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The development of the fetal nervous systemmirrors general fetal development, comprising a combination of genetic resources and
effects of the intrauterine environment. Our aim was to assess the 2nd trimester amniotic fluid levels of brain-derived neurotrophic
factor (BDNF) and to investigate its association with fetal growth. In accordance with our study design, samples of amniotic fluid
were collected from women who had undergone amniocentesis early in the 2nd trimester. All pregnancies were followed up until
delivery and fetal growth patterns and birth weights were recorded, following which pregnancies were divided into three groups
based on fetal weight: (1) AGA (appropriate for gestational age), (2) SGA (small for gestational age), and (3) LGA (large for
gestational age). We focused on these three groups representing a reflection of the intrauterine growth spectrum. Our results
revealed the presence of notably higher BDNF levels in the amniotic fluid of impaired growth fetuses by comparison with those
of normal growth. Both SGA and macrosomic fetuses are characterized by notably higher amniotic fluid levels of BDNF (mean
values of 36,300 pg/ml and 35,700 pg/ml, respectively) compared to normal-growth fetuses (mean value of 32,700 pg/ml).
Though apparently small, this difference is, nevertheless, statistically significant (p value< 0.05) in SGA fetuses in the extremes
of the distribution, i.e., below the 3rd centile. In conclusion, there is clear evidence that severe impairment of fetal growth
induces the increased production of fetal brain growth factor as an adaptive mechanism in reaction to a hostile intrauterine
environment, thereby accelerating fetal brain development and maturation.

1. Introduction

Impaired or excessive fetal growth leads to increased rates of
perinatal morbidity and mortality [1]. A small for gestational
age (SGA) fetus usually refers to a fetus with an estimated
fetal weight (EFW) less than the 10th centile, while a severe

SGA is a fetus of estimated fetal weight less than the 3rd cen-
tile, with the risk of negative pregnancy outcome increasing
as we move from small to severe small for gestational age
fetuses [2, 3]. Recent data support the additional use of cus-
tomised birth weight centiles for maternal characteristics,
including maternal parity, ethnic origin, height, and weight
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[4, 5]. Certainly, early antenatal recognition of gestational
characteristics allows for closer follow-up and targeted
interventions, which are likely to improve outcomes [6].

Fetal growth restriction (FGR) is not identical with SGA,
as FGR denotes a pathological constraint of the genetic
growth potential. FGR refers to a fetus whose estimated
weight is below the 10th centile for gestational age and who
additionally displays signs of chronic malnutrition and
hypoxia. The likelihood of growth restriction increases dra-
matically in severe SGA fetuses. While all structurally normal
SGA fetuses are at higher risk of perinatal mortality and mor-
bidity, the majority of adverse outcomes occur among the
FGR group [7]. Importantly, however, there is a greater inci-
dence of negative long-term neurodevelopmental, cardiovas-
cular, and endocrinological outcomes among both SGA and
FGR fetuses [8]. In any case, a very low EFW (<3rd centile)
points to adverse perinatal outcomes regardless of the
presence of other indices such as abnormal Doppler findings
[9, 10]. Therefore, all otherwise normal fetuses with an EFW
below the 3rd centile, as well as those fetuses with an EFW
below the 10th centile who manifest signs of fetal compro-
mise, should be considered as FGR, a process mainly caused
by chronic placental insufficiency, and need to be closely
monitored due to the high risk for an adverse outcome.
Moreover, macrosomic or large for gestational age (LGA)
fetuses are those with a weight above the 90th centile for
gestational age. Though late-gestation fetal growth lowers
the risk of perinatal mortality, fetal macrosomia can cause
labor complications that may raise the risk of perinatal
death [1, 11].

Compromised general fetal development will also affect
prenatal central nervous system development, the forming
of the most complex structure within the human being.
Among these developmental risks is, as mentioned above,
chronic placental insufficiency, which can lead to long-
lasting deficits in neuronal connectivity and function. Both
the severity and the timing of these prenatal insults will
determine which regions of the brain are affected and how
serious will be the damage [12].

The pathophysiological mechanisms behind impaired or
excessive fetal growth have not as yet been entirely eluci-
dated. Despite numerous research efforts, no molecular prog-
nostic marker has to date been identified. We studied a
neurotrophic factor which protects fetal nervous system
development, differentiation, and metabolism, i.e., brain-
derived neurotrophic factor (BDNF). BDNF is a member of
the neurotrophic growth factor family: it is 52% identical to
nerve growth factor (NGF), the neuropeptide that is mainly
involved in the regulation of proliferation, growth, mainte-
nance, and survival of a number of target neurons [13, 14].
Among the cells expressing the BDNF molecule are fibro-
blasts [15], astrocytes [16], neurons of various localizations
and phenotypes [16–18], megakaryocyte-platelets [19],
Schwann cells [20], and possibly smooth muscle cells [21].
Two distinct receptors of BDNF have been identified, low-
affinity 75 kDa LNGFR (low-affinity nerve growth factor
receptor) and high-affinity 145 kDa TrkB (tropomyosin
receptor kinase-B) [22]. These receptors, after binding
BDNF, have important roles to play, namely, implication in

growth, differentiation and survival, reverse transportation
in neurons, induction of Schwann cell migration, synapto-
genesis, and lymphopoiesis [20, 23–26]. To date, while
human adult, neonatal, and animal fetal studies involving
measurements of BDNF and correlation of these with several
aspects of neural growth and function have been carried out,
there has been no comparable human fetal research.

The purpose of this study is the detection and quantifica-
tion of BDNF in the amniotic fluid of 2nd trimester pregnan-
cies. Furthermore, we aim to draw attention to potential
correlations between BDNF levels in amniotic fluid and
impaired fetal growth as a means of gaining greater insight
into the mechanisms underlying fetal growth restriction
and macrosomia, which have been linked to maternal, fetal,
and neonatal adverse outcomes. It is thus hoped that the
present study may reveal a possible prognostic role of this
factor as measured in the 2nd trimester and in pregnancy out-
come as revealed in the 3rd trimester.

2. Materials and Methods

Amniotic fluid samples were collected from women who had
undergone amniocentesis early in the 2nd trimester of gesta-
tion (15–22 weeks) based on various indications, such as
advanced maternal age, increased nuchal translucency, previ-
ous history of birth defects, or detection of an anomaly in the
ultrasound examination of the first or 2nd trimester. Immedi-
ately after amniocentesis, the amniotic fluid samples were
centrifuged and stored in polypropylene tubes at −80°C.
Excluded from the study were twin pregnancies and preg-
nancies with fetuses of abnormal karyotype or severe congen-
ital malformations. All pregnancies were followed up until
delivery. Fetal growth patterns and birth weights were
recorded and subsequently divided into three groups: SGA
(small for gestational age), AGA (appropriate for gestational
age), and LGA (large for gestational age). A gestation-related
weight computer program was used to allocate the centile of
each neonate at delivery [27]. Our study sample was com-
posed of 31 SGA fetuses and 18 LGA fetuses matched for ges-
tational age, sex, maternal height, and weight and compared
with 31 AGA fetuses composing the control group. The cor-
responding amniotic fluid samples were then withdrawn
from our amniotic fluid sample bank, and BDNF was
measured in order to compare its levels between normal
full-term pregnancies (control group) and the groups of
embryos with residual and enhanced growth.

Amniotic fluid BDNF levels were measured using the
Quantikine Human BDNF Immunoassay (R&D Systems,
Minneapolis, MN, USA) according to the manufacturer’s
instructions. This Elisa kit is used for cell culture supernates,
tissue lysates, serum, EDTA plasma, platelet-poor EDTA
plasma, heparin plasma, platelet-poor heparin plasma, urine,
and humanmilk, so it was the most appropriate kit to be used
for amniotic fluid. Even more, this ELISA kit has been used
effectively for serum BDNF quantification and, given the
early 2nd trimester amniotic fluid resemblance in composi-
tion with serum, it can be also used for amniotic fluid sam-
ples [28]. As the BDNF concentrations in the amniotic fluid
were found significantly higher than those of serum, serial
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dilutions of samples were performed to demonstrate that the
Elisa kit used was valid to quantify our BDNF amniotic fluid
levels (linear detection). Samples required at least a 20-fold
dilution into Calibrator Diluent RD6P prior to the assay.
The suggested 20-fold dilution is 10μl of sample + 190μl of
Calibrator Diluent RD6P. The intra-assay coefficient of vari-
ation ranged from 2.4–3.2% and the interassay coefficient of
variation ranged from 4.3–7.0%, respectively, while the min-
imum detectable dose (MDD) of total BDNF ranged from
0.372–1.35 pg/ml.

The results were statistically evaluated by means of the
SPSS statistical package using parametric and nonparametric
methods, depending on indications. The Kruskal-Wallis test
was used for comparison of BDNF concentrations between
the three groups. Mean and standard deviations for quantita-
tive variables are displayed in the results. We also applied
linear models to examine the difference in BDNF concentra-
tions between different degrees of growth impairment and
the control group. In accordance with our study design, con-
founding factors, including maternal age, body mass index,
duration of pregnancy, fetal sex, smoking, and multiparity,
were taken into account. Lastly, the distribution of sample
values was evaluated by regression analysis (Kolmogorov-
Smirnov test). We set the level of significance at a p value of
less than 0.05.

Informed consent was taken from all women who partic-
ipated in the study. Furthermore, the study was approved by
the Ethical Committee for Research of Aretaieio University
Hospital, Athens, Greece.

3. Results

Eighty (80) amniotic fluid samples were measured in total.
The descriptive characteristics of the mothers and fetuses
are depicted in Table 1. No statistically significant differences
were observed as regards maternal weight, maternal height,
maternal parity, and duration of gestation among the three
groups. However, maternal age, birth weight, and offspring
gender were statistically different between groups. The rea-
son for the latter findings may lie in the fact that many
SGA fetuses are FGR fetuses and their birth weight is also
lower, while LGA fetuses have higher than average weight.
Importantly, maternal age is a well-known factor affecting
fetal growth, with advanced maternal age being a risk factor
for intrauterine growth restriction.

Table 2 and Figure 1 summarize the BDNF assay results
showing the mean values of BDNF in the three studied
groups, SGA, LGA, and control group. Notably, higher
BDNF levels were detected in the amniotic fluid of both
SGA and LGA fetuses as compared to normal fetuses (mean
values of 36,300 pg/ml and 35,700 pg/ml vs 32,700 pg/ml for
SGA and LGA fetuses vs normal fetuses, respectively).

Figure 2 shows that the more severe the growth restric-
tion, the more elevated are amniotic BDNF levels. Normally
growing fetuses demonstrate a different pattern compared
to growth-restricted fetuses, while fetuses with lower biom-
etry demonstrate lower BDNF levels and those with higher
biometry demonstrate higher BDNF levels (Figure 2). This
tendency also applies to the fetal macrosomia group,
which similarly demonstrates elevated amniotic BDNF
levels (Figure 2).

In Table 3, comparison of the distribution of BDNF levels
by fetal size is presented. BDNF levels are increased further in
women with severe and very severe SGA fetuses. Compared

Table 1: Comparative characteristics between groups SGA, LGA, and Control (mean values± SD).

Variable SGA group N = 31 LGA group N = 18 Control group N = 31 P value

Maternal age 37± 3.4 33.5± 5 34.5± 3.4 0.01

Maternal weight 69.3± 14.7 59.9± 7.9 65.1± 11.1 0.15

Maternal height 166.8± 5 164.7± 7.1 167± 5.6 0.60

Maternal parity 0.9± 0.9 0.7± 0.7 0.7± 1 0.24

Fetal sex Mostly XX Mostly XY Mostly XY 0.02

Birth week 35.5± 9.7 37.8± 1.1 38.5± 0.8 0.11

Birth weight (in grams) 2363.9± 746.3 3870.6± 335.2 3332.3± 285.1 0.01

Table 2: Amniotic fluid BDNF mean values in the three studied
groups: SGA, LGA, and Control: both SGA and macrosomic
fetuses are characterized by notably higher amniotic fluid levels of
BDNF compared to normal-growth fetuses.

Group N BDNF (mean value± SD) P value

SGA 31 36,300± 9000 pg/ml 0.09

LGA 18 35,700± 11,200 pg/ml 0.22

Control 31 32,700± 5700 pg/ml
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Figure 1: BDNFmean values (pg/ml) and 95% confidence intervals:
comparison between groups (1 = SGA, 2 =AGA, 3 = LGA).

3Mediators of Inflammation



with AGA fetuses, very severe SGA fetuses (below the 3rd

centile) display significantly higher BDNF levels. Compared
with AGA fetuses, SGA fetuses below the 5th centile, and even
the whole group of SGA fetuses (below the 10th centile), dem-
onstrate higher BDNF. Among the group of LGA fetuses
demonstrating increased levels of BDNF compared with
AGA fetuses, there was no statistical significance.

4. Discussion

Although neurotrophins may originate from several ori-
gins, like maternal, placental, or fetal compartments, there
is evidence that BDNF in second trimester amniotic fluid
is mainly of fetal origin [29]. Consequently, second trimes-
ter amniotic fluid evaluation reliably reflects the fetal
condition and its central nervous system underneath
chemo-biological mechanisms in cases of impaired endo-
metrial growth or macrosomia. Research findings further
suggest that circulating amniotic fluid neurotrophins can
affect fetal neurodevelopment during pregnancy [30].

To date, while BDNF measurements have been carried
out in neonates and adult humans, as well as in animal fetal
studies, correlating these with several aspects of neural
growth and function, there has been no corresponding
human fetal research regarding associations with fetal growth

and adaptation to a hostile intrauterine environment. Fur-
thermore, there is also a lack of data concerning the role
of neurotrophic factors in macrosomia. Our aim was
therefore to measure the amniotic fluid levels of the neu-
rotrophic factor BDNF and to investigate their association
with fetal growth.

BDNF and its TrkB receptor are widely expressed in
both the developing and the adult mammalian brain, with
BDNF/TrkB-stimulated intracellular signaling being critical
for neuronal activity as well as for neuronal plasticity,
protection, metabolism, and survival [31]. Also crucially,
BDNF-positive neurons participate in the early develop-
ment of the frontal lobe of the human fetal cerebrum.
During the fourth month of gestation, at which stage our
amniocentesis was performed, BDNF-positive neurons grow
larger in size and BDNF-positive expression is enhanced
[32]. It has further been proposed that maternal BDNF, by
reaching the fetal brain via the utero-placental barrier, possi-
bly thereby supports the development of the fetal central
nervous system [33].

Fetal growth restriction (FGR) describes the condition in
which a fetus is unable to reach its genetically predetermined
growth potential. This may be due to anatomical or func-
tional diseases in the fetal-placental unit, whereby the fetus
adapts its circulation to redistribute oxygen, fetal blood flow,
and nutrient supply to the vital organs, i.e., the myocardium,
brain, and adrenal glands, this phenomenon known as the
brain-sparing effect. When this condition persists, it brings
about FGR. Given that the brain-sparing effect sometimes
occurs in full-term FGR infants, circulating neurotrophin
levels should be similar between late nonsevere FGR infants
and AGA infants. Previous studies have in fact demonstrated
that both groups display similar levels of circulating BDNF, a
finding possibly attributable to the activation of the brain-
sparing effect [34]. Nevertheless, there is still uncertainty as
regards the triggering of this response in early or very severe
FGR fetuses and macrosomic fetuses.

The neurotrophin family apart from BDNF and NGF is
composed of two more structurally related molecules:
neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4). Because
they exert neuroprotection, neurotrophins play a crucial role
in pre- and postnatal brain development. The BDNF neuro-
protective effect involves a number of pathophysiologic
aspects that include apoptosis, inflammation, intracellular
metabolism, and regeneration procedures. In particular,
there is strong evidence showing the beneficial impact of
BDNF on the survival of neurons via the antiapoptotic effect.
The means by which BDNF reduces neuron apoptosis is by
enhancing the expression of the Bcl-2 antiapoptosis protein
while limiting intracellular calcium overload [35].

Growth-restricted fetuses may exhibit fetal compromise,
with hypoxia being the main underlying pathophysiological
mechanism. It has been demonstrated in vitro that in the set-
ting of hypoxia-induced inflammation, BDNF stimulates
microglial proliferation and phagocytic activity while elevat-
ing the number of phagocytotic microglia and activated
microglia, which themselves secrete BDNF [36]. BDNF can
suppress TNF-α and its mRNA expression, this exacerbating
ischemia-induced injury, while it increases IL-10 and its
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Figure 2: Regression analysis line graph of variables, BDNF (pg/ml)
and fetal growth centile: a bimodal depiction of BDNF amniotic
fluid levels is shown.

Table 3: Distribution of BDNF (pg/ml) by fetal size group,
including the extremes of distribution (divided into three
subgroups for each 0th–10th and 90th–100th centile): significantly
higher BDNF levels are observed in the amniotic fluid of severely
growth-restricted fetuses (below 3rd centile).

Fetus N of cases Mean P value

AGA 31 32,700

SGA< 10th centile 30 36,300 0.09

SGA< 5th centile 18 36,900 0.09

SGA< 3rd centile 10 40,800 0.01

LGA> 90th centile 18 35,700 0.22

LGA> 95th centile 5 34,600 0.65

LGA> 97th centile 2 35,700 0.53
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mRNA expression, which play an anti-inflammatory neuro-
protective role [37]. The putative mechanism behind damage
to the developing brain is a neuroinflammatory response in
the fetal central nervous system resulting from fetal infection
and/or systemic inflammation [38]. What is more, BDNF
participates in the parallel activation of anti-inflammatory
mechanisms, which are thought to provide negative feedback
loops as well as to induce neuroprotective effects and possibly
also repair mechanisms in the developing brain [39].

Glucose depletion and ischemia, by bringing about pri-
mary energy failure, trigger a cascade of biochemical events,
leading to cell dysfunction. Meanwhile, a resultant reperfu-
sion injury often impairs brain metabolism aggravating the
damage caused by oxidative stress, with the main mediator
of oxidative stress damage being nitric oxide (NO) [40, 41].
BDNF resists NO-mediated glutamate metabolic cytotoxicity
depending on its concentration [42], the latter comprising a
possible neuroprotective role of BDNF in cases of FGR
fetuses who present an activated brain-sparing effect, as
well as macrosomic fetuses, especially in cases of maternal
diabetes. As neurogenesis involves cell proliferation, migra-
tion, and differentiation, the augmentation of BDNF around
the injured region is critical in facilitating regeneration
among central and peripheral neurons [43, 44]. As proin-
flammatory cytokines, such as TNF-α, IL-1, IL-6, and
IL-11, cause serious damage to the capillary endothelium
and the alveolar epithelium [45], BDNF may also protect
the fetal respiratory system.

Both in vitro and in vivo animal studies have revealed
BDNF to be involved in embryo implantation, placental
development, and fetal growth through its stimulation of
blastocyst outgrowth [46, 47] and trophoblast cell growth
and survival [48], as well as being necessary for further pla-
cental development [49]. Studies on human FGR placentas
have shown that expressions of both BDNF and its TrkB
receptor mRNA are upregulated [50].

According to our findings, it seems that an adaptive
mechanism accelerates fetal brain development and matura-
tion, a process that is induced by growth restriction chronic
hypoxia, this mechanism, expressed by increased BDNF
levels, becoming even more enhanced as the growth restric-
tion gets more critical. Interestingly, the above findings are
in accord with neonatal studies demonstrating that SGA
infants have significantly higher BDNF levels than AGA
infants [51].

Severely growth-restricted fetuses display a pattern of
several growth factor disturbances, including PLGF defi-
ciency [52, 53]. Moreover, severely low concentrations of
PLGF have been associated with impaired angiogenesis, pla-
centation, and placental development, resulting in complica-
tions, notably fetal growth restriction [53, 54]. Meanwhile,
there is partial modulation by PLGF of vascular endothelial
growth factor (VEGF) activity, the latter factor representing
the most potent mediator of angiogenesis [54]. BDNF, a
known promoter of endothelial cell survival, induces neoan-
giogenesis in ischemic tissues, thus complimenting the
development of the growth-restricted fetus [55]. BDNF and
NGF have, moreover, been implicated in the modulation of
angiogenesis [56].

According to our findings, fetal macrosomia also corre-
lates with elevated BDNF levels, providing a mirror image
of BDNF amniotic fluid levels as the fetal growth centile
increases, the latter possibly reflecting the advanced fetal
and placental mass. Diabetes is a major cause of fetal macro-
somia and, by extension, even perinatal morbidity. In
addition, intrauterine exposure to a diabetic environment
during pregnancy can impact the child long term, since it is
associated in the offspring with subclinical vascular inflam-
mation and endothelial dysfunction which are linked to the
development of cardiovascular disease later in life [57].
BDNF, as an anti-inflammatory mediator whose levels are
increased in macrosomic and diabetic pregnancies, may
partially reverse these consequences.

5. Conclusions

Our study is the first to confirm the presence of the neuro-
trophic factor BDNF in the amniotic fluid of early midtrime-
ster human pregnancies, with significantly higher BDNF
levels being observed in the amniotic fluid of severely
growth-restricted fetuses compared to normal fetuses. This
concerns a compensatory and adaptive mechanism, induced
by growth restriction, which accelerates fetal brain develop-
ment and maturation. Normally growing and macrosomic
fetuses demonstrate a different BDNF pattern from FGR
fetuses, leading to a bimodal depiction of BDNF amniotic
fluid levels as the fetal growth centile changes.

Through BDNF-stimulated intracellular signaling, BDNF,
a neurotrophin widely expressed in the developing fetal
brain, plays a vital role in supporting neuronal formation,
protection, and metabolism, while it additionally has a major
role in placental development and fetal growth. From the
clinical perspective, BDNF has been associated with the
pathophysiology of a number of pregnancy complications,
such as low birth weight and growth restriction. However,
it also demonstrates promise as a potential prognostic fac-
tor involved in the mechanisms underlying fetal growth
restriction and macrosomia, which often give rise to
maternal, fetal, and neonatal adverse outcomes. Further
studies validating our results and those of previous studies
will provide enhanced insight into the processes underlying
fetal growth.
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