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Abstract

Background: In their natural environment, bacteria face a wide range of environmental conditions that change
over time and that impose continuous rearrangements at all the cellular levels (e.g. gene expression, metabolism).
When facing a nutritionally rich environment, for example, microbes first use the preferred compound(s) and only
later start metabolizing the other one(s). A systemic re-organization of the overall microbial metabolic network in
response to a variation in the composition/concentration of the surrounding nutrients has been suggested,
although the range and the entity of such modifications in organisms other than a few model microbes has been
scarcely described up to now.

Results: We used multi-step constraint-based metabolic modelling to simulate the growth in a complex medium
over several time steps of the Antarctic model organism Pseudoalteromonas haloplanktis TAC125. As each of these
phases is characterized by a specific set of amino acids to be used as carbon and energy source our modelling
framework describes the major consequences of nutrients switching at the system level. The model predicts that a
deep metabolic reprogramming might be required to achieve optimal biomass production in different stages of
growth (different medium composition), with at least half of the cellular metabolic network involved (more than
50% of the metabolic genes). Additionally, we show that our modelling framework is able to capture metabolic
functional association and/or common regulatory features of the genes embedded in our reconstruction (e.g. the
presence of common regulatory motifs).

Finally, to explore the possibility of a sub-optimal biomass objective function (i.e. that cells use resources in alternative
metabolic processes at the expense of optimal growth) we have implemented a MOMA-based approach (called
nutritional-MOMA) and compared the outcomes with those obtained with Flux Balance Analysis (FBA). Growth
simulations under this scenario revealed the deep impact of choosing among alternative objective functions on the
resulting predictions of fluxes distribution.

Conclusions: Here we provide a time-resolved, systems-level scheme of PhTAC125 metabolic re-wiring as a
consequence of carbon source switching in a nutritionally complex medium. Our analyses suggest the presence of a
potential efficient metabolic reprogramming machinery to continuously and promptly adapt to this nutritionally
changing environment, consistent with adaptation to fast growth in a fairly, but probably inconstant and highly
competitive, environment. Also, we show i) how functional partnership and co-regulation features can be predicted by
integrating multi-step constraint-based metabolic modelling with fed-batch growth data and ii) that performing
simulations under a sub-optimal objective function may lead to different flux distributions in respect to canonical FBA.
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Background

In their natural environment, bacteria are confronted
with a wide range of environmental conditions that
change over time. It is generally observed that, when fa-
cing a nutritionally rich environment, bacteria first use the
“preferred” compound(s) (presumably those allowing the
fastest growth rate) and only later start metabolizing the
other one(s). The decrease in concentration of these com-
pounds corresponds with the start of usage of the others.
In this respect, Monod discovered the phenomenon of
“diauxie”, i.e. the microbial capability of utilizing the vari-
ous nutrients regardless of their abundance but regulating
their uptake through the modulation of the overall enzym-
atic state [1, 2]. This kind of switching of metabolic prefer-
ence is characteristic of systems that optimize fitness [3].
It is usually observed that, as the bacterium changes from
one carbon source to another, growth is temporary halted,
while a new of enzymes needed to metabolize alternative
nutrients are synthesized. This cellular regulation is likely
to play a key role, i.e. adjust cellular nutrient fluxes across
the entire bacterial metabolic network as to produce the
optimal growth rate [4]. In other words, regardless of the
C-source that is used in a specific growth phase, the meta-
bolic network of an organism has to continuously and
dynamically adjust to optimally sustain cellular growth.
Accordingly, the optimal flux distribution achieved by
growing cells sometimes changes discontinuously as the
composition of the growth medium is varied. Therefore, a
small change in nutrient concentration due, for example,
to compounds exhaustion, may sometimes induce a large
change in the enzymatic composition of the bacterium [3].

Examples of system-level cellular adjustments follow-
ing changes in nutrients availability have been recently
described exploiting —omics technologies [5, 6]. These
works revealed presence of a deep and systemic re-
organization of the overall microbial metabolic network
in response to a variation in the composition/concentra-
tion of the surrounding nutrients. The range and the
entity of such modifications in organisms other than a
few model microbes (i.e. E. coli, S. coelicolor) are still un-
known, despite they might provide interesting hints in
the understanding of non-trivial metabolic phenotypes
(e.g. lifestyle decisions and virulent phenotypes [7, 8]).

In order to systemically interpret such complex behav-
iours, scientists have started exploiting computational
models [3, 9] and, as in [10], their integration with
phenotypic and gene expression data. In this context,
constraints-based approaches, in particular flux balance
analysis (FBA), have been shown to be predictive of
growth phenotypes [11, 12] and can be used to construct
large scale metabolic models based on genome se-
quences and to infer the metabolic impact of pertur-
bations in the external conditions (e.g. nutrients
depletion) [10].
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Although the presence of metabolic switches in other
organisms is less documented, a valuable exception is
represented by the Antarctic bacterium Pseudoalteromo-
nas haloplanktis TAC125 (PHTAC125). PhTAC125 has
been isolated from sea water sampled along the Antarc-
tic ice-shell and is considered one of the model organ-
isms of cold-adapted bacteria. It is capable of thriving in
a wide temperature range and it has been suggested as
an alternative host for the soluble overproduction of
heterologous proteins, given its ability to rapidly multi-
ply at low temperatures [13—-16]. A genome-scale meta-
bolic reconstruction of PHTACI125 has been recently
published by our group [17], allowing a system-level rep-
resentation of its phenotypic landscape and boosting a
holistic comprehension of its metabolic features. Inter-
estingly, the growth curve of PATACI125 in a complex
medium (peptone) is characterised by a number of meta-
bolic switches among the amino acids available in the
medium [14]. The progressive exhaustion of the different
sets of amino acids (especially glutamate) defines a hier-
archical usage of carbon sources and, consequently, mul-
tiple phases in its growth curve, characterized by a
different set of metabolized substrates. As mentioned
previously, this behaviour points towards a (still undis-
closed) reprogramming of cellular metabolism, the
effects of which cannot be appreciated just looking at
the resulting growth curve.

The aim of this study is to systemically investigate the
metabolic adjustments that are (computationally) pre-
dicted to occur over time in a microbial cell grown in a
complex medium, with particular attention to the global
effects produced by multiple substrates switching (e.g.
percentage of genes involved, network robustness).
Constraint-based metabolic modelling was used to simu-
late microbial growth in a complex medium over several
time steps, each characterized by a specific set of amino
acids to be used as carbon and energy source. As said,
we examined these features in PATAC125 taking advantage
of its recently published genome-scale metabolic recon-
struction and the availability of accurate physiological data
in complex media. Results obtained from our simulations
allow us to hypothesize the occurrence of a deep metabolic
reprogramming following each transition in the availability
of nutrients, with more than one half of its metabolic reac-
tions involved. Interestingly, catabolic pathways are pre-
dicted not to be the only processes affected by such
changes, with many central pathways that seem to be af-
fected by apparent minor changes in the metabolized sub-
strates. Furthermore, we show that our modelling
framework is able to capture possible functional patterns
and/or common regulatory features of the genes embedded
in our reconstruction (e.g. the presence of common regula-
tory motifs). Finally, we used our modelling framework to
explore the effect of simulating a sub-optimal microbial
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growth, i.e. accounting for the re-direction of part of the
cellular resources in alternative metabolic processes at the
expense of optimal growth rates. The MOMA-based [18]
approach introduced here (nutritional-MOMA) was com-
pared to FBA-derived predictions, revealing interesting in-
sights into the resulting predictions of fluxes distribution.

Methods

Model parameterization

The metabolic model used in this manuscript has been
described in Fondi et al. [17] and can be found in
Additional file 1, together with the codes used to produce
the results reported herein. The physiological data of
PHTACI125 growth in soy-peptone complex medium [14]
was used to identify time steps corresponding to amino
acid depletions. Overall, twelve different (one hour long)
time steps were identified along the complete growth curve
and, for each of these time steps, the uptake rates of each
amino acid were estimated based on their relative decrease
in concentration and on the growth rate. More in detail, to
fit our model to Wilmes et al. data, first we computed the
PHTAC125 yield. To do this, we had to derive the difference
in biomass for each time step. First, we retrieved the optical
density (OD) and growth rate (p) at each time (0 to 12 h),
deriving the ratio between biomass (g/l) and OD, by divid-
ing the reported weight at the 10 h mark (1.28 g) for the
corresponding optical density (3.8) times the initial oper-
ation volume of the growth experiment (1.4 1). Then, we
computed the difference (delta) in biomass between each
hour (from 0 to 11) and the following one (1 to 12 time
steps). We also computed, for each amino acid, the mass
concentration (g/l) at each time step from the correspond-
ing molar concentration values. Finally, we computed for
each amino acid the difference in concentration (delta) for
each time step, considering this value as 0 when a concen-
tration was increasing from an hour to the following one
(nutrient accumulation). Thus, for each time step, the bio-
mass delta value represents the relative increase in biomass,
while the sum of the amino acid delta values (one for each
amino acid consumed by PATACI125) represents the total
concentration of carbon consumed in that time step. The
ratio of these values allowed us to compute the yield value
corresponding to each time step.

To allow for growth simulations consistent with the
experiment by Wilmes et al. [14], we also had to com-
pute the uptake fluxes (UF) for each amino acid at each
time step. To do this, we used the following formula:

concl, GR! 1

UF;a = -k i* -3
ZVae AaCONC yield MW, * 10

Where: UE., is the UF (mmol * g’1 *h™') of the amino
acid aa (belonging to the set of amino acids AA) in the
time step i; GR' and yield" are the PATAC125 growth rate
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and yield, respectively, at the time step i; conch, and
MW,, are the concentration (g/l) and molar weight
values, respectively, of the amino acid aa in the time
step i; Yvac aaconc, is the summation of each amino
acid concentration in the time step i. Finally, we multi-
plied each uptake flux for a constant specific to the cor-
responding time step to allow for comparable flux values
for each time step.

In silico growth was simulated for each phase using
FBA (see below) with salts uptake as defined as in Fondi
et al. [17] and adding amino acid uptake reactions with
lower bound equal to the uptake rate estimated from
growth data as described above.

Modelling procedures

Flux Balance Analysis (FBA) was employed to simulate
fluxes distribution at each different time step [19]. As
during the last two time steps there was no growth and
no amino acids uptake, we limited our analysis to the
first ten time steps identified as previously described.
The reconstructed model was analysed using
COBRAToo0lbox-2.0.6 [20] in MATLAB® R2012b (Math-
works Inc.). Gurobi 5.6 (www.gurobi.com) solver was
used for computational simulations presented herein.
The COBRApy package was also used during model ex-
pansion and preliminary growth simulations [21]. Statis-
tical analyses on the predicted fluxes were performed
using the R package [22].

Flux Variability Analysis (FVA) was performed using
the COBRA toolbox. The ratio between maximum and
minimum admissible flux of each reaction (v;) in each of
the growth phases was computed as:

Vi = fmax,i/fmin,i

with f,,.; and f,;,; representing the maximum and
minimum admissible fluxes of the i reaction according
to FVA analysis, respectively. On the basis of these
spans, we determine the fixed (v; =1) and flexible (v; = 1)
parts of the metabolic network while achieving a par-
ticular metabolic objective (i.e. the biomass formation).

Identification of co-varying reactions and functional
association among their genes

To identify co-varying reactions, we first removed reac-
tions showing a constant trend throughout the simula-
tion. Then, for each of the remaining reactions, we
computed the difference (d) between the absolute values
of the fluxes following each transition. Formally:

d. = fj,, [-1El
with f;; representing the flux of the /™ reaction of the
model in the /™ time step and d, the difference of such

fluxes in the z™ transition. As we divided the growth of
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PHTACI125 on complex medium in 10 different phases,
for each reaction a vector embedding nine values of d
was obtained. Pearson correlation was then computed
for each pair of reactions. Finally, we extracted groups
co-varying reactions by selecting those reactions sharing
a Pearson correlation value greater than 0.7. The se-
quences of these gene groups were queried to the
STRING database [23] to retrieve their possible func-
tional association(s) using its Advanced Programming
Inter-face (API). STRING combined score includes in a
single value (ranging from 0 to 999) different hints of
functional association (such as gene co-expression, co-
occurrence, fusion, etc.) among those genes or among
their orthologs in organisms other than the selected one
(see [24] for details).

Nutritional-MOMA

With nutritional- MOMA we refer to the use of MOMA
[18] optimization to minimize the metabolic adjustments
required at each (metabolic) transition of the entire
growth period analysed. In its canonical formulation, the
MOMA algorithm requires two models, the so called
“wild-type” model and the “mutant” model. MOMA can
then be used to determine the flux distribution for the
“mutant” model that minimizes the difference between
the “mutant” model itself and the wild-type solution. We
have modified this formulation using, for each transition
T among a given growth phase P and the previous one
(P-1), the model of phase P as the “mutant” model and
the model of phase P-1 as the wild type model. The two
models will different in the set of nutrients available dur-
ing the computation of the flux distribution. Accord-
ingly, this approach should provide a solution in which
fluxes are computed in such a way that a minimal meta-
bolic adjustment is computed when the model is pre-
sented to a different set of nutrients. For sake of clarity,
we named this alternative use of MOMA as nutritional-
MOMA. 1t is to be noticed that, as data from a TO point
(i.e. phase PO) were not available, our nutritional-
MOMA computations started from phase P2 (i.e. started
from minimizing the metabolic adjustment in the transi-
tion between P1 and P2). As a result, plots for this set of
analyses embed nine time points rather than ten as in
FBA simulations.

Regulons and conserved motifs identification

The RegPrecise database [25] was used to inspect the
presence and the structure of putative regulons in
PHTAC125. Specific upstream motifs finding was per-
formed using the Meme suite [26]. Genome-wide regula-
tory motifs searches were performed using the Dminda
server [27] on the set of PATAC125 upstream regions
present in the DOOR database [28].
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Results and discussion

Modelling procedures

We have recently reconstructed a genome-scale meta-
bolic model of PATAC125, using it for inferring the
metabolic adjustments of this bacterium induced by
changes in gene expression following a temperature
downgrade in this bacterium [17]. Here we used this
model to investigate the metabolic rearrangements oc-
curring during growth in a nutritionally rich medium. A
detailed analysis of the data reported by Wilmes et al.
[14] allowed the identification of twelve distinct phases
in the growth of PATAC125 on peptone medium, each
of them corresponding to a time step of one hour. As
during the last couple of phases almost no nutrients up-
take was recorded, we limited our analyses to the first
ten phases (P1 to P10). For each of these phases we
identified the specific uptake rates of the different com-
pounds (amino acids) present in the growth medium (as
detailed in Methods) and/or (possible) switches in the
use of the available C-sources.

These values were used as input for ten different FBA
simulations (selecting biomass production as the object-
ive function) to derive the most likely fluxes distribution
in the PATAC125 metabolic model in each time step.
This allowed a system-level characterization of the meta-
bolic changes occurring after variations in the usage (up-
take fluxes) of the different carbon sources. A schematic
representation of the nutrients provided to the model in
each of the time steps is reported in Fig. 1a.

Prediction of core and switching reactions

First, we evaluated the predicted flux for each reaction
in the model, across all the time points. Overall, we
found that 710 reactions did not carry flux in our model
in any of the growth phases; these reactions are probably
not essential to sustain PATAC125’s growth in the simu-
lated conditions and were discarded from the following
analyses. Conversely, 612 reactions were predicted to
carry flux in at least one time point (Fig. 1b) and were
considered for further analyses. On average, excluding
the last time point in which all the reactions are pre-
dicted to be turned off [corresponding to growth rate (x)
close to zero], 501 reactions are predicted to carry flux
for each of the analysed phases (Fig. 1c). Interestingly,
this value is quite constant throughout the time points
(standard deviation, s.d. = 13.8, Fig. 1c), revealing that,
according to our simulations, the number of reactions
necessary to support PATAC125 growth is predicted to
be somehow independent from the carbon sources
(amino acids) used as C and energy sources.

Despite this apparently constant trend in the number
of metabolic reactions employed by PATAC125 in a
complex medium, the shift among the different growth
phases is presumably characterized by a relatively high
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Fig. 1 Summary of PhTAC125 genome-scale reprogramming following nutrients switching. a. The nutrients provided to the model in each
different growth phase according to [14] b. Heat map with log values of fluxes across all the phases. c. Number of flux carrying reactions in each
growth phase. d. Number of flux-changing reactions in each growth phase. The dashed line represents the average number of reactions carrying
flux over all time points. e. Number of reactions whose flux is predicted to increase (blue line) and decrease (red line) following each shift in the
nutrients provided; the black line accounts for those reactions whose flux is predicted to decrease not as an effect of an imposed reduced growth
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number of reactions that are predicted (on the basis of
our simulation and the biomass-based objective func-
tion) to change their flux (Fig. 1d). On average, 392 reac-
tions display at least a single variation in their predicted
flux across all the time points (Fig. 1d). However, in this
case, a greater variability across all the time points is ob-
served in our simulations (s.d. = 53).

Gene-protein-reaction (GPR) rules of our model indi-
cate that this latter set of reactions is encoded, on aver-
age, by 438 genes. Interestingly this number resembles
that found when modelling the metabolic switch of S.
coelicolor (549 enzyme-coding genes, 7% of S. coelicolor
genes) [10] and represents around 12% of the PATAC125
coding sequences (55% of the metabolic genes embedded
in the metabolic reconstruction).

According to our simulations, switching among the
available carbon sources in a complex medium may have
an impact on the overall metabolic network of
PhTAC125 with more than half of flux-carrying reac-
tions influenced by a change in the utilized C-source or
in its uptake rate. More in detail, we found that, on aver-
age, 276 reactions are predicted to decrease their flux
throughout the growth period (s.d. = 74.8), whereas 69
(s.d. = 30.1) are predicted to increase it. However, the
number of reactions whose flux decreases might be
biased due to a general decrease, across the time steps,
of the growth rate. More specifically, this systemic bias
is related to the amino acid uptake rates, which have
been derived from the physiological data by Wilmes et
al. [14], whose constant decrease lead, for some reac-
tions, to a flux reduction in each time step. Thus, we ad-
justed the set of “decreasing reactions”, by removing
those for which we observed a consistent decrease for all
the growth phases. Although the normalization did not
affect the general trend, in that the normalized set (grey
curve in Fig. le) and the not normalized one (red curve
in Fig. le) have similar trends, the number of decreasing
reactions is (for the adjusted set) comparable to that of
the increasing reactions. Furthermore, we also computed
a normalized flux distribution for each of the modelled
growth phases, expressing them as a fraction of the pre-
dicted growth rate and evaluated whether this procedure
led to different results (in terms of number of reactions
carrying and changing flux in each phase and flux in-
crease/decrease patterns). Results (shown and described
in Additional file 2: Figure S1) revealed no major differ-
ences in the overall trends compared to the original cal-
culation of fluxes distribution, suggesting that our
results hold true regardless of the normalization proced-
ure adopted to account for the different (decreasing)
growth rates predicted by the model across the growth
period.

Not all PATAC125 metabolic pathways are impacted
by this switching of nutrients in the same manner,
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according to our simulations. Figure 2a shows the hypo-
thetical number of flux-carrying reactions for five path-
ways, i.e. TCA cycle, Lys biosynthesis, Glu metabolism,
Val, Leu and Ile biosynthesis and degradation (a
complete overview is presented Additional file 2). TCA
cycle, for example, displays and increasing trend in the
number of flux-carrying reactions according to our mod-
elling framework; this is consistent with the exhaustion
of amino acids (Asp, Asn and Glu) whose degradation
provides important TCA cycle intermediates, i.e. oxalo-
acetate, fumarate and 2-oxo-glutarate and, consequently,
with the necessity to activate those reactions leading to
the biosynthesis of such compounds. Conversely, Lys
and Glu metabolic routes display an overall constant
trend (Fig. 2a), with a similar number of active reactions
across the different simulated growth phases. This is in
line with i) the necessity to use (part) of the lysine biosyn-
thetic route to synthesize diaminopimelic acid, an essential
component of bacterial cell wall (see below) and ii) with
the importance of Glu metabolism for PATAC125 (see
below and [14]). Finally, Val, Leu and Ile biosynthesis and
degradation pathways display an opposite trend one an-
other (Fig. 2a). Intuitively, this reflects the necessity to
synthesize these molecules in the first part of the growth
phase (when they are not used from the medium) and the
necessity to catabolise them once PATACI125 is using
those amino acids as carbon sources, respectively.

We next evaluated whether changes in the kind and
number of utilized substrates across all the time points
was also parallel to major structural changes at the
whole metabolic network level. We used Flux Variability
Analysis (FVA) to perform a comprehensive exploration
of alternate optimal routes in PATAC125 metabolic net-
work, in each of the predicted growth phases (as de-
scribed in Methods). This analysis revealed that the
number of “flexible reactions” is predicted to remain
constant throughout all the growth phases (data not
shown), suggesting that the plasticity of PHTACI125
metabolic network is not particularly dependent on the
set of metabolized substrates. This suggests the presence
of an efficient adaptation of PATAC125’s metabolic net-
work to face a nutritionally rich but probably variable
environment.

Overall, according to our model, the central phases of
the growth curve are characterized by the largest set of
reactions changing their flux (T3 to T5 in Fig. 1d), con-
sistently with the major changes in the set of utilized nu-
trients observed experimentally by Wilmes et al. [14]
(Fig. 1a). The first important switch in the panel of uti-
lized compounds occurs between phase 3 and 4 (Fig. 1a).
According to experimental evidence from Wilmes et al.
[14], in this time point PATAC125 stops using Ser, Asn
and Asp as C and N sources, relying only on glutamate
for sustaining growth. The importance of glutamate was



Fondi et al. BMC Genomics (2016) 17:970

Page 7 of 17

a
o |TCAcycle Lys biosynthesis Glu metabolism Val,Leu, lle biosynthesis Val,Leu, lle degradation
S 20 2 2. 2
O—6—6—6—6—6—6—6—9
k]
Z o0 0 0 0 o
P1 P2 P3 P4 P5P6 P7 P8 P9 P1 P2 P3 P4 P5 P6 P7 P8 P9 P1 P2 P3 P4 P5 P6 P7 P8 P9 P1 P2 P3 P4 P5 P6 P7 P8 P9 P1 P2 P3 P4 P5 P6 P7 P8 P9
[UCING = === == === o= o e oo eeeeeoeoae e e L P LR PR
: phenylalanine pro!lne histidine ,
1 H ' . [
' ‘L : ! RO2285 '
' tyrosine arginine --- - -- glutatamate i Roz288 '
' : semialdehyde ' Ro1168 !
' ' : '
i ! !
' : R00035 __ glutamate - - - - - - glutamine E
, ! R00734| '
! IR B R B e '
! ' ' '
.. acetoacetate R01899,R00268 Ro0248 | !
; isocitrate N i '
1 oxoglutarate ! '
.......... acetoacetyl CoA—— acetyl CoA , ‘
! A ll 1
. succinyl CoA: i
, _ TCA cycle ‘ : '
. citrate H i
! i \
i .- -alanine — pyruvate malate ' :
:
! ' /R01082 i A
: ! oxaloacetate 1 !
oxoadipate - == ----- antranilate fumarate - - - - - - - '
i : ‘
i I ) \
, tryptophan cystlelne !
| h
: . L aspartate '
lysine ! i '
! i
! ) i . asparagine Fo0578 .
! serine -----+ , i
. X . 2-oxobutanoate - - - Propiony-coA- - - - - -+
' glycine ! : :
1 ' 1 1
L. giaminopimelic acid th ] . R00996] : !
iaminopimelic aci reonine | methionine ' i .
L ! ..--. isoleucine
i
valine
Fig. 2 Changes in the central metabolism of PhTAC125. a. The number of active (flux-carrying) reactions for five major pathways across all the
time points is shown. b. A simplified representation of the interconnections in the central metabolism of PhTAC125. Dashed lines indicate the
presence of more than one reaction between the connected compounds. Modified from [39]

previously observed from fed-batch cultivation experi-
ments as it was the most strongly metabolised amino acid
in all growth experiments [14]. Also, Glu (together with
Pro and Gln) is the amino acid allowing the fastest growth
rate (0.11 h™%) among all the 20 amino acids when growth
in twenty minimal growth media (embedding each amino
acid the sole C and N source and an arbitrary uptake rate
of 1 mmol * g(’l) *hY) was simulated (data not shown).

During P4, PHTACI125 relies only on glutamate for
sustaining growth and needs to utilize this compound to
derive its main building blocks. L-Glutamate:NADP+
oxidoreductas (KEGG id: R00248) is predicted to be a
key reaction in this phase as it allows the conversion of
Glutamate to 2-Oxoglutarate to be used as energy
source feeding the TCA cycle (Fig. 2b).

More in general, our modelling framework predicts a
deep re-programming at the whole metabolic network
level following this shift, with 394 reactions changing

their predicted flux; more in detail, 264 reactions are
predicted to decrease their flux (124 if we exclude those
whose decrease may be due to the reduced growth rate
imposed to the model for the fitting with experimental
values), whereas 57 are predicted to carry an increased
flux (Fig. 1le). The remaining (73) reactions are predicted
to operate in the reverse direction compared to the pre-
vious growth phase following the switch. Among the
first set of reactions, 12 are predicted to be turned on in
respect to the previous phase, whereas 31 are predicted
to be turned completely off. This latter set of reactions
includes, as it might be expected, the transporters of
serine, asparagine and aspartate, i.e. those compounds
that are no longer available in the medium and that can-
not be internalized anymore. The cell faces the absence
of some of these compounds by redirecting (part) of the
glutamate available in the medium to their synthesis.
Indeed, for example, the reaction encoded by L-
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aspartate:L-glutamine amido-ligase (R00578) leading to
the formation of asparagine from GIn (derived from
Glu) is predicted to double its flux after this metabolic
transition (Fig. 2b). The exhaustion of Asp is probably
compensated by reversing reaction R00035 (L-Aspartate2-
oxoglutarate aminotransferase), generating Asp from Glu
(Fig. 2b). Furthermore, our simulation indicated a drop to
no flux in the reaction encoded by threonine dehydratase
(R00996) and catalysing the conversion of Thr to produc-
tion of 2-oxobutanoate (and ammonium), a precursor of
Val, Leu and Ile (Fig. 2b). A decrease in the availability of
Asp (from which Thr is usually synthesized) might impair
the biosynthesis of 2-oxobutanoate following this pathway.
Our model predicts that PATAC125 faces this per-
turbation by reversing the flux of reaction R00999
(cystathionine gamma-synthase), leading to the pro-
duction of 2-oxobutanoate (and succinate) from O-
Succinyl-L-homoserine.

After the following switch (from P4 to P5, T4), Wilmes
et al. observed that PATACI125 starts using Ala, Leu, Gly
and Tyr (together with Glu) (Fig. 1a). According to our
modelling framework, this involves a predicted change
in the flux of 421 reactions (Fig. 1d), with 260, 68 and
93 of them decreasing, increasing or changing the direc-
tion of their flux, respectively. Consistently with this
new set of amino acids, the model predicts that most of
the biosynthetic routes leading to the production of such
compounds result turned “off’. This is the case of the
path leading to the synthesis of Leu in the branched-
chain amino acid biosynthetic route (from 3-
isopropylmalate dehydratase to 2-oxoglutarate amino-
transferase, R01213, R03968, R01652, R04001, R04426).
The same occurs for Ala biosynthesis (accordingly, the
reactions catalyzed by L-asparaginase (R00485) and L-
Aspartate 4-carboxy-lyase (R00397) are predicted to be
turned off) and Lys biosyntheses. Interestingly, in the
latter case, only the final step of the whole pathway (Dia-
minopimelate decarboxylase, R00451) is predicted to
carry no flux, consistently with the observation that the
rest of the pathway is required for the synthesis of
meso-2,6-Diaminopimelate, an essential precursor for
peptidoglycan assembly (Fig. 2b).

Amino acid biosynthetic routes are not the only path-
ways affected by this metabolic switch, according to our
simulated growth model. Two TCA cycle reactions are
predicted to be turned on following the utilization of
Ala, Leu, Gly and Tyr, i.e. those leading to the produc-
tion of 2-Oxoglutarate from Isocitrate (R01899 and
R00268, Fig. 2b). This raises the intriguing question on
the source of 2-Oxoglutarate in the previous growth
phases given that those TCA reactions were predicted to
carry no flux. A possible explanation is provided by the
observation that 2-Oxoglutarate can be obtained from
the carbon skeletons of several five-carbon amino acids
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through a first conversion into Glu, which is then oxida-
tively deaminated by glutamate dehydrogenase to yield
a-ketoglutarate. However, the presence of Glu in the
medium would not favour this solution as the major
fraction of Glu can be obtained without additional en-
ergy expenses. Alternatively, 2-Oxoglutarate can be ob-
tained from the conversion of Glu (the only carbon
source in P4) to Tyr (required for sustaining growth in
P4). In our model this reaction (R00734) is predicted to
be “on” during P5 thus allowing the synthesis of 2-
oxoglutarate (Fig. 2b). However, starting to use Tyr
present in the medium during P5 might cause reaction
R00734 to be turned off and, consequently, the necessity
to synthesize 2-oxoglutarate from succinate to maintain
the functioning of TCA cycle. Similarly, the production
of fumarate from malate (R01082) is predicted to carry
no flux in the shift to P5 (Fig. 2b). Again, this is consist-
ent with the degradation of amino acids as a major
source of important metabolic intermediates, as fumar-
ate can be obtained from the degradation of aromatic
amino acids as Tyr, available in the medium during P5
and then tunnelled into the TCA cycle.

The time-resolved growth data from Wilmes et al. [14]
show that, after other minor transition in which few
additional amino acids are degraded (Phe, Ile, Val), the
final switch involved the utilization of histidine as the
only C source and causes a major drop in the growth
rate of PATAC125 [14]. In our model, this corresponds
to the highest number of flux-changing reactions (with
the exclusion of the last time point in which all the reac-
tions are turned off) and thus, to the deepest reprogram-
ming encountered by PATACI125 during this growth
curve.

As it might be expected, histidine biosynthetic reac-
tions (R03013, RO1163, R03012, R04035, R04640,
R03457, R03243, R01071, R04558, and R04037) are pre-
dicted to carry zero flux following this transition. Des-
pite the entire pathway is predicted to carry no flux,
AICAR (1-(5'-Phosphoribosyl)-5-amino-4-imidazolecar-
boxamide), one of the intermediates of histidine biosyn-
thesis and a crucial precursor in purine metabolism,
might still be synthesized through reaction R04559 (ade-
nylosuccinate lyase). This compound, thanks to the flux
predicted to be carried in this phase by reaction R01049,
leads to the synthesis of 5-Phospho-alpha-D-ribose 1-
diphosphate from D-Ribose 5-phosphate.

Furthermore, the switch to the utilization of His as the
sole C-source is predicted to be responsible for the stop
of the catabolic routes of the previously degraded amino
acids (e.g. Ala, Leu, Lys, Gly, Phe, Ile, Tyr) and, conse-
quently, in the stop of the production of important cellu-
lar intermediates (such as 2-oxoglutarate, fumarate).
According to our simulation, this causes the re-activation
of key metabolic reactions that cannot rely on many
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degradation intermediates as in the previous phase.
These include those belonging to the TCA cycle (e.g.
Isocitrate dehydrogenase and Fumarate hydratase,
R00268 and R01082, respectively) and purine metab-
olism (R01049, see before).

Finally, the reactions involved in the conversion (deg-
radation) of His into Glu (Formiminoglutamase, Imida-
zolonepropionase, Histidine ammonia-lyase, R02285,
R02288, R01168, respectively) are predicted to be turned
on following this final transition, allowing the produc-
tion of glutamate and, from these, all the major path-
ways found to carry flux also in phase P4 (Fig. 2b).

A sub-optimal objective function predicts alternative
fluxes distribution

It is worth noticing that all the simulations described up
to now were conducted under the FBA canonical assump-
tion of biomass optimality, i.e. assuming that all metabolic
fluxes in the cell are geared towards the production of bio-
mass in each moment of the growth curve. However, situ-
ations in which cells invest substantial resources in
alternative metabolic processes at the expense of optimal
growth rates have been analysed and described quite ex-
tensively. According to this scenario, cells may invest sub-
stantial (energy) resources in a specific metabolic process
at the expense of optimal growth, this being reflected by
sub-optimal flux distributions [12, 29, 30].

This situation might be observed, for example, when
microbes allocate energetic resources for anticipating
changing environmental conditions at the expense of op-
timal growth [31]. Also, when cells are exposed to nutri-
ents fluctuations they might respond with a minimal
metabolic adjustment, to avoid the waste of protein syn-
thesis and degradation necessary to reprogram the entire
metabolic network and to simultaneously achieve two
objectives, i.e. rapid and minimal adjustments. This lat-
ter scenario may indeed resemble the actual competition
for nutrients that emerges in natural environments and
that has been proposed to be reflected by the sequential
uptake of nutrients [32].

To explore this alternative scenario, we have
accounted for the possibility that the PATAC125 biomass
objective function could not be fully optimized but, in-
stead, in a near-optimal or sub-optimal state. Since FBA
classically assumes the optimization of the biomass pro-
duction flux to compute the most likely fluxes distribu-
tion inside the cell, it cannot per se provide hints
concerning alternative (sub-optimal) fluxes distribution.
For this reason, we have used MOMA [18] to study the
hypothetical fluxes distribution when minimizing the
metabolic adjustments required at each (metabolic) tran-
sition of the entire growth period analysed (“nutritional-
MOMA”, see Methods). This differs from the canonical
formulation of MOMA in which the effects of a gene
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knock-out are evaluated by providing an approximate
solution for a sub-optimal growth flux state (the mutant
strain), nearest in flux distribution to the unperturbed
state (wild type strain).

Applying this modelling strategy to our study case re-
vealed that the choice of the optimization criterion (i.e.
biomass vs. minimal adjustment following nutrients-
switching) has a great influence on the predicted fluxes
distribution, both in terms of the fraction of the entire
network required to sustain PATAC125 growth and on
the set of active pathways.

First, a higher number of active reactions compared to
the original FBA predictions were predicted for each of
the growth phases, when the implemented nutritional-
MOMA approach was used (Fig. 3 and Additional file 2:
Figure S2). This gap is even more evident in the first
seven growth phases, whereas the difference between
the two approaches becomes negligible in the last three
phases. However, despite the two approaches predict a
similar number of active reactions in these two final
time points, the two sets of reactions appear to be quite
different (as shown by the number of shared reactions
reported in Fig. 3).

The fact that nutritional-MOMA always predicts a
higher number of active reactions might be explained by
considering that to optimize the model using FBA identi-
fies the flux distribution maximizing the objective function
(biomass optimization), regardless of the metabolic states
in the previous time steps. Conversely, nutritional-
MOMA will seek for the solution (fluxes distribution) that
is closer to the one of each previous time step (i.e., the
previous nutritional condition). Therefore, the results of
MOMA will likely include a higher number of reactions in
the model to produce biomass, since it will minimize the

600-
400-
200-

o-

P2 Pa P4 Ps Pe P7 Pe
Growth phase

. nutritional-MOMA
. FBA

Shared

Flux-carrying reactions

PO P10

Fig. 3 Comparison between nutritiona-MOMA and FBA. Here we
show the number of predicted flux carrying reactions in each growth
phase for FBA (red) and nutritional-MOMA (blue) optimization on the
PhTAC125 model. Also, the number of shared reactions identified by
the two approaches is shown (in yellow)
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changes (i.e. the active reactions) with respect to the previ-
ous time steps, while activating novel reactions to cope
with the changes in the nutrient composition.

We then investigated whether these differences in the
sets of predicted flux-carrying (active) reactions between
the two approaches were involved in specific pathways
or, rather, spanned over a larger part of the entire
PHTAC125 metabolic network. Thus, for each metabolic
pathway in the model, we computed the fraction of reac-
tions predicted to be active by nutritional-MOMA, FBA
and both methods (Fig. 4). Results of this analysis re-
vealed that the choice of the optimization method im-
pacts the predicted fluxes distribution not only for what
concerns the activity of the peripheral (degradation)
pathways, i.e. those pathways that start the degradation
of amino acids and then tunnel them into the central
metabolism. Indeed, we found many central processes
(e.g. TCA cycle, Glycolysis, Fatty acids metabolism) in
which the proportion of active reactions is (more or less)
specific for each of the two optimization strategy (Fig. 4).
Notably, for the first six growth phases, most of the re-
actions predicted to be active under FBA optimizations
(and previously described) are carrying flux also adopt-
ing the nutritional-MOMA approach. In some cases,
however, entire pathways are differently predicted to be
active/inactive by the two approaches (e.g. glutathione
and tyrosine metabolism in growth phase 3 (Fig. 4). The
last two phases of the growth nutritional-MOMA and
FBA predict a similar number of active reactions but,
from a functional viewpoint, deep differences exist in
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that entire pathways are predicted to be active only
under a specific optimization method (either nutritional-
MOMA or FBA, Fig. 4).

To summarize, using our MOMA-based approach we
identified a higher number of reactions predicted to be
carrying flux in respect to the FBA-based optimization.
The nutritiona- MOMA approach predicted larger active
metabolic networks throughout the analysed phases pos-
sessing, on average, about 150 flux-carrying reactions
more than the one simulated with FBA. Furthermore, des-
pite most of the active reactions identified through FBA
were also identified by the nutritional- MOMA approach,
in some cases these predictions differed significantly from
a functional viewpoint (as shown in Fig. 5). At present,
further experimental evidences are needed to shed light
on the real number and function of reactions used by
PHTACI125 in each time point (i.e. using each particular
nutrients set) and, in other words, to infer how far from
the actual fluxes distribution our in silico predictions are.

Flux correlation analysis identifies functionally associated
genes

In this section we analyse more in depth the flux matrix
(schematically represented by the heatmap of Fig. 1b).
This matrix contains the FBA-predicted flux of the reac-
tions (rows) for each of the time steps (columns). As
such, it allows capturing the co-variation of reactions in
the model; in other words, we identified as paired reac-
tions those whose predicted fluxes displayed a similar
trend throughout the time points. These, in turn, may
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Fig. 4 Functional differences between nutritional-MOMA and FBA predictions. Here we show the proportion of reactions predicted to be active
by nutritional-MOMA (blue), FBA (red) and both methods (yellow) for each main functional category represented in the PATAC125 reconstruction
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metabolic process of each reaction is also reported

Fig. 5 Flux correlation analysis. Heatmap accounting for the Pearson correlation of all the flux difference vectors across all the time points. The
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represent functional partners in the cell and/or may be-
long to the same metabolic pathway/module.

We represented co-varying reactions (sharing flux
Pearson correlation > 0.7, see Methods) in the form of a
heatmap as shown in Fig. 5. In most cases, the small
clusters of reactions showing high Pearson correlation
values are involved in the same metabolic process. This
is compatible with a scenario in which, following a nutri-
ent(s) switch, entire metabolic pathways are activated (or
deactivated) to face the novel environmental condition
(as shown in the previous section). Nevertheless, group-
ing reactions with a lower but still significant threshold
(i.e. down to 0.7), clusters start to embed reactions be-
longing to other metabolic processes. These, in turn,
may represent previously undetected functional associa-
tions between genes and/or entire pathways.

Overall, our method led to the identified 28 different
clusters Fig. 6a, comprising 203 reactions. According to
the GPR of our model, these reactions were encoded by
223 genes.

We analysed these clusters to answer two biological
questions, namely whether the embedded genes i) are de
facto functionally related and ii) share conserved up-
stream motifs (which, in turn, would suggest a common
regulation mechanism).

Groups of co-varying genes display higher combined
evidence scores
To address the first point, we exploited the combined
evidence score provided by the STRING database. As
shown in Fig. 6b, the median of the combined score for
the genes embedded in the same cluster is, in most
cases, well above the median of all the possible combina-
tions of the genes embedded in the model, suggesting
that flux coupling in the model occurs among bona fide
functional patterns. Accordingly, this result corroborates
the capability of our modelling framework to identify
functional metabolic modules and the functional associ-
ations of their encoding genes in PATAC125. Interest-
ingly, in some cases apparently un-related genes
(showing low combined score values in respect to the
other genes) seem to be embedded in the clusters.
Despite these instances may represent erroneous pre-
dictions of our model, they might also suggest the
presence of still undetected functional associations
and/or the use of common pools of chemical inter-
mediates by the corresponding reactions (see below).
We here present a description of the functional rela-
tionships retrieved for genes belonging embedded in
three of these clusters (Fig. 7). A detailed list of the reac-
tions and genes embedded in all the clusters is provided
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as Additional file 3 to allow further experimentation simultaneous presence of all the corresponding
and/or in silico analyses. genes is required to carry flux of each of these
reactions. The functional association network
1. Cluster 23. This cluster is composed of seven obtained probing the STRING database with all the

reactions encoded by 19 genes. Three of these genes of Cluster 23 is reported in Fig. 7a. Genes
reactions are predicted to be catalysed by enzymes encoding proteins involved in the same enzymatic
encoded by multiple genes, i.e. cytochrome-c oxidase reaction appear to be highly interconnected among
encoded by PSHAa2869-71, Ferrocytochrome- themselves with evidences that included co-
coxygen oxidoreductase encoded by PSHAa1842-45 expression, gene fusions, and experimental evidences
and ATP synthase encoded by PSHAa3007-15. (see the sub-clusters in the network of Fig. 7a). This

According to the GPR rules of our model, the is not surprising, as it might be expected that genes
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encoding proteins that participate in the same
enzymatic complex should display coupled regulation
and co-occurrence patterns in other organisms. Links,
however, are also found among members of different
enzymatic complexes, consistent with the fact that
these reactions belong to the overall process of
oxidative phosphorylation. The ndk gene (encoding a
nucleoside diphosphate kinase) is also found
connected to one of the sub-cluster Fig. 7a). This
protein plays a major role in the synthesis of
nucleoside triphosphates and is involved in purine
and pyrimidine metabolism. The coupling of this
reaction’s flux with those belonging to oxidative
phosphorylation can thus be explained by their
common final products (nucleotide triphosphates
and ATP for Ndk and pentose phosphate pathway,
respectively), as optimizing the model for biomass
production would probably force the flux through
both these pathways. Finally, the fact that orthologs of
these genes are found to be co-expressed and located
in physical proximity in other (related) genomes

(Fig. 7b and c, respectively) support the functional
association predicted by our model.

2. Cluster 11. We found eight reactions (encoded by 10

genes) embedded in this cluster (Fig. 7d), involved in
the following metabolic pathways: Glycerolipid
metabolism, Pentose phosphate pathway and
Glycolysis. Half of the reactions of this cluster are
involved in the conversion of glycerol into glycerate
3-pshosphate that, in turn, is connected to glycolysis/
gluconeogenesis. As shown by the STRING analysis
output, many evidences exist of a functional association
among the genes of this cluster, in most cases including
instances of co-expression and physical proximity

Fig. 7e and f, respectively). Two genes of the cluster
remained disconnected in the STRING network
(PSHA20190 and PSHAbO551), both encoding a
glycerol kinase and assigned to the same reaction
in our metabolic reconstruction (R00847, encoding
the transformation of glycerol into sn-Glycerol
3-phosphate). Accordingly, despite no previously
detected functional associations were retrieved
between these two genes and the other embedded
in the same cluster, their presence could be
accounted for by the use of common precursors
(i.e. glycerol) with the reactions encoded by



Fondi et al. BMC Genomics (2016) 17:970

Cluster 11 genes. Indeed, fluctuations in the
availability of such compound (and its derivatives)
during the simulated growth transitions explains
the coupling of such reactions.

3. Cluster 2. This cluster embeds nine reactions
encoded by 10 genes involved in Arg biosynthetic
pathway argAH, B, C, D, E and in the metabolism of
Pro (putA and Orn cyclodeaminase (PSHAb0543)).
The STRING-based evidence network in Fig. 7g
revealed hints on the functional associations existing
among the genes of the cluster including co-
occurrence of orthologs of these genes in other
(closely related) genomes, as well as co-expression
and conserved genomic neighbourhoods Fig. 7h and
i, respectively). The genes embedded in this cluster
encode enzymes involved in the the formation of
Arg and Pro from Glu, using Asp and then Orn as
intermediates. These reactions appear to carry flux
especially in the first three phases of the growth (P1
to P3), that is when aspartate (or Asn from which
aspartate can be easily obtained) is present in the
medium. Afterwards, a decrease in the flux carried
by these reactions is observed (the peak in the
“Cluster 2” panel of Fig. 7), followed by an overall
constant flux trend in the next transitions. Accordingly,
the correlation among the fluxes of these reactions
could be explained by the need to turn these
pathways “on” (or “off”) when glutamate and
required intermediates are present (or absent) in
the growth medium, respectively. A gene encoding
an acetyl-CoA synthetase (acsA) is also embedded
in this cluster, despite it has not connections with
arginine and proline metabolism-related genes.
However, its presence might reflect the necessity
to synthesize acetyl-CoA from acetate during the
first four growth phases identified, i.e. in the ab-
sence of ketogenic amino acids. Once PATAC125
starts metabolising the second set of amino acids,
acetyl-CoA can be obtained from the degradation
of specific amino acids (e.g. Leu, Val, Ile) and
thus the reaction encoded by acsA (PSHAa0698)
is predicted to stop carrying flux.

Analysis of upstream sequences identifies putative
regulation mechanisms

In the previous section we reported a list of gene sets
which are, presumably, functional partners and whose
activity is concerted during the different metabolic
switches. If this holds, it is reasonable to hypothesize
that some of these clusters might embed co-regulated
genes that, in turn, may share conserved upstream mo-
tifs (implying for common transcriptional regulatory
mechanisms). Thus, to address this point we applied an
ad hoc computational pipeline (implementing tools from
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the MEME suite) to analyse the upstream regions of the
genes (or arrays of genes in case of operons) embedded
in each cluster. This resulted in the identification of mo-
tifs that are shared in the upstream regions of all the
genes for each cluster. Upstream regions were identified
using DOOR (Database of prOkariotic OpeRons) [28].
These have been annotated using three different motif
databases (i.e. CollecTF [33], PRODORIC [34] and
RegTransBase [35]), to identify motifs with putatively re-
lated functions and that might be recognized by putatively
related transcription factors (TFs). The whole set of anno-
tations has been manually curated in a conservative way
to obtain high-confidence motif annotations. Finally, the
obtained putative TFs have been cross-validated by com-
paring their associated functions with those related to the
genes embedded in the clusters.

The whole set of data related to the identified motifs
and their annotations (before manual curation), for each
database, is provided as Additional file 4. On average, we
identified for each cluster a large number of annotations
according to the different databases (10.9, 8.9 and 29.4
annotations for CollecTE, PRODORIC and RegTrans-
Base, respectively). However, after manual curation, the
number of annotations was reduced to 31, divided in 15
clusters (2.1 on average). Most of the remaining annota-
tions (74%) come from Prodoric, while the other databases
have a minor contribution of high-quality annotations
(16% CollecTF; 10% RegTransBase).

For each cluster, we eventually compared the putative
TFs with the functions of the genes embedded in the
cluster, using both literature information and the
RegPrecise database. With few exceptions that will be
described in details, we found no correlation between
the putative TFs and the regulation/biological function
associated to the genes embedded in the clusters, sug-
gesting that the majority of the co-varying groups share
a common regulation but are regulated by a number of
different TFs. We are describing below the clusters for
which we found agreement between the predicted TFs
and the function of the embedded genes (Table 1).

1. Cluster 2. This cluster, as described previously, is
involved in the metabolism of Arg and Pro. A search
on the RegPrecise regulon database [25] revealed
that, at least in the case of Arg, the genes embedded
in the cluster of Fig. 7g are part of a common regulon
(ArgR regulon). The only exception is represented by
argD which, according to the RegPrecise database is
not part of the arginine regulon in PATAC125, and
the other genes involved in the biosynthesis of Pro.
However, both the computational approach described
above and a manual search for putative transcription
factor binding sites upstream of these genes detected
the already known conserved motif shared by the
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Table 1 Main features of the putatively co-regulated clusters found during flux-correlation analysis. In this table, for each cluster, we
report its number, the name of the regulator identified, the genes embedded in it and the conserved motif found upstream of its genes

Cluster name Motif name Genes Weblogo
Cluster 2 ArgR PSHAa0194, PSHAa0698,PSHAa2175, PSHAa2287, PSHAa2290, i
PSHAa2291, PSHAa2292, PSHAb0333, PSHAD0428, PSHAD0543 "
LTvadTTvev 111 1m4
Cluster 3 CcpA PSHAa0189, PSHAa0609, PSHAa0740, PSHAa1167, PSHAa1648, *
PSHAa1649, PSHAa1650, PSHAa1651, PSHAa2167, PSHAbO0S2,
PSHAD0345
21
(LA A S B
Cluster 6 GalR PSHAa0603, PSHAa0871, PSHAa 1364, PSHAa1767, PSHAa2301, 3
PSHADb0295
21

other arg genes of the regulon (Table 1). This suggests
that the all the genes are part of the arginine regulon
in PHITAC125. More in general, this finding confirms
that, starting from our modelling outcomes it is
possible to infer biologically consistent patterns of
gene co-expression.

2. Cluster 3. This cluster includes genes from the sdh
operon (sdhABCD), encoding the succinate
dehydrogenases system, as well as other enzymes
involved in energy conversion, such as other
dehydrogenases (glpD, bcd) and other enzymes with
a role in nucleotide modifications (hpt, ushA and
mazG). Our computational pipeline predicted two
different regulator genes associated with this cluster,
i.e. ccpA and psrA (Table 1). These regulators
encode proteins are involved in the carbon and fatty
acid metabolism, respectively. Comparing the
functional role of the TFs with the cluster
annotation, we can easily relate the set of genes
encoding dehydrogenases with ccpA and psrA, which
is also confirmed by RegPrecise database. The other
three genes are indirectly involved in the oxidative
metabolism, in that they are involved in the
metabolism of FAD.

3. Cluster 6. This cluster includes five genes, with three
of them involved in the synthesis of folate (fo/P and
two copies of folK), while the remaining two encode
a galactokinase (ga/K) and a galactose-1-epimerase
(galM). All these genes are involved in the metabol-
ism of nucleotides, since folate is necessary to
synthesize TDP sugars from UDP, while the other
genes encode enzymes that are involved in the syn-
thesis of UDP. The analysis of the upstream se-
quence of these genes revealed a conserved motif
similar to the GalR binding site, thus suggesting that
these genes are being co-regulated (Table 1).

Conclusions

Here we have used constraint-based metabolic modelling
to provide a time-resolved, systems-level scheme of
PHTACI125 metabolic re-programming following nutri-
ents switching in a nutritionally complex medium. Such
features have been analysed using the metabolic model
and growth data of the Antarctic bacteria P. haloplanktis
TAC125. Previous experimental tests revealed a number
of nutrients switches in this microorganism when grown
in a complex medium [14], consistent with the fact that
this Antarctic organism is adapted to fast growth in a
fairly rich (but probably inconstant and highly competi-
tive) environment (plankton debris) [36]. Indeed, se-
quential uptake of nutrients is thought to emerge when
competition for nutrients is present [32].

Our modelling framework identified the central phase
of the growth curve as a probable key reprogramming
point, with more than 400 reactions predicted to adjust
their flux in these time points. This corresponds (in vivo)
to the exhaustion of most of the first metabolized C
sources (Ser, Thr, Asn and Asp, most likely the preferred
ones), a time step in which only Glu is used as the sole
C source, and the final part of the growth curve in which
PHTAC125 stops using Glu and relies on a completely
different set of nutrients. Our model highlights the oc-
currence of such an adaption and the need for repro-
gramming a large set of reactions to maintain an
efficient metabolic network. A similar scenario is
observed at the end of the growth, when His is used as
the sole C source. This transition is the most demand-
ing, requiring a change in the predicted flux of almost
450 reactions.

Taken together, our simulation indicates the presence
of an almost constant number of reactions (501, on aver-
age) that are required to sustain life across all the time
points examined. Interestingly, this set of reactions
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resembles, in percentage, the size of the minimal meta-
bolic network predicted to be active in E. coli [37] (37%
and 28% of the reactions embedded in the corresponding
models).

To maintain such a constant trend, however, a deep
reprogramming of the whole cellular metabolism ap-
pears to be necessary during the entire growth period, as
up to more than 400 biochemical reaction, display at
least one change in the predicted carried flux. According
to our simulations, these changes do not only involve
peripheral metabolic pathways (e.g. amino acid catabol-
ism) but also a number of central pathways, e.g. TCA
cycle, glycolysis and PP pathway. TCA cycle, for ex-
ample, displays an increasing trend in the number of
flux-carrying reactions parallel to the exhaustion (in the
medium) of the amino acids whose degradation provide
key TCA cycle intermediates. This is in line with the as-
sumption that fluxes distribution within the cell are in-
fluenced by the entry-point of the a given C-source into
the metabolic network [38]. Indeed, the C sources pro-
vided in our simulations have different distances from
the PHTACI125 central metabolism (e.g. TCA cycle) and
thus are expected to cause a re-wiring of an important
fraction of the network.

This, in turn, suggests the presence of an efficient
metabolic reprogramming machinery (that includes the
regulation of the expression of the corresponding genes)
to continuously and promptly adapt to this nutritionally
changing environment and/or to the exhaustion of the
preferred carbon source(s). Modelling and dividing the
growth curve in discrete time points has allowed us to
infer common trends in the predicted flux patterns of
the reactions of the model. We have shown that such
coupled patterns likely correspond to reactions and en-
zymes that work in a concerted fashion and that, in
some cases, represent functional partners and/or be
encoded by co-regulated genes. The modelling frame-
work we have set up here has allowed gaining in-
sights on the (co-)regulation of PATAC125 metabolic
genes and, as in the case of the Arg regulon, to ex-
pand the current knowledge on commonly regulated
genes. Furthermore, we have assembled a dataset of
putatively co-regulated genes that can be used for fur-
ther manual curation and/or subject to experimental
validation.

Despite FBA-based predictions led to the identification
of biologically consistent trends, the nutritional-MOMA
approach we have implemented here suggests that care
needs to be taken when choosing the objective function
for constraint-based metabolic modelling. Indeed, when
we accounted for the possibility that cells could be in a
near-optimal or sub-optimal state (i.e. minimizing the
reprogramming required at each nutritional transition)
the two modelling frameworks predicted quite a different
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topological and functional reprogramming of PATAC125
cells. As it is currently not possible to unambiguously
discern among these two alternative solutions provided by
FBA and nutritional-MOMA, further experimental evi-
dence (e.g. time-resolved transcriptomics) of PATAC125
cells grown in complex medium will allow deriving a
clearer picture of those pathways that are really active
during the growth and, consequently, which of the two
approaches outperforms the other.
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