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Abstract
Evolutionary game theory is a powerful framework for studying evolution in populations of

interacting individuals. A common assumption in evolutionary game theory is that interac-

tions are symmetric, which means that the players are distinguished by only their strategies.

In nature, however, the microscopic interactions between players are nearly always asym-

metric due to environmental effects, differing baseline characteristics, and other possible

sources of heterogeneity. To model these phenomena, we introduce into evolutionary

game theory two broad classes of asymmetric interactions: ecological and genotypic. Eco-

logical asymmetry results from variation in the environments of the players, while genotypic

asymmetry is a consequence of the players having differing baseline genotypes. We

develop a theory of these forms of asymmetry for games in structured populations and use

the classical social dilemmas, the Prisoner’s Dilemma and the Snowdrift Game, for illustra-

tions. Interestingly, asymmetric games reveal essential differences between models of

genetic evolution based on reproduction and models of cultural evolution based on imitation

that are not apparent in symmetric games.

Author Summary

Biological interactions, even between members of the same species, are almost always
asymmetric due to differences in size, access to resources, or past interactions. However,
classical game-theoretical models of evolution fail to account for sources of asymmetry in
a comprehensive manner. Here, we extend the theory of evolutionary games to two general
classes of asymmetry arising from environmental variation and individual differences,
covering much of the heterogeneity observed in nature. If selection is weak, evolutionary
processes based on asymmetric interactions behave macroscopically like symmetric games
with payoffs that may depend on the resource distribution in the population or its struc-
ture. Asymmetry uncovers differences between genetic and cultural evolution that are not
apparent when interactions are symmetric.

Introduction
Evolutionary game theory has been used extensively to study the evolution of cooperation in
social dilemmas [1–3]. A social dilemma is typically modeled as a game with two strategies,
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cooperate (C) and defect (D), whose payoffs for pairwise interactions are defined by a matrix of
the form

C D

C

D

R;R S;T

T; S P; P

0
@

1
A ð1Þ

[4, 5]. For a focal player using a strategy on the left-hand side of this matrix against an oppo-
nent using a strategy on the top of the matrix, the first (resp. second) coordinate of the corre-
sponding entry of this matrix is the payoff to the focal player (resp. opponent). That is, a
cooperator receives R when facing another cooperator and S when facing a defector; a defector
receives T when facing a cooperator and P when facing another defector. Since the same argu-
ment applies to the opponent, the game defined by (Eq 1) is symmetric. If defection pays more
than cooperation when the opponent is a cooperator (T> R), but the payoff for mutual coop-
eration is greater than the payoff for mutual defection (R> P), then a social dilemma [6, 7]
arises from this game due to the conflict of interest between the individual and the group (or
pair). The nature of this social dilemma depends on the ordering of R, S, T, and P. Biologically,
the most important rankings are given by the Prisoner’s Dilemma (T> R> P> S) and the
Snowdrift Game (T> R> S> P) [4, 7–10].

Since matrix (Eq 1) defines a symmetric game, any two players using the same strategy are
indistinguishable for the purpose of calculating payoffs. In nature, however, asymmetry fre-
quently arises in interspecies interactions such as parasitic or symbiotic relationships [4]. Inter-
actions between subpopulations, such as in Dawkins’ Battle of the Sexes Game [11–14], also
give rise to asymmetry that cannot be modeled by the symmetric matrix (Eq 1). Even intraspe-
cies interactions are essentially always asymmetric: (i) phenotypic variations such as size,
strength, speed, wealth, or intellectual capabilities; (ii) differences in access to and availability of
environmental resources; or (iii) each individual’s history of past interactions, all affect the inter-
acting individuals differently and result in asymmetric payoffs. The winner-loser effect, for
example, is a well-studied example of effects of previous encounters on future interactions and
has been reported across taxa [4, 15], including even mollusks [16, 17]. Asymmetry may also
result from the assignment of social roles [18–20], such as the roles of “parent” and “offspring”
[21]: cooperation may be tied to individual energy or strength, for example, which is, in turn,
determined by a player’s role. In the realm of continuous strategies, adaptive dynamics has been
used to study asymmetric competition, which applies to the resource consumption of plants, for
instance [22–24]. In social dilemmas containing many cooperators, accumulated benefits may
be synergistically enhanced (or discounted) in a way that depends on who or where the players
are [7], thereby making larger group interactions asymmetric. To model such interactions using
evolutionary game theory, the payoff matrix must reflect the asymmetry.

In the Donation Game, a cooperator pays a cost, c, to deliver a benefit, b, to the opponent,
while a defector pays no cost and provides no benefit [25]. In terms of matrix (Eq 1), this game
satisfies R = b − c, S = −c, T = b, and P = 0. Provided b and c are positive, mutual defection is
the only Nash equilibrium. If b> c, then this game defines a Prisoner’s Dilemma. Perhaps the
simplest way to modify this game to account for possible sources of asymmetry is to allow for
each pair of players to have a distinct payoff matrix; that is, the payoff matrix for player i
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against player j in the Donation Game is

C D

Mij :¼
C

D

bj � ci; bi � cj �ci; bi

bj;�cj 0; 0

0
@

1
A ð2Þ

for some bi, bj, ci, and cj. If player i cooperates, then this player donates bi to his or her oppo-
nent and incurs a cost of ci for doing so. As before, defectors provide no benefit and pay no
cost. The index i could refer to a baseline trait of the player, the player’s location, his or her his-
tory of past interactions, motivation [26], or any other non-strategy characteristic that distin-
guishes one player from another.

Games based on matrices of the form (Eq 2), with payoffs for both players in each entry of
the matrix, are sometimes called bimatrix games. Although bimatrix games have appeared in
the context of evolutionary dynamics [14, 20, 27], most of the focus on these games has been in
the setting of classical game theory and economics [see 28] where “matrix game” generally
means “bimatrix game.” Bimatrix games may be used to model classical asymmetric interac-
tions such as those arising from sexual asymmetry in the Battle of the Sexes Game [29]. The
asymmetric, four-strategy Hawk-Dove Game of [4] consisting of the strategies Hawk, Dove,
Bourgeois, and anti-Bourgeois may also be framed as a (4 × 4) bimatrix game [see 30]. Sym-
metric matrix games, such as (Eq 1), are special cases of bimatrix games. We explore here the
ways in which bimatrix games can be incorporated into evolutionary dynamics and used to
model natural asymmetries in biological populations.

We treat two particular forms of asymmetry: ecological and genotypic. Ecological asymmetry
is derived from the locations of the players, whereas genotypic asymmetry is based on the play-
ers themselves. With ecological asymmetry,Mij is the payoff matrix for a player at location i
against a player at location j. Since the payoffs depend on the locations of the players, this form
of asymmetry requires a structured population. Ecological asymmetry is a natural consider-
ation in evolutionary dynamics since it ties strategy success to the environment. In the Dona-
tion Game, for instance, cooperators might be donating goods or services, but the costs and
benefits may depend on the environmental conditions, i.e. the location of the donor.

On the other hand, players might instead differ in ability or strength, and “strong” coopera-
tors might contribute greater benefits (or incur lower costs) than “weak” cooperators. This vari-
ation results in genotypic asymmetry, where each player has a baseline genotype (strength) and
a strategy (C or D). This form of asymmetry turns out to be subtler than it seems at first glance,
however, since genotypes are generally represented by strategies in evolutionary game theory [4,
31]. In particular, it might seem that the genotype and strategy of a player could be combined
into a single composite strategy and that the symmetric game based on these composite strate-
gies could replace the original asymmetric game. As it happens, whether genotypic asymmetry
can be resolved by a symmetric game depends on the details of the evolutionary process.

Classically, evolutionary games were studied in infinite populations via replicator dynamics
[32], and more recently these games have been considered in finite populations [33, 34].
Because every biological population is finite, we focus on finite populations (which, for techni-
cal reasons, we assume to be large). Since ecological asymmetry requires distinguishing differ-
ent locations within the population, we assume that the population is structured and that a
network defines the structure. Network-structured populations have received a considerable
amount of attention in evolutionary game theory and provide a natural setting in which to
study social dilemmas [1, 3, 35–38]. Compared to well-mixed populations, in which each
player interacts with every other player, networks can restrict the interactions that occur within
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the population by specifying which players are “neighbors,” i.e. share a link. We represent the
links among the N players in the population using an adjacency matrix, (wij)1 ⩽ i, j ⩽ N, which is
defined by letting wij = 1 if there is a link from vertex i to vertex j and 0 otherwise (and satisfies
wij = wji for each i and j).

In an evolutionary game, the state of a population of players is defined by specifying the
strategy of each player. Each player interacts with all of his or her neighbors. The total payoff to
a player is multiplied by a selection intensity, β ⩾ 0, and then converted into fitness (see Meth-
ods). Once each player is assigned a fitness, an update rule is used to determine the state of the
population at the next time step [39]. For example, with a birth-death update rule, a player is
chosen from the population for reproduction with probability proportional to relative fitness.
A neighbor of the reproducing player is then randomly chosen for death, and the offspring,
who inherits the strategy of the parent, fills the vacancy. This process is a modification of the
Moran process [40], adapted to allow for (i) frequency-dependent fitnesses and (ii) population
structures that are not necessarily well mixed. The order of birth and death could also be
reversed to get a death-birth update rule [1]. In this rule, death occurs at random and the
neighbors of the deceased compete to reproduce in order to fill the vacancy. These two rules
result in the update of a single strategy in each time step, but one could consider other rules,
such as Wright-Fisher updating, in which all of the strategies are revised in each generation
[41]. The rules mentioned to this point define strategy updates via reproduction and inheri-
tance; as such, we refer to them as genetic update rules.

Another popular class of update rules is based on revisions to the existing players’ strategy
choices. We refer to rules falling into this class as cultural update rules. Examples include imita-
tion updating, in which a player is selected at random to evaluate his or her strategy and then
probabilistically compares this strategy to those of his or her neighbors [1]. A more localized
version of this update rule is known as pairwise comparison updating, in which a player
chooses a random neighbor for comparison rather than looking at the entire neighborhood
[42, 43]. Under best response dynamics, an individual adopts the strategy that performs best
given the current strategies of his or her neighbors [44]. In each of these cultural processes, the
strategy of a player can change, but the underlying genotype is always the same, which suggests
that baseline genotype and strategy need to be treated separately.

Genotypic asymmetry needs to be handled more carefully if the update rule is genetic since
the nature of genotype transmission affects the dynamics of the process. In contrast to cultural
processes, the genotype and strategy of a player at a given location may both change if the
update rule is genetic: genotype may be inherited but not imitated. We will see that this prop-
erty results in cultural and genetic processes behaving completely differently in the presence of
genotypic asymmetry. Phenotypemay have both genetic and environmental components [45,
46], and after treating the genetic (genotypic) and environmental components separately, these
two forms of asymmetry may be combined in order to get a model in which the asymmetry is
derived from varying baseline phenotypes. Thus, with a theory of both ecological asymmetry
and genotypic asymmetry based on inherited genotypes, one can account for more complicated
forms of asymmetry appearing in biological populations.

Results

Ecological asymmetry
Here we develop a framework for ecologically asymmetric games in which the payoffs depend
on the locations of the players as well as their strategies. We assume that all of the players have
the same set of strategies (or “actions”) available to them, {A1, . . ., An}. The payoff matrix for a
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player at vertex i against a player at vertex j is

A1 A2 � � � An

Mij ¼

A1

A2

..

.

An

aij11; a
ji
11 aij12; a

ji
21 � � � aij1n; a

ji
n1

aij21; a
ji
12 aij22; a

ji
22 � � � aij2n; a

ji
n2

..

. ..
. . .

. ..
.

aijn1; a
ji
1n aijn2; a

ji
2n � � � aijnn; a

ji
nn

0
BBBBBBBBBB@

1
CCCCCCCCCCA

: ð3Þ

That is, a player at vertex i using strategy Ar against an opponent at vertex j using strategy As

realizes a payoff of aijrs, whereas his opponent receives a
ji
sr . Since a

ij
rs depends on i and j, these

payoff matrices capture the asymmetry of the game.
In the simpler setting of symmetric games, the pair approximation method has been used

successfully to describe the dynamics of evolutionary processes on networks [1, 36, 47–49]. For
each r 2 {1, . . ., n}, this method approximates the frequency of strategy Ar, which we denote by
pr, using the frequencies of strategy pairs in the population. Pair approximation is expected to
be accurate on large random regular networks [1, 48], so we assume that the network is regular
(of degree k> 2) and that N is sufficiently large. (For k = 2, the network is just a cycle, which
we do not treat here.) We also take β� 1, meaning that selection is weak, which results in a
separation of timescales: the local configurations equilibrate quickly, while the global strategy
frequencies change much more slowly. This separation allows us to get an explicit expression
for the expected change, E [Δpr], in the frequency of strategy Ar for each r. Incidentally, weak
selection happens to be quite reasonable from a biological perspective since each trait is
expected to have only a small effect on the overall fitness of a player [50–52].

Interestingly, for two genetic and two cultural update rules, weak selection reduces ecologi-
cal asymmetry to a symmetric game derived from the spatial average of the payoff matrices:

Theorem 1. In the limit of weak selection, the dynamics of the ecologically asymmetric
death-birth, birth-death, imitation, and pairwise comparison processes on a large, regular net-
work may be approximated by the dynamics of a symmetric game with the same update rule

and payoff matrixM :¼ 1
kN

PN
i;j¼1 wijM

ij, i.e.

A1 A2 � � � An

M ¼

A1

A2

..

.

An

a11; a11 a12; a21 � � � a1n; an1

a21; a12 a22; a22 � � � a2n; an2

..

. ..
. . .

. ..
.

an1; a1n an2; a2n � � � ann; ann

0
BBBBBBBBBB@

1
CCCCCCCCCCA

; ð4Þ

where ast :¼ 1
kN

PN
i;j¼1 wija

ij
st for each s and t.

For a proof of Theorem 1, see Methods. In Methods, we derive explicit formulas for E [Δpr]
for each r (where pr is the frequency of strategy Ar and E [Δpr] is the expected change in pr in

one step of the process) and show that these expectations depend onM in the limit of weak
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selection. If we choose an appropriate time scale and make the approximation

_pr≔
dpr
dt

¼ E ½Dpr�
Dt

; ð5Þ

then the dynamics of an ecologically asymmetric process may also be described in terms of the
replicator equation (on graphs) of [36]: If � :¼Pn

s;t¼1 psptast , then

_pr ¼ pr
Xn
s¼1

ps ðars þ brsÞ � �

 !
; ð6Þ

where brs is a function ofM, k, and the update rule. (For each of the four processes, the explicit

expression for brs is provided in Methods.) The matrix brs

� �n
r;s¼1

accounts for local competition

resulting from the population structure [see 36]. In particular, the Ohtsuki-Nowak transform,

arsð Þnr;s¼1 ! ars þ brs

� �n
r;s¼1

; ð7Þ

which transforms the classical replicator equation into the replicator equation on graphs, also
applies to evolutionary games with ecological asymmetry.

Even though interactions are now governed by a symmetric game, Theorem 1 states that, in
general, the dynamics depend on the particular network configuration, (wij)1 ⩽ i, j ⩽ N; that is,

the symmetric payoffs defined byM still depend on the network structure, or, equivalently, on
the distribution of ecological resources within the population. However, somewhat surpris-
ingly, there is a broad class of games for which this dependence vanishes:

Definition 1. If aijrs ¼ xirs þ yjrs for each r and s, thenMij is called a spatially additive payoff
matrix. IfMij is spatially additive for each i and j, then the game is said to be spatially additive.

A game is spatially additive if the payoff for an interaction between any two members of the
population can be decomposed as a sum of two components, one from each player’s location.
Note that spatial additivity is different from the “equal gains from switching” property [53] in
that neither implies the other. However, spatial additivity is an analogue in the following sense:
if two players at different locations use the same strategy against a common opponent, then the
difference in these two players’ payoffs for this interaction is independent of the location of the
opponent. Interchanging “location” and “strategy,” one obtains the equal gains from switching
property. The importance of spatially additive games is due to the following corollary to Theo-
rem 1:

Corollary 1. IfMij is spatially additive for each i and j, then the expected change in the fre-
quency of strategy Ar, E [Δpr], is independent of (wij)1 ⩽ i, j ⩽ N for each r. In particular, the
dynamics of the process do not depend on the particular network configuration.

As an example, the asymmetric Donation Game is spatially additive and possesses the equal
gains from switching property, which greatly simplifies the analysis of its dynamics:

Example 1. (Donation Game with ecological asymmetry). The asymmetric Donation Game
with payoff matrices defined by Eq (2) is spatially additive and satisfies

C D

M ¼
C

D

b � c; b � c �c; b

b;�c 0; 0

0
@

1
A ; ð8Þ

where b ¼ 1
N

PN
i¼1 bi and c ¼ 1

N

PN
i¼1 ci. Therefore, the dynamics of the asymmetric game are

the same as those of its symmetric counterpart with benefit, b, and cost, c, regardless of
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network configuration or resource distribution. Under death-birth (resp. imitation) updating,

this result implies that cooperation is expected to increase if and only if b=c > k (resp.

b=c > kþ 2), where k is the degree of the (regular) network [1]. Fig 1(A) compares the pre-

dicted result obtained fromM to simulation data for imitation updating when benefit and cost
values are distributed according to Gaussian random variables.

Example 2. (Snowdrift Game with ecological asymmetry). In order to illustrate when Corol-
lary 1 fails, we turn to cooperation in the Snowdrift Game [8, 9]. In this game, two drivers find
themselves on either side of a snowdrift. If both cooperate in clearing the snowdrift, they share
the cost, c, equally, and both receive the benefit of being able to pass, b. If one player cooperates
and the other defects, both players receive b but the cooperator pays the full cost, c. If both
players defect, each receives no benefit and pays no cost. In order to incorporate ecological
asymmetry, we assume that the benefits are all the same since they are derived from being able
to pass in the absence of a snowdrift. On the other hand, the cost a player pays to clear the
snowdrift may depend on his or her location: the snowdrift may appear on an incline, for
example, in which case one player shovels with the gradient and the other player against it.
Moreover, when two cooperators meet, they might clear unequal shares of the snowdrift. Thus,
the payoff matrix for a player at location i against a player at location j should be of the form

C D

Mij aij
� �

≔
C

D

b� aijci; b� ajicj b� ci; b

b; b� cj 0; 0

0
@

1
A ; ð9Þ

Fig 1. Average change in the frequency of cooperators, DpC , as a function of the frequency of cooperators, pC, in (A) an asymmetric Donation
Game and (B) asymmetric Snowdrift Games. The update rules are (A) imitation and (B) death-birth, and each process has for a selection intensity β =
0.01. In both figures, the network is a random regular graph of sizeN = 500 and degree k = 3. In (A), benefits and costs of cooperation vary across vertices
according to a Gaussian distribution with mean 3.5, variance 1.0 for benefits and mean 0.5, variance 0.25 for costs. In (B), the benefit is b = 5.0 for all
vertices, and the costs are either low, c1 = 34/13, or high c2 = 70/13, which actually recovers the payoff ranking of the Prisoner’s Dilemma because c2 > b.
The costs are the same for all vertices (c1, blue and c2, green) or mixed at equal proportions (red). (B) confirms that the average change in cooperators in the
mixed Snowdrift Game/Prisoner’s Dilemma (red) may be obtained by averaging these changes for the Snowdrift Game (blue) and the Prisoner’s Dilemma
(green). The small, systematic deviations between simulation data and analytical predictions (solid lines) are explained in Methods (where it is also shown
that DpC is linear in β for β� 1).

doi:10.1371/journal.pcbi.1004349.g001
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where 0 ⩽ αij ⩽ 1 and αij+αji = 1 [54]. Intuitively, when two cooperators face one other, they
each begin to clear the snowdrift and stop once they meet; the quantity αij indicates the fraction
of the snowdrift a cooperator at location i clears before meeting the cooperator at location j. A
natural choice for αij is

aij ¼
cj

ci þ cj
; ð10Þ

which is the unique value that gives αij ci = αji cj for each i and j, ensuring that the game is fair,
i.e. that the cooperator with the higher cost clears a smaller portion of the snowdrift than the
one with the lower cost. Averaging the payoff to one cooperator against another over all possi-
ble locations gives

1

kN

XN
i;j¼1

wij b� aijci
� �

¼ b� 1

kN

XN
i;j¼1

wij

cicj
ci þ cj

 !
; ð11Þ

which is the upper-left entry ofM. In contrast, the remaining three entries ofM do not
depend on (wij)1 ⩽ i, j ⩽ N. Therefore, provided there are at least two locations with distinct cost
values, the dynamics of an evolutionary process depend on the particular network configura-
tion (Theorem 1). This network dependence is illustrated in Fig 2.

Suppose now that we set αij � 1/2 to model ecological asymmetry in the Snowdrift Game;
that is, if two cooperators meet, they each clear exactly half of the snowdrift. If there are two
cost values in the population, c1 and c2, with c1 < b< c2 < 2b, then a player who incurs a cost
of c1 finds it beneficial to cooperate against a defector, but a player who incurs a cost of c2

Fig 2. Average change in the frequency of cooperators, DpC , as a function of the frequency of
cooperators, pC, for a spatially non-additive Snowdrift Game, Eq (9), with selection intensity β = 0.01.
The blue and green data are obtained using pairwise comparison updating and differ only in the configuration
of the underlying network, which in both cases is a random regular graph of sizeN = 500 and degree k = 3.
Every vertex has a benefit value of b = 4.0, and the cost values are split equally, with half of the vertices
having c1 = 0.5 and the remaining half having c2 = 5.5. The average payoff for mutual cooperation, Eq (11), is
3.069 (blue) and 2.961 (green), which suggests that the former arrangement is more attractive for
cooperation. The analytical predictions (solid lines) are obtained from Eq (48) in Methods (and are linear in β
for β� 1).

doi:10.1371/journal.pcbi.1004349.g002
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would rather defect in this situation. Thus, based on the social dilemma implied by the ranking
of the payoffs, a player who incurs a cost of c1 for cooperating is always playing a Snowdrift
Game while a player who incurs a cost of c2 is always playing a Prisoner’s Dilemma. It follows
that ecological asymmetry can account for multiple social dilemmas being played within a sin-
gle population, even if the players all use the same set of strategies (C and D). The payoff matri-
ces of this particular game are spatially additive, so, by Corollary 1, the dynamics do not
depend on the network configuration. If q is the fraction of vertices with cost value c1 then c ¼
qc1 þ 1� qð Þc2 is the average cost of cooperation for a particular location and the dynamics
are the same as those of the symmetric Snowdrift Game in which the cost of clearing a snow-
drift is c (see Fig 1(B)). Fig 3 demonstrates that this result does not extend to stronger selection
strengths, so Theorem 1 is unique to weak selection.

Based on Theorem 1 and the relative rank of payoffs, the social dilemma defined by the
asymmetric game (Eq 9) (for general αij) is a Prisoner’s Dilemma if b < c and a Snowdrift
Game if b > c when selection is weak. That is, microscopically, there is a mixture of Prisoner’s
Dilemmas and Snowdrift Games, but, macroscopically, the process behaves like just one of these
social dilemmas. Consequently, although the dynamics of this evolutionary process may depend
on the network configuration, the type of social dilemma implied by this game does not.

Genotypic asymmetry
Another form of asymmetry is based on the genotypes of the players rather than their locations.
Each player in the population has one of ℓ possible genotypes, and these genotypes are enumer-
ated by the set {1,. . .,ℓ}. For an n-strategy game, the payoff matrix for a player whose genotype

Fig 3. The Snowdrift Games of Fig 1(B) with the stronger selection strengths β = 0.1 (A) and β = 0.5 (B). For each of the three games (with benefit
b = 5.0 and costs c1, c2, and half c1/half c2, respectively), the simulation results differ from the prediction of pair approximation already for β = 0.1 (A).
Moreover, for β = 0.5, (B) makes it clear that Theorem 1 no longer holds since the average change in cooperators in the game with mixed costs (red) differs
from the average (grey) of these changes for the games with costs c1 only (blue) and c2 only (green). Thus, Theorem 1 is peculiar to weak selection.

doi:10.1371/journal.pcbi.1004349.g003
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is u against a player whose genotype is v is

A1 A2 � � � An

Muv ¼
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.

An
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..

. ..
. . .

. ..
.

auvn1; a
vu
1n auvn2; a

vu
2n � � � auvnn; a

vu
nn

0
BBBBBBBBBB@

1
CCCCCCCCCCA

: ð12Þ

We explore genotypic asymmetry for cultural and genetic processes separately:
Cultural updating. If genotypic asymmetry is incorporated into a cultural process, then

the genotypes of the players never change; only the strategies of the players are updated. In a
structured population, it follows that each player’s genotype may be associated with his or her
location, and this association is an invariant of the process. Thus, if u(i) denotes the genotype
of the player at location i, then we may apply Theorem 1 to the matrices defined byMij =Mu(i)

u(j) for each i and j. In this sense, genotypic asymmetry may be “reduced” to ecological asym-
metry in evolutionary games with cultural update rules. Note that, unlike ecological asymme-
try, genotypic asymmetry does not require a structured population. However, one can always
think of a population as structured (even in the well-mixed case), and doing so allows one to
make sense of the “locations” of the players and to apply Theorem 1 to cultural processes with
genotypic asymmetry.

Example 3. (Donation Game with genotypic asymmetry and cultural updating). In the
Donation Game, a cooperator of genotype u donates bu at a cost of cu. Defectors contribute no
benefit and pay no cost, irrespective of genotype. Consider imitation updating on a large, regu-
lar network of degree k, and let u(i) denote the genotype of the player at location i (henceforth
“player i”). Suppose that player i is a cooperator, player j is a defector, and that player i imitates
player j and becomes a cooperator. Despite this strategy change, the genotype of player i is still
u(i), and the payoff matrix for player i against player j is stillMu(i)u(j). On the other hand, con-
sider the same process but with the genotypic asymmetry replaced by ecological asymmetry
(and withMij: =Mu(i)u(j) as the payoff matrix for the player at location i against the player at
location j). Since the genotype of a player at a given location never changes in an imitation pro-
cess, the process with ecological asymmetry is well-defined; that is,Mij is independent of the
dynamics of the process for each i and j. Therefore, we may instead study the evolution of
cooperation in the process with ecological asymmetry, and we already know from Example 1
that, in the limit of weak selection, the frequency of cooperators in this Donation Game is

expected to increase if and only if kþ 2ð ÞPN
i¼1 cu ið Þ <

PN
i¼1 bu ið Þ.

In contrast, for genetic update rules, the asymmetry present due to differing genotypes can
be removed completely if the genotypes of offspring are determined by genetic inheritance:

Genetic updating. Genetic update rules are defined by the ability of players to propagate
their offspring to other locations in the population by means of births and deaths. In other
words, there is a reproductive step in which genetic information is passed from parent(s) to
child. Both the death-birth and birth-death processes have genetic update rules, but reproduc-
tion need not be clonal for the update rule to be genetic. If the genotypes of offspring are deter-
mined by genetic inheritance, then the strategy and genotype at each location are updated
simultaneously: if the offspring of a player whose genotype is u and whose strategy is Ar

replaces a player whose genotype is v and whose strategy is As, then v is updated to u and As is
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updated to Ar synchronously. Therefore, rather than treating genotypes and strategies sepa-
rately, we may consider them together in the form of pairs, (u, Ar), linking genotype and strat-
egy. These pairs may be thought of as composite strategies of a larger evolutionary game whose

payoff matrix, ~M, is defined by

~Mðu;ArÞ;ðv;AsÞ≔auvrs ð13Þ

for genotypes, u and v, and strategies, Ar and As. The map

fMuvg‘u;v¼1 ! ~M ð14Þ

resolves a collection of n × n asymmetric payoff matrices with a single symmetric payoff

matrix, ~M, of size ℓn × ℓn. This argument holds for any population structure, so evolutionary
processes with genotypic asymmetry that are based on genetic update rules can be studied in
any setting in which there is a theory of symmetric games. For example, we may use the results
from pair approximation on large, regular networks to study the Donation Game with geno-
typic asymmetry and genetic updating:

Example 4. (Donation Game with genotypic asymmetry and genetic updating). As in
Example 3, a cooperator of genotype u in the Donation Game donates bu at a cost of cu. Defec-
tors contribute no benefit and pay no cost, irrespective of genotype. For the death-birth and
birth-death update rules, defectors may be modeled as cooperators whose benefit and costs are
both 0. In the larger symmetric game defined by (Eq 14), it follows that there are ℓ + 1 distinct
composite strategies: (1, C), (2, C), . . ., (ℓ, C), and D: = (ℓ + 1, C). For death-birth updating on a
large, regular network of degree k, cooperators of genotype u 2 {1,. . .,ℓ} are expected to
increase if and only if

k cu �
X‘

v¼1

cvpv

 !
< bu �

X‘

v¼1

bvpv; ð15Þ

where, for each v 2 {1,. . .,ℓ}, pv denotes the frequency of cooperators of genotype v (i.e. the fre-

quency of strategy (v, C) in the larger symmetric game). The terms
P‘

v¼1 bvpv and
P‘

v¼1 cvpv are
the average population benefit and cost values, respectively. Therefore, the condition for the
expected increase in cooperators of a particular genotype depends on the average level of coop-
eration within the population. Eq (15) may be thought of as an analogue of the ‘b/c> k’ rule of

[1] with b replaced by the “benefit premium,” bu �
P‘

v¼1 bvpv, and c replaced by the “cost pre-

mium,” cu �
P‘

v¼1 cvpv .
In the birth-death process, on the other hand, cooperators of genotype u 2 {1,. . .,ℓ} are

expected to increase if and only if

cu <
X‘

v¼1

cvpv: ð16Þ

Interestingly, this condition is independent of the benefit values and says that cooperators of
genotype u 2 {1,. . .,ℓ} increase in abundance if they incur, on average, smaller costs for cooper-
ating than the other cooperators.

Eqs (15) and (16) are obtained by noticing that the expected change in the frequency of

cooperators of genotype u, E [Δpu], is a positive multiple of bu �
P‘

v¼1 bvpv �
k cu �

P‘

v¼1 cvpv
� �

in the death-birth process and of
P‘

v¼1 cvpv � cu in the birth-death process

(see Eqs (33) and (36) in Methods). In the birth-death process, it follows that the expected
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change in the frequency of cooperators of genotype u is close to 0 if pu is close to 1, hence
increases in cooperators who pay nonzero costs are necessarily transient.

Discussion
Asymmetric games naturally separate standard evolutionary update rules into cultural and
genetic classes. This distinction is important because it captures biological differences that are
not always apparent in models of evolution based on symmetric games. For example, consider
a model player whose offspring replaces a focal player and a model player whose strategy is imi-
tated by a focal player. For symmetric games, processes based on these two types of updates are
mathematically identical; if asymmetry is present, then the fact that one update is genetic
(replacement) and the other is cultural (imitation) becomes important. Thus, asymmetric
games can highlight fundamental differences in evolutionary processes that are based on dis-
tinct update rules but happen to behave similarly when the underlying game is symmetric.

In order to incorporate into evolutionary games the asymmetries commonly studied in clas-
sical game theory, our focus has been on games with asymmetric payoffs. Games with asym-
metric payoffs arise naturally from different forms of interaction heterogeneity. Dependence of
payoffs on the environment is a reasonable assumption when considering ecological variation
[55]. Certain patches may provide resources or have drawbacks that influence a player’s success
when using a particular strategy [56]. Asymmetric interactions may also be the result of hetero-
geneity in the sizes or strengths of players [57, 58]. Whether the source of asymmetry is the
environment or the players themselves, our model effectively resolves a collection of micro-
scopically asymmetric interactions with a macroscopically symmetric game in the limit of
weak selection. Figs 1 and 2 illustrate this result for three common update rules.

Similar forms of asymmetry have been studied previously in evolutionary game theory:
Szolnoki and Szabó [59] consider asymmetry appearing in the update rule that results in
“attractive” and “repulsive” players in the pairwise comparison process. For games with popu-
lation structures defined by two graphs (“interaction” and “dispersal” graphs), Ohtsuki et al.
[60, 61] show that the evolution of cooperation can be inhibited by asymmetry arising from dif-
ferences in these two graphs. On the other hand, Pacheco et al. [62] show that heterogeneous
population structures can promote the evolution of cooperation by effectively transforming a
collection of microscopic social dilemmas into a global coordination game. This result is remi-
niscent of our Theorem 1, which relates the microscopic interactions to the global behavior of
a process. Such heterogeneous population structures can result in asymmetric interactions
even if the underlying game is symmetric [63]. These models, although somewhat different
from ours, demonstrate that asymmetry (in its many forms) has a remarkable effect on evolu-
tionary dynamics.

Although genotypic asymmetry can always be reduced to a (larger) symmetric game under
genetic update rules, this symmetric game can be of independent interest. For example, Eq (16)
shows that if cooperators vary in size or strength, then certain cooperators may increase in the
Donation Game even under birth-death updating. In contrast, cooperation never increases in
the absence of cooperator variation [1]. Though defectors still eventually outcompete coopera-
tors, the transient increase in cooperators suggests that other evolutionary processes with this
form of asymmetry can behave in novel ways.

If both ecological and genotypic asymmetries are present, they can be handled separately:
genotypic asymmetry is reduced to either (i) ecological asymmetry (if the update rule is cul-
tural) or (ii) a symmetric game with more strategies (if the update rule is genetic). In either
case, an evolutionary game with both ecological and genotypic asymmetries can be reduced to
a game with ecological asymmetry only and hence Theorem 1 applies. Our framework handles
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asymmetry resulting from varying baseline traits due to both environment and genotype,
which could be referred to as phenotypic asymmetry.

The presence of ecological or genotypic asymmetry in an evolutionary process does not nec-
essarily depend on the selection strength or update rule; these forms of asymmetry may be
incorporated into many evolutionary processes. Theorem 1, which effectively reduces a game
with ecological asymmetry to a particular symmetric game, is stated for four common update
rules in evolutionary game theory. Fig 3 demonstrates (using the asymmetric Snowdrift Game)
that this theorem is specific to weak selection. That selection is weak is often a reasonable
assumption when using evolutionary games to study populations of organisms with many
traits. However, our study of the asymmetric Snowdrift Game for stronger selection strengths
suggests that the behavior of asymmetric games is more complicated if selection is strong.
Though more difficult to treat analytically, symmetric games under strong selection are worthy
of further investigation.

Asymmetry is omnipresent in nature, and any framework that is used to model evolution
should take into account possible sources of asymmetry. We have formally introduced ecological
and genotypic asymmetries into evolutionary game theory and have studied these asymmetries
in the limit of weak selection. Asymmetry has a natural place in the Donation Game and the
Snowdrift Game, but our results are applicable to any general n-strategy matrix game. Our treat-
ment of asymmetry highlights important differences between models of cultural and genetic evo-
lution that are not apparent in the traditional setting of symmetric games. Ecological and
genotypic asymmetries cover a wide variety of background variation observed in biological popu-
lations, and, as such, our framework enhances the modeling capacity of evolutionary games.

Methods
For the two genetic processes (death-birth and birth-death) and the two cultural processes
(imitation and pairwise comparison) we consider, we treat ecologically asymmetric games on a
large, regular network using pair approximation [1, 47]. We assume here that the degree of the
network, k, is at least 3. For k = 2, the network is just a cycle, and we do not treat this case here.
The detailed steps of each calculation are omitted but we include the main setups to allow for
reconstruction of the reported results. We begin by recalling the way in which these four pro-
cesses are defined (see eg. Ohtsuki and Nowak [36]):

(DB) In the death-birth process, a player is selected uniformly at random from the population
for death. A neighbor of the focal individual is then selected to reproduce with probability
proportional to relative fitness, and the resulting offspring replaces the deceased player;

(BD) In the birth-death process, an individual is selected from the population for reproduction
with probability proportional to relative fitness, and the offspring replaces a neighbor at
random;

(IM) In the imitation process, an individual is chosen uniformly at random to evaluate his or
her strategy. This focal individual either adopts a strategy of a neighbor (with probability
proportional to that neighbor’s relative fitness) or retains his or her original strategy (with
probability proportional to own relative fitness);

(PC) In the pairwise comparison process, a focal individual is selected uniformly at random
from the population to evaluate his or her strategy. A model individual is then chosen uni-
formly at random from the neighbors of the focal individual as a basis for comparison, and
the focal player adopts the strategy of the model player with probability proportional to the
model player’s relative fitness.
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Notation and general remarks
Let S = {A1, . . ., AN} be the set of pure strategies available to each player and suppose that there
areN players on a regular network of sizeN (i.e. every node is occupied). A strategy pair (Ar, As)
means a choice of a player using strategy Ar who has as a neighbor a player using strategy As. Let

pr≔frequency of players using strategyAr; ð17aÞ

prs≔frequency of strategy pairsðAr;AsÞ; ð17bÞ

qsjr≔conditional probability of finding ansplayer next to anrplayer: ð17cÞ

We will make repeated use of the following properties of these quantities:

Xn
r¼1

pr ¼
Xn
s¼1

qsjr ¼ 1; ð18aÞ

psqrjs ¼ prs ¼ psr ¼ prqsjr: ð18bÞ

Strictly speaking, the equalities ps qr|s = prs = psr = pr qs|r need not hold in general. As a pathologi-
cal example, one may consider the network with two nodes and a single undirected link between
these nodes. If the player on the first node uses Ar, the player on the second node uses As, and r
6¼ s, then prs = 1 but ps = 1/2, which gives qr|s = 2. However, for large random regular graphs [48],
condition (Eq 21) holds approximately, and we will take this equality as given in what follows.

For X 2 {pr, prs, qs|r}1⩽r,s⩽n;, let E [ΔX] denote the expected change in X in one step of the
process. A pair (Ar, i) denotes a player on vertex i using strategy Ar. Given pairs (Ar, i) and (As,
j), we denote by π(As, j)(Ar, i) the expected payoff to a player at vertex j playing strategy As given
that they have as a neighbor an individual playing strategy Ar at vertex i. If β ⩾ 0 is a parameter
representing the intensity of selection, then payoff, π, is converted to fitness, fβ(π), via

fb ðpÞ≔ exp fbpg: ð19Þ

When defined in this way, fitness is always positive.
The main theorem we prove is the following:
Theorem 1. In the limit of weak selection, the dynamics of the ecologically asymmetric

death-birth, birth-death, imitation, and pairwise comparison processes on a large, regular net-
work may be approximated by the dynamics of a symmetric game with the same update rule

and payoff matrixM≔ 1
kN

PN
i;j¼1 wijM

ij, i.e.

A1 A2 � � � An

M ¼

A1

A2

..

.

An

a11; a11 a12; a21 � � � a1n; an1

a21; a12 a22; a22 � � � a2n; an2

..

. ..
. . .

. ..
.

an1; a1n an2; a2n � � � ann; ann

0
BBBBBBBBBB@

1
CCCCCCCCCCA

: ð20Þ

where ast≔ 1
kN

PN
i;j¼1 wija

ij
st for each s and t.

Theorem 1 is established for each of these four update rules separately:
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Death-birth updating
If an individual is playing strategy Ar at node i, As at j, and if wij 6¼ 0, then

pðAs ;jÞðAr; iÞ ¼ ajisr þ
X
m6¼i

wjm

Xn

t¼1

ajmst qtjs: ð21Þ

Suppose that an (Ar, i) individual is selected for death. The probability that (As, j) replaces this
focal individual is proportional to fβ(π(As, j)(Ar, i)). For each i, let (i1, . . ., ik) be an enumeration
of the indices j with wij 6¼ 0 (say, in increasing order) and let sℓ be the strategy used by the player
at vertex iℓ. If (Ar, i) is chosen for death, then the probability that it is replaced by (As

ℓ
, iℓ) is

fb ðpðAs‘
;i‘ÞðAr; iÞÞXk

j¼1
fb pðAsij

;ijÞðAr; iÞ
� � : ð22Þ

The Taylor expansion of this term for small β is

fb ðpðAs‘
;i‘Þ ðAr; iÞÞXk

j¼1
fb p ðAsij

;ijÞ ðAr; iÞ
� � ¼ 1

k
þ b

kpðAs ;i‘Þ ðAr; iÞ �
Xk

j¼1
p ðAsij

;ijÞ ðAr; iÞ
k2

0
BB@

1
CCAþ Oðb2Þ: ð23Þ

This expansion will be used frequently in the displays that follow.
Approximation of the expected change in strategy frequencies. Let δx, y be the Kronecker

delta (defined to be 1 if x = y and 0 otherwise). The probability of choosing the player on vertex
i for death is 1/N. The chance that this player is using strategy Ah is ph. Suppose that (Asi1, . . .,
Asik) is a k-tuple of strategies. If the focal player at vertex i uses strategy Ah, then the probability
that the player on vertex iℓ uses strategy Asi‘

for each ℓ = 1, . . ., k is qsi1 jh� � �qsik jh. Thus,

E ½Dpr� ¼ 1

N

XN
i¼1

X
h 6¼r

ph
Xn

si1 ;...;sik
¼1

qsi1 jh
� � � qsik jh

Xk

‘¼1

dsi‘ ;r
fb ðp ðAr ;i‘Þ ðAh; iÞÞXk

j¼1
fb p ðAsij

;ijÞ ðAh; iÞ
� �

0
BB@

1
CCA 1

N

� �

þ 1

N

XN
i¼1

pr
Xn

si1 ;...;sik
¼1

qsi1 jr
� � � qsik jr

X
h 6¼r

Xk

‘¼1

dsi‘ ;h
fb ðp ðAh;i‘Þ ðAr; iÞÞXk

j¼1
fb p ðAsij

;ijÞ ðAr; iÞ
� �

0
BB@

1
CCA � 1

N

� � ð24Þ

for each strategy, Ar. The Taylor expansion to first-order yields

E Dpr½ � � b
ðk� 1Þpr
k2N2

� �
Að Þ � Bð Þ � Cð Þ þ Dð Þð Þ þ O b2

� �
; ð25Þ

where

ðAÞ ¼
X
h 6¼r

qhjr
XN
i¼1

Xk

‘¼1

Xn
si‘¼1

qsi‘ jr
pðAsi‘

;i‘ÞðAr; iÞ; ð26aÞ

ðBÞ ¼
X
h 6¼r

qhjr
XN
i¼1

Xk

‘¼1

Xn
si‘¼1

qsi‘ jh
pðAsi‘

;i‘ÞðAh; iÞ; ð26bÞ
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ðCÞ ¼
X
h 6¼r

qhjr
XN
i¼1

Xk

‘¼1

pðAh;i‘ÞðAr; iÞ; ð26cÞ

ðDÞ ¼
X
h 6¼r

qhjr
XN
i¼1

Xk

‘¼1

pðAr ;i‘ÞðAh; iÞ: ð26dÞ

Approximation of the expected change in pair frequencies. If r 6¼ s, then

E ½Dprs� ¼ 1

N

XN
i¼1

X
h6¼r;s

ph
Xn

si1 ;...;sik¼1

qsi1 jh
� � � qsik jh

�
Xk

‘¼1

dsi‘ ;r
fbðpðAr ;i‘ÞðAh; iÞÞXk

j¼1
fb pðAsij

;ijÞðAh; iÞ
� �

0
BB@

1
CCA 2

Xk

a¼1
dsia ;s

kN

0
@

1
A

þ 1

N

XN
i¼1

X
h 6¼r;s

ph
Xn

si1 ;...;sik¼1

qsi1 jh
� � � qsik jh

�
Xk

‘¼1

dsi‘ ;s
fbðpðAs ;i‘ÞðAh; iÞÞXk

j¼1
fb pðAsij

;ijÞðAh; iÞ
� �

0
BB@

1
CCA 2

Xk

a¼1
dsia ;r

kN

0
@

1
A

þ 1

N

XN
i¼1

pr
Xn

si1 ;...;sik
¼1

qsi1 jr
� � � qsik jr

�
Xk

‘¼1

dsi‘ ;s
fbðpðAs ;i‘ÞðAr; iÞÞXk

j¼1
fb pðAsij

;ijÞðAr; iÞ
� �

0
BB@

1
CCA 2

Xk

a¼1
ðdsia ;r � dsia ;sÞ
kN

0
@

1
A

þ 1

N

XN
i¼1

pr
Xn

si1 ;...;sik
¼1

qsi1 jr
� � � qsik jr

�
X
h6¼r;s

Xk

‘¼1

dsi‘ ;h

fbðpðAh ;i‘ÞðAr; iÞÞXk

j¼1
fb pðAsij

;ijÞðAr; iÞ
� �

0
BB@

1
CCA �

2
Xk

a¼1
dsia ;s

kN

0
@

1
A

þ 1

N

XN
i¼1

ps
Xn

si1 ;...;sik
¼1

qsi1 js
� � � qsik js

�
Xk

‘¼1

dsi‘ ;r
fbðpðAr ;i‘ÞðAs; iÞÞXk

j¼1
fb pðAsij

;ijÞðAs; iÞ
� �

0
BB@

1
CCA 2

Xk

a¼1
ðdsia ;s � dsia ;rÞ
kN

0
@

1
A

þ 1

N

XN
i¼1

ps
Xn

si1 ;...;sik
¼1

qsi1 js
� � � qsik js

�
X
h6¼r;s

Xk

‘¼1

dsi‘ ;h

fbðpðAh ;i‘ÞðAs; iÞÞXk

j¼1
fb pðAsij

;ijÞðAs; iÞ
� �

0
BB@

1
CCA �

2
Xk

a¼1
dsia ;r

kN

0
@

1
A:

ð27Þ
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On the other hand,

E ½Dprr� ¼ 1

N

Xn
i¼1

X
h 6¼r

ph
Xn

si1 ;...;sik¼1

qsi1 jh
� � � qsik jh

�
Xk

‘¼1

dsi‘ ;r
fb ðp ðAr ;i‘Þ ðAh; iÞÞXk

j¼1
fb p ðAsij

;ijÞ ðAh; iÞ
� �

0
BB@

1
CCA 2

Xk

a¼1
dsia ;r

kN

0
@

1
A

þ 1

N

Xn
i¼1

pr
Xn

si1 ;...;sik¼1

qsi1 jr
� � � qsik jr

�
X
h 6¼r

Xk

‘¼1

dsi‘ ;h

fb ðp ðAh ;i‘Þ ðAr; iÞÞXk

j¼1
fb p ðAsij

;ijÞ ðAr; iÞ
� �

0
BB@

1
CCA �

2
Xk

a¼1
dsia ;r

kN

0
@

1
A:

ð28Þ

The zeroth-order Taylor expansion yields

E Dprs½ � � 4pr
kN

�kqsjr þ k� 1ð Þ
Xn
h¼1

qsjhqhjr

 !
þ O bð Þ ð29Þ

if r 6¼ s, and

E Dprr½ � � 2pr
kN

1� kqrjr þ k� 1ð Þ
Xk

h¼1

qrjhqhjr

 !
þ O bð Þ: ð30Þ

Therefore, E [Δpr] = O(β) (by Eq (25)) and E [Δprs] = O(1) (by Eqs (29) and (30)) for each r
and s, which results in a separation of timescales between the strategy frequencies and the pair
frequencies. In particular, the pair frequencies will reach their equilibrium much more quickly
than the strategy frequencies will, so we can examine the expression for E [Δpr] under the
assumption that the pair frequencies have reached their equilibrium [1].

Weak-selection dynamics. Assuming that each update takes place in one unit of time, we
can approximate the dynamics by the deterministic systems _pr ¼ E Dpr½ � and _prs ¼ E Dprs½ � for
each r and s[1, 36]. Since β is small, we see that the latter system will reach equilibrium much
quicker than the former. When the pair frequencies have reached equilibrium (i.e. E [Δprs] =
0), we have

kqsjr ¼ ds;r þ ðk� 1Þ
Xn
h¼1

qsjhqhjr: ð31Þ

Ohtsuki and Nowak [36] show that this equation implies that

qrjs ¼ pr þ
1

k� 1

� �
ds;r � pr
� �

: ð32Þ
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Assuming the system has reached this local equilibrium, we then have

E ½Dpr� � b
ðk� 1Þpr
k2N2

� �
ðkþ 1Þ

XN
i;j¼1

wij

Xn
s¼1

aijrsqsjr

 

� k
XN
i;j¼1

wij

Xn
s;t¼1

aijstqtjsqsjr �
XN
i;j¼1

wij

Xn
s;t¼1

aijstqsjtqtjr

!
þ Oðb2Þ

¼ b
ðk� 1Þpr

kN

� �
ðkþ 1Þ

Xn
s¼1

arsqsjr � k
Xn
s;t¼1

astqtjsqsjr �
Xn
s;t¼1

astqsjtqtjr

 !
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ð33Þ

as long as β is small. Therefore, if we choose an appropriate time scale and set

_pr ¼
E ½Dpr�
Dt

; ð34aÞ

brs ¼
arr þ ars � asr � ass

k� 2
; ð34bÞ

� ¼
Xn
s;t¼1

psptast; ð34cÞ

then :pr ¼ pr
Pn

s¼1 ps ars þ brs

� �� �
� �

, recovering the replicator equation of Ohtsuki and Nowak

[36]. It follows that the dynamics depend onM, proving Theorem 1 for death-birth updating.

Birth-death updating
In the birth-death process, an individual is selected for reproduction with probability propor-
tional to relative fitness. The offspring of the selected player then replaces a random neighbor.
Rather than trying to approximate the total fitness of the population, we will simply denote this
value by fpop. Since this value is positive, it does not influence the sign of the expectation values
and as such we will largely ignore it. We have

E ½Dpr� ¼ 1

f pop
Npr
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� �XN
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Xn
si1 ;...;sik

¼1
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� � � qsik jhfb

Xk
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 ! Xk
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k

0
@

1
A � 1

N

� �
:

ð35Þ

The local equilibrium conditions for birth-death updating turn out to be the same as those
for death-birth updating (Eq (32)). These local equilibrium conditions do not take into account
selection as long as β is close to 0, so they are essentially based on a neutral process in which at
most one strategy is update at each time step. Therefore, it is perhaps not surprising that these
conditions are the same for different processes based on one strategy update in each time step.
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In the following expressions, by x/ y we mean that x is proportional to y with positive con-
stant of proportionality. Letting β! 0 and using the local equilibrium conditions (as well as
the same separation-of-timescales argument we used in §), we find that

E½Dpr� / bpr k
XN
i;j¼1

wij

Xn
s¼1

aijrsqsjr � ðk� 1Þ
XN
i;j¼1

wij
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þ Oðb2Þ

/ bpr k
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arsqsjr � ðk� 1Þ
Xn
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þ Oðb2Þ
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s¼1
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s¼1

assps þ arr

 !
þ Oðb2Þ:

ð36Þ

Just as we saw with the death-birth process, after choosing an appropriate time scale and letting

brs ¼
ðkþ 1Þarr þ ars � asr � ðkþ 1Þass

ðk� 2Þðkþ 1Þ ; ð37aÞ

� ¼
Xn
s;t¼1

psptast; ð37bÞ

we have _pr ¼ pr
Pn

s¼1 ps ars þ brs

� �� �
� �

, proving Theorem 1 for birth-death updating.

Imitation updating
In the imitation process, an individual is selected uniformly at random from the population to
evaluate his strategy. The chosen player then compares his fitness with the fitness of each
neighbor and either adopts a new strategy or retains his or her current strategy (with probabil-
ity proportional to relative fitness). Suppose that an individual at vertex i, playing Ar, is selected
to evaluate his or her strategy. If s 6¼ r, then the probability that he or she adopts strategy s isXk

‘¼1
ds‘;sfb p ðAs‘

;i‘Þ ðAr; iÞ
� �

Xk

j¼1
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a
iij
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� � ð38Þ

and the probability that his strategy remains unchanged isXk

‘¼1
ds‘;rfb p ðAs‘

;i‘Þ ðAr; iÞ
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a
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a
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We let π(As, j)(Ar, i) be the same as it was for death-birth updating. For small β,

fb p ðAs‘
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� �
Xk

j¼1
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ð40Þ
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Approximation of the expected change in strategy frequencies. For r 2 {1, . . ., n},
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ð41Þ

The local equilibrium conditions are exactly the same as they were for the death-birth process.
Assuming that the system has reached this local equilibrium, the separation-of-timescales
argument we used in § gives
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With brs ¼ kþ3ð Þarrþ3ars�3asr� kþ3ð Þass
k�2ð Þ kþ3ð Þ and � ¼Pn

s;t¼1 psptast , we have

_pr ¼ pr
Xn
s¼1

ps ðars þ brsÞ � �

 !
; ð43Þ

which establishes Theorem 1 for imitation updating.
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Pairwise comparison updating
In the pairwise comparison process, a focal individual is selected uniformly at random from
the population. A model individual is then chosen uniformly at random from the neighbors of
the focal individual. If πf and πm denote the payoffs to the focal and model individuals, respec-
tively, then the focal player will adopt the strategy of the model player with probability

1

1þ eb ðpf�pmÞ ¼
fb ðpmÞ

fb ðpmÞ þ fb ðpfÞ
; ð44Þ

where β ⩾ 0 is a real parameter representing the intensity of selection. In addition to the
expected payoff π(As, j)(Ar, i) (defined in the same way as for death-birth updating), we let

pðAs ;iÞ≔
Xk

j¼1

a
iij
ssij

ð45Þ

if (As, i) has as a neighborhood (Asi1, . . ., Asik). With this notation in place, we have
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As β! 0, we have
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Consequently, in the limit of weak selection,
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The local equilibrium conditions are exactly the same as they were for the other processes, but

in this case they are not needed to arrive at this last expression for E [Δpr]. With brs ¼
arrþars�asr�ass

k�2
and � ¼Pn

s;t¼1 psptast , we have _pr ¼ pr
Pn

s¼1 ps ars þ brs

� �� �
� �

. It follows that the
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dynamics of the pairwise comparison process depend onM, which completes the proof of
Theorem 1.

Finally, we show that the dynamics of each process are independent of the particular net-
work configuration if the asymmetric game is spatially additive:

Definition 1. If aijrs ¼ xirs þ yjrs for each r and s, thenMij is called a spatially additive payoff
matrix. IfMij is spatially additive for each i and j, then the game is said to be spatially additive.

Corollary 1. IfMij is spatially additive for each i and j, then the expected change in the fre-
quency of strategy Ar, E [Δpr], is independent of (wij)1 ⩽ i, j ⩽ N for each r. In particular, the
dynamics of the process do not depend on the particular network configuration.

Proof. If aijrs ¼ xirs þ yjrs for each r, s, i, j, then

ast ¼
1

kN

XN
i;j¼1

wija
ij
st ¼

1

N

XN
i¼1

xirs þ
1

N

XN
j¼1

yjrs; ð49Þ

which is independent of (wij)1 ⩽ i, j ⩽ N. The corollary then follows directly from Theorem 1.

Computer simulations
In each simulation, a random k-regular network (with k = 3) of N = 500 vertices is generated.
The selection intensity is β = 0.01 for Figs 1 and 2, β = 0.1 for Fig 3(A), and β = 0.5 for Fig 3(B).
The figures are generated based on data collected from a number of cycles: In each cycle, the
network is given an initial configuration of cooperators by first choosing a density, d, uniformly
at random from the interval [0, 1], and then placing a cooperator (resp. defector) at each vertex
with probability d (resp. 1 − d). The update rule is applied until either C or D fixates. (The
absorption time depends on a number of factors including the game, selection strength, and ini-
tial configuration of the population.) Let pC(t) denote the frequency of cooperators at time t;
pC(0) is just the initial frequency of cooperators. The frequency pC(t+1) is obtained from pC(t)
by adding to it the change in the frequency of cooperators over the next N (= 500) updates. For
each t, the quantity pC(t + 1) − pC(t) is associated with pC(t). Once pC 2 {0,1}, a new initial con-
figuration of cooperators is chosen and the process is repeated. After each possible value of pC
has at least 105 associated data points (changes in cooperator frequency), these changes are

averaged, and this resulting quantity, DpC , is paired with the corresponding value of pC. These
pairs are then plotted to obtain Figs 1, 2, and 3. The results from pair approximation apply to
the expected change over one update, but we can easily get a predicted result over N updates
(i.e. one Monte Carlo step) by scaling the expressions for E[ΔpC] by a factor of N.

Small deviations from the expected results are seen in each of the figures, and these devia-
tions are due to the effects of finite selection parameter (β) and the finiteness of the set of possi-
ble values of pC (ΔpC is a multiple of 1/N). As an example of how these properties can give rise
to small deviations, consider the Donation Game under imitation updating in Fig 1(A). Eq (42)
predicts that E[ΔpC] is always positive, yet we observe in Fig 1(A) that this change becomes
negative as pC! 0,1. If pC = (N − 1)/N and β> 0, then the only defector in the population has

a higher payoff than all of the other cooperators. Let f jð Þ
b denote the fitness of the player at loca-

tion j. Thus, with just a single defector (at location i) in a population of cooperators, we have

f ið Þ
b ⩾f jð Þ

b for each j 6¼ i, with equality if and only if β = 0. The expected change in the frequency
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of cooperators in the next time step is
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The first (resp. second) summation runs over all of the neighbors of i (resp. j). For each j 6¼ i,

f ðiÞb

f ðiÞb þ
X
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f ðjÞb

⩾
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; ð51aÞ
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⩾
1

kþ 1
; ð51bÞ

both with equality if and only if β = 0. Therefore, we see that

E DpC½ �⩽ 1

N

� �
1

N

� �
1� 1

kþ 1

� �
� 1

N

� �
k
N

� �
1

kþ 1

� �
¼ 0 ð52Þ

with equality if and only if β = 0. The same argument explains the negative average changes as
pC ! 0. Since pC can only take on finitely many values for a given population size, similar argu-
ments explain the small discrepancies between the actual and expected results for intermediate
values of pC (see Fig 1).
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