet.

(XLSX)

S1 Table. Gene counts and mean expression of negative, positive, and unlabeled genes in

all tissues.

(XLSX)

S2 Table. Mouse knockout genes with phenotypes in 6 tissues. 191 genes whose germline

deletion result in phenotypic aberration that could be unambiguously ascribed to one of the 6

tissues—Heart, Breast, Thyroid, Muscle, Lung, and Ovary. The tables show a few key feature

values for these genes and the overall score for tissue relevance as computed by FUGUE.

(XLSX)

S3 Table. The table shows the GWAS traits revealed based on overlap between the top

ranked genes by FUGUE or Z-score and the trait-associated gene. For each tissue, the

revealed traits are grouped into three groups colored Blue: Traits revealed by FUGUE alone,

Orange: Traits revealed by Z-score alone, and Purple: Traits revealed by both.

(XLSX)

S4 Table. Top 20 TRTFs in each tissue ranked by FUGUE scores.

(XLSX)

S5 Table. Clustering statistics. GENES: number of genes in top 5% TRGs. F: Fraction of

TRGs covered by clusters. F_r: Expected fraction. Std(F_r): Standard deviation of expected

fraction. Z-SCORE(F): Z-score of F. P-value(F): Empirical p-value of F.

(XLSX)

S6 Table. TAD statistics. #TAD: Number of TADs with at least 2 genes covering all top 5%

TRGs. Other columns are self-explanatory.

(XLSX)

S7 Table. DEG statistics: Each table estimates the significance of overlap between TRGs

and DEGs. The top table considers all DEGs, the middle table considers only the DEGs upre-

gulated in tumor relative to normal, and the bottom table considers only the genes
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