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HIGHLIGHT (bullet points) 20 

1. The paraxanthine (PARA), the metabolite of the caffeine, is a more reliable population 21 
biomarker in SARS-CoV-2 wastewater-based epidemiology studies than the currently 22 
recommended pMMoV genetic marker. 23 

2. SARS-CoV-2 load per capita could be directly normalized using the regression 24 
functions derived from correlation between paraxanthine and population without 25 
flowrate and population data. 26 

3. Normalizing SARS-CoV-2 levels with the chemical marker PARA significantly 27 
improved the correlation between viral loads per capita and case numbers per capita. 28 

4. The chemical marker PARA demonstrated its excellent utility for real-time assessment 29 
of the population contributing to the wastewater. 30 

 31 
ABSTRACT 32 
Wastewater-based epidemiology (WBE) has been one of the most cost-effective approaches to 33 
track the SARS-CoV-2 levels in the communities since the COVID-19 outbreak in 2020. 34 
Normalizing SARS-CoV-2 concentrations by the population biomarkers in wastewater can be 35 
critical for interpreting the viral loads, comparing the epidemiological trends among the 36 
sewersheds, and identifying the vulnerable communities. In this study, five population 37 
biomarkers, pepper mild mottle virus (pMMoV), creatinine (CRE), 5-hydroxyindoleacetic acid 38 
(5-HIAA), caffeine (CAF) and its metabolite paraxanthine (PARA) were investigated for their 39 
utility in normalizing the SARS-CoV-2 loads through developed direct and indirect approaches. 40 
Their utility in assessing the real-time population contributing to the wastewater was also 41 
evaluated. The best performed candidate was further tested for its capacity for improving 42 
correlation between normalized SARS-CoV-2 loads and the clinical cases reported in the City 43 
of Columbia, Missouri, a university town with a constantly fluctuated population. Our results 44 
showed that, except CRE, the direct and indirect normalization approaches using biomarkers 45 
allow accounting for the changes in wastewater dilution and differences in relative human waste 46 
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input over time regardless flow volume and population at any given WWTP. Among selected 47 
biomarkers, PARA is the most reliable population biomarker in determining the SARS-CoV-2 48 
load per capita due to its high accuracy, low variability, and high temporal consistency to reflect 49 
the change in population dynamics and dilution in wastewater. It also demonstrated its excellent 50 
utility for real-time assessment of the population contributing to the wastewater. In addition, 51 
the viral loads normalized by the PARA-estimated population significantly improved the 52 
correlation (rho=0.5878, p<0.05) between SARS-CoV-2 load per capita and case numbers per 53 
capita.  This chemical biomarker offers an excellent alternative to the currently CDC-54 
recommended pMMoV genetic biomarker to help us understand the size, distribution, and 55 
dynamics of local populations for forecasting the prevalence of SARS-CoV2 within each 56 
sewershed. 57 
 58 
Keywords: Population Biomarker; SARS-CoV-2; Paraxanthine; Population normalization; 59 
Wastewater-based epidemiology 60 
 61 
 62 
1. INTRODUCTION 63 
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a pandemic 64 
declared by the World Health Organization (WHO) on March 11th, 2020 [1]. Despite clinical 65 
tests being sufficient and accurate, their time-consuming and often expensive process has not 66 
always been sufficient enough to track SARS-CoV-2 outbreaks at the population scale[2].  67 
Wastewater-based epidemiology (WBE) offers near real-time information about the outbreak 68 
to track SARS-CoV-2 in the communities [3]. It has been successfully used to predict the overall 69 
status of infection and to capture asymptomatic and pre-symptomatic infections in the given 70 
wastewater treatment plant (WWTP) served area [4]. Several studies in Europe, Australia, Japan, 71 
Singapore and the United States had used WBE approach. [4–12]. The State of Missouri 72 
launched a statewide wastewater SARS-CoV-2 surveillance program in May 2020. [13]. It has 73 
been successfully applied to 1) provide the early warning, 2) determine the distribution of 74 
SARS-CoV-2 and its variants in Missouri, 3) identify trends in SARS-CoV-2 prevalence in 75 
areas surveilled, and 4) monitor for indicators of SARS-CoV-2 reemergence to inform 76 
mitigation efforts.  77 

 78 
For long-term wastewater SARS-CoV-2 surveillance, normalizing SARS-CoV-2 wastewater 79 
concentrations prior to calculating trends is recommended by the United States Centers for 80 
Disease Control (CDC) to account for changes in wastewater dilution and differences in relative 81 
human waste input over time, due to tourism, weekday commuters, temporary workers, etc. 82 
Normalizing SARS-CoV-2 concentrations by the amount of human feces in wastewater can be 83 
crucial for interpreting and comparing viral concentrations in the sewage samples over time 84 
[14]. 85 

 86 
The recommended population biomarkers include organisms or chemical compounds specific 87 
to human feces that can be measured in wastewater to estimate the size of the population. These 88 
biomarkers include but are not limited to viral or bacterial molecular targets [15]. Pepper Mild 89 
Mottle Virus (pMMoV), a viral pathogen in Capsicum sp. that had been identified in several 90 
pepper-based products and diets [16], is one of the biomarkers recommended by the CDC [17]. 91 
Due to the abundance in pepper-based food, unaffected by seasonal change, persistence  in the 92 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 15, 2022. ; https://doi.org/10.1101/2022.03.14.22272359doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.14.22272359
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 3 

wastewater (with half-life from 6-10 days) from the populated area, the pMMoV was 93 
recognized as one of the promising population biomarkers [18,19]. 94 

 95 
In addition to the viral or bacterial genetic markers, small chemical molecules biomarkers were 96 
also utilized to estimate the population at the area served by given WWTP [20–25]. Several 97 
chemical markers, such as creatinine (CRE), 5-hydroxyindoleacetic acid (5-HIAA), caffeine 98 
(CAF), and its metabolite paraxanthine (PARA) have been reported as promising candidates  99 
[20–25]. Creatinine is the metabolite of creatine and phosphorylcreatine in the muscles. It is 100 
produced at a steady state, diffused out of muscle cells, and further excreted by kidneys into 101 
urine [26]. Urinary CRE was routinely used to account for dilution when testing human urine 102 
for illicit substances [27,28]. The serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) is 103 
the other promising endogenous molecule for this purpose. Clinical urinary 5-HIAA analysis is 104 
commonly performed to evaluate patients with suspected carcinoid syndrome [29]. The 5-HIAA 105 
in the wastewater was also used to estimate the population [22]. Both CRE and 5-HIAA had 106 
been quantified in the samples from WWTPs [30,31]. Rico et al. reported that 5-HIAA loads in 107 
the WWTP samples showed a positive correlation with the population calculated using the 108 
hydrochemical parameters [22]. Chen et al. reported that 5-HIAA levels were also correlated 109 
well with the census population [23].   110 
In additional to endogenous molecules, CAF,  a widely consumed central nervous system (CNS) 111 
stimulant [32], is commonly found in food products, including tea, coffee, and energy drinks, 112 
as well as in some medications and dietary supplements. The PARA is the major metabolite of 113 
CAF through the cytochrome P4501A2 (CYP1A2)-catalyzed 3-demethylation[33]. Several 114 
studies had detected CAF  and PARA in the wastewater [21,24,25,30,34]. Similar to 5-HIAA, 115 
researches have reported a positive correlation between CAF load and the population from 116 
census or population calculated by the hydrochemical parameters  [21,22]. The PARA level was 117 
found less affected by the genetic heterogeneity and population structure as compared to its 118 
parent compound CAF [33], suggesting PARA could also be a potential population biomarker. 119 
 120 
The goal of this study was to determine the most suitable population biomarker for SRAS-CoV-121 
2 wastewater surveillance.  Specific objectives were 1) to compare the variability and accuracy 122 
of the selected biomarkers for normalizing the SARS-CoV2 concentrations using two different 123 
approaches, 2) to identify the suitable biomarkers for estimating the real-time population 124 
contributing to the wastewater, and 3) to demonstrate the normalized SARS-CoV-2 loads per 125 
capita with the selected biomarkers against the clinic cases.   126 
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2. MATERIAL AND METHOD 127 
2.1 Chemicals and reagents.  128 
All of the analytical standards were purchased from Sigma-Aldrich (St. Louis, MO, USA) 129 
except 5-Hydroxyindoleacetic acid-[13C6] (5-HIAA-[13 C6]) (≥98%) was purchased from 130 
IsoSciences (Ambler, PA, USA). The HPLC grade methanol and acetonitrile used in these 131 
experiments were purchased from Sigma-Aldrich (St. Louis, MO, USA). The TaqPath™ 1-Step 132 
RT-qPCR Master Mix and the TaqMan probe for pMMoV gene detection were purchased from 133 
Fisher Scientific (USA). The primers and the TaqMan probes for N1 and N2 gene detections 134 
were purchased from Integrated DNA Technologies, Inc. (USA). Waters Oasis HLB SPE 135 
cartridge (500 mg) was purchased from Waters Milford, MA (USA). Whatman® Anotop® 136 
filters were purchased from Fisher Scientifics (USA). 137 

 138 
2.2 Wastewater sampling 139 
To develop the relationship between biomarkers and population, triplicates of 50 mL of the 24-140 
hour composite wastewater samples were collected once per week from the raw inlets, before 141 
the primary treatment, at 12 WWTPs (Table 1) in Missouri from 18th to 29th in January 2021. 142 
Following the correlation analysis, wastewater composite samples collected from 64 WWTPs 143 
(Table S1) across the State of Missouri, were used for method validation. They were collected 144 
during the week of May 10th in 2021. The WWTPs serve urban, semirural, and rural locations 145 
throughout Missouri with the sewershed population ranging from 4,600 to 306,647 (number of 146 
people estimated by WWTPs or Missouri Census). Ten wastewater composite samples were 147 
collected from WWTPs at the City of Columbia (college town) and a tourist town respectively 148 
through May to early September in 2021 (Table S2) for evaluating the utility of the biomarker 149 
for assessing the population fluctuation and dynamics. All of wastewater samples were 150 
transported in coolers with cold packs and then stored at 4°C until further extraction within two 151 
days. 152 
 153 
2.3 Detection of SARS-CoV-2 concentration 154 
2.3.1 RNA extraction from wastewater samples 155 
Fifty mL of wastewater from each catchment was filtered through a 0.22-micron filter 156 
(Millipore cat# SCGPOO525). Thirty-six mL of filtered wastewater were mixed with 12 mL of 157 
50% (W/V) polyethylene glycol (PEG, Research Products International, cat# P48080) and 1.2 158 
M NaCl, followed by incubation for 2 hours at 4°C. Samples were further centrifuged at 12,000 159 
Xg for 2 hours. RNA was extracted from the pellet using Qiagen Viral RNA extraction kit 160 
following the manufacturer’s instructions after the supernatant was removed. RNA was eluted 161 
in a final volume of 60 µL. The samples were stored at -80°C if they couldn’t be processed 162 
immediately. 163 

 164 
2.3.2 Plasmid standard preparation 165 
A plasmid carrying a pMMoV gene 180-bp fragment (Table 2) along with a N gene fragment 166 
was constructed, purified from Escherichia coli, and used as standards for the RT-qPCR assay. 167 
The primer pair, COVID19-N 5p and COVID19-N 3p (Table 2), was used to amplify the N 168 
ORF fragment from IDT’s 2019-nCoV_N_Positive Control plasmid and the N ORF fragments 169 
were infused using an InFusion kit (Takara) as described [35]. A standard curve was constructed 170 
at concentrations of 200,000 through 2 gene copies µL-1 and utilized to determine the copy 171 
number of the target pMMoV gene in the spiked wastewater samples.  172 
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 173 
2.3.3 Quantitative RT-qPCR assay 174 
The TaqMan probe 2019-nCoV_N1-Probe and the primer pair (2019-nCoV_N1-F and 2019-175 
nCoV_N1-R) for N1 detection, and The TaqMan probe 2019-nCoV_N2-Probe and the primer 176 
pair (2019-nCoV_N2-F and 2019-nCoV_N2-R) for N2 detection from Integrated DNA 177 
Technologies (IDT) were chosen based on the CDC 2019-nCoV Real-Time RT-PCR 178 
Diagnostic Panel (Acceptable Alternative Primer and Probe Sets). The sequences of probes and 179 
primers were listed in Table 2. Final RT-qPCR one-step mixtures for N1/N2 or pMMoV 180 
detection consisted of 5 µL TaqPath 1-step RT-qPCR Master Mix (Thermo Fisher), 500 nM of 181 
each primer, 125 nM of the TaqMan probes, 5 µl of wastewater RNA extract, and 182 
RNase/DNase-free water to reach a final volume of 20 µL. All RT-qPCR assays were performed 183 
in duplicate using a 7500 Fast real-time qPCR System (Applied Biosystems). The reactions 184 
were initiated with 1 cycle of UNG incubation at 25°C for 2 min and then 1 cycle of reverse 185 
transcription at 50°C for 15 min, followed by 1 cycle of activation of DNA polymerase at 95°C 186 
for 2 min and then 45 cycles of 95°C for 3 sec for DNA denaturation and 55°C for 30 sec for 187 
annealing and extension. The data would be collected at the step of 55°C extension.  188 

 189 
2.4 Quantification of biomarkers 190 
2.4.1 Detection of pMMoV viral concentration 191 
The TaqMan probe (pMMoV Probe) and the primer pair (pMMoV Forward and pMMoV Reverse, 192 
Table 2) were designed and used to target the pMMoV RNA. The specificity of primers and 193 
probe were tested by BLAST analysis (NCBI) to prevent known nonspecific binding targets 194 
that could be obtained in a human specimen. The pMMoV concentration in the wastewater 195 
sample is determined by the quantitative RT-qPCR assay as described above. 196 

 197 
2.4.2 Extraction of 5-hydroxyindoleacetic acid 198 
The wastewater was filtered through a 0.2 µm Whatman® Anotop® filter. Twenty ml of filtered 199 
wastewater was fortified with 20 µL of 100 ppm 5-HIAA-13C6 followed by solid-phase 200 
extraction (SPE) using Waters Oasis HLB SPE cartridge (500 mg). The extracts on the SPE 201 
cartridge were eluted with the mixture of 50% acetonitrile (ACN) and 50% methanol. The 202 
samples were resuspended with ACN after evaporation. Samples were stored at -20 °C until 203 
analyzed by the high-performance liquid chromatography-tandem mass spectrometry (LC-204 
MSMS) analysis.  205 
 206 
2.4.3 Extraction of creatinine, caffeine, and paraxanthine 207 
One thousand and six hundred µL of a subsample from filtered wastewater was spiked with 10 208 
µL of formic acid followed by a vortexing vigorously. The mixture was centrifuged at 10,000 209 
rpm for 10 mins. Seven hundred fifty µl of supernatant was mixed with 750 µl of LC-MSMS 210 
buffer (10 mM ammonium acetate and 0.1% formic acid in water) followed by fortification of 211 
20 µl of 76 ppm caffeine-C13 or creatinine-D3. The mixture was filtered through a 0.2 µm 212 
Anotop PTFE filter before the LC-MSMS analysis. 213 
 214 
2.4.4 Liquid chromatography-tandem mass spectrometry analysis 215 
The quantification of 5-HIAA, creatinine, caffeine, and paraxanthine was performed by a 216 
Waters Alliance 2695 High Performance Liquid Chromatography (HPLC) system coupled with 217 
Waters Acquity TQ triple quadrupole mass spectrometer (MS/MS). The analytes were separated 218 
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using a Phenomenex (Torrance, CA) Kinetex C18 (100mm x 4.6 mm; 2.6 µm particle size) 219 
reverse-phase column. The mobile phase consisted of (A)10 mM ammonium acetate and 0.1% 220 
formic acid in water and (B) 100% acetonitrile. The gradient conditions were 0 – 0.3 min, 2% 221 
B; 0.3-7.27 min, 2-80% B; 7.27-7.37 min, 80-98% B; 7.37-9.0 min, 98% B; 9-10 min 98-2% 222 
B; 10.0 – 15.0 min, 2% B at the flow rate of 0.5 mL/min. The ion source in the MS/MS system 223 
was electrospray ionization (EI) operated in either positive or negative ion mode with a capillary 224 
voltage of 1.5 kV. The ionization sources were programmed at 150°C and the desolvation 225 
temperature was programmed at 450°C. The optimized collision energy, cone voltage, 226 
molecular and product ions of biomarkers are summarized in Table 3. 227 
 228 
2.5 Normalization of SARS-CoV-2 concentration with biomarker concentration. 229 
Two approaches were proposed to normalize SARS-CoV-2 concentration in the wastewater 230 
using the established regression functions from the linear regression models, assuming that the 231 
biomarker load is proportional to the population in the wastewater composite (Fig. 1). This 232 
section presents the methods of (1) determining the regression functions and (2) normalizing 233 
SARS-CoV-2 concentrations using biomarker concentrations are presented. 234 

 235 
2.5.1 Relationships between biomarker concentration and population concentration in 236 

wastewater 237 
The population concentration is expressed as 238 

 239 

["!] =
"!
#!	

 (1) 240 

 241 
in which, [P j] is the population concentration in the wastewater for WWTP j. Both the 242 
population Pj and the daily flow volume Vj (MGal, million gallons) for WWTP j are provided 243 
in metadata (Table 1). The population concentration [P] is modeled as 244 

 245 
[%%!] = &%["!] +∈%  (2) 246 

 247 
where [B ij] is the concentration of biomarker i in WWTP j sample, the corresponding population 248 
concentration [P j], the error term ∈i, and the estimated parameter βi for biomarker i. The error 249 
term accounts for differences in biomarker concentration from daily variations at the locations. 250 
To avoid any skewness, Log-transformed population and biomarker concentrations were further 251 
used to fit a linear regression model. The Pearson’s correlation coefficient (r) was calculated. 252 

 253 
2.5.2 Relationships between biomarker loads and population size 254 
Daily flow volume was taken into consideration before the relationship between daily 255 
biomarker load and the population contributing to the wastewater was examined. The biomarker 256 
load of biomarker i for WWTP j, Bij, was calculated as  257 

 258 
%%! = [%%!] × *!  (3) 259 

 260 
in which, [B ij], the biomarker i concentration in WWTP j wastewater samples, was determined 261 
by LC-MSMS. The population P is modeled as  262 

 263 
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%%! = &%"! +∈% (4) 264 
 265 

Where Bij is the daily i biomarker load, Pj the population from metadata at WWTP j. 266 
 267 

2.5.3 Developing the normalization scheme derived from metadata 268 
According to the CDC’s guideline, the normalization of SARS-CoV-2 load (copy/person/day) 269 
is expressed and calculated as  270 

 271 
#%&'(	()'*
")+,('-%).  (5) 272 

= 
[01.03]"#$"×6×(#×8.9:;1×1<%)

"  273 

=[+1, +2]>?@> × 6×A#×8.9:;1×1<%B
"  274 

=[+1, +2]>?@> × /< 275 
 276 

in which, [N1, N2]SARS (copies/µL)  is the average of replicated N1 and N2 concentrations (n=4) 277 
in the wastewater samples. E, concentration factor, 350, transforms unit of concentration from 278 
copies/µL of RNA to copies/L of wastewater. Daily flow volume V `(MGal, million gallons) 279 
and population P are provided in Metadata.  A constant, 3.78541, is applied to convert the 280 
imperial unit to metric unit. In the las line, all variables and constants are designated as 281 
normalization coefficient 0 (C0) except [N1,N2]SARS. The unit of normalized SARS-CoV-2 load 282 
per capita turns into copies per person. 283 

 284 
2.5.4 Developing the normalization scheme derived from the relationship between 285 

biomarker concentration and population concentration 286 
The population concentration estimated by biomarker concentration in the wastewater was 287 
utilized in the direct normalization approach. The correlation between the biomarker i 288 
concentrations and population in wastewater is expressed as 289 

 290 

[%%]~ "&'
#&'

  (6) 291 

1
[%%]

~ *%
C

"%C
 292 

  293 
in which population P i’ and daily flow volume V i ’ were estimated using biomarker i 294 
concentration in the Eq. (2). The reciprocal of the estimated population P i’ and daily flow 295 
volume V i ’ were unitized in SARS-CoV-2 load normalization process: 296 
 297 
#%&'(	()'*
")+,('-%).	  (7) 298 

= 
[01.03]"#$"×6×(#×8.9:;1×1<%)

"  299 

= 
[01.03]"#$"×6×(#&'×8.9:;1×1<%)

"&'
 300 

= [+1, +2]>?@> × 6×A#&'×8.9:;1×1<%B
"&'

 301 

=[+1, +2]>?@> × /1(%) 302 
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 303 
in which, the P and V in line 2 are replaced with P’i and V’i in Eq. (6) resulting in line 3. Except 304 
[N1,N2]SARS, all of variables and constants were designated as normalization coefficient 1, C1(i), 305 
for biomarker i in the direct approach. The C1(i) was further standardized by C0 as  306 

 307 

2345	6ℎ89:; = D((&)
D+

  (8) 308 

 309 
The fold change was utilized to assess the fitness, precision, and the variability of the 310 
biomarkers. 311 
 312 
2.5.5 Developing the normalization scheme derived from the relationship between 313 

biomarker loads and population 314 
The population estimated by biomarker loads in the wastewater were used in the indirect  315 
biomarker to fall into the linear range of the correlation: 316 

 317 
[%%] × 10EF	:/>  (9) 318 

 = [G&]×1<,
1<- 	:/> 319 

  320 
in which, [B i] is the concentration of biomarker i (µg/L or copies/L). The population was 321 
estimated using [B] ´ 103 as B in the Eq. (4), and the unit of estimated population concentration 322 
([P’]) became person/L. The population concentration ([P i]’) estimated by biomarker i is further 323 
utilized in SARS-CoV-2 load normalization below: 324 
  325 
#%&'(	()'*
")+,('-%). (10) 326 

= 
[01.03]"#$"×6×(#×8.9:;1×1<%)

"  327 

= 
[01.03]"#$"×6×(#×8.9:;1×1<%)
[G]&×1<.%×(#×8.9:;1×1<%)

 328 

= 
[01.03]"#$"×6×(#×8.9:;1×1<%)×1<-

[G&]×1<,×(#×8.9:;1×1<%)
 329 

= 
[01.03]"#$"×6×1<-

[G&]×1<,
 330 

= 
[01.03]"#$"×6×1<-

["&]'
 331 

= [+1, +2]>?@> × 6×1<-
["&]'

 332 

=[+1, +2]>?@> × /3(%) 333 
 334 
in which, the daily flow volume and constants in both numerator and denominator were 335 
canceled out in line 3, which resulted in line 4. Except [N1,N2]SARS, all of variables and constants 336 
were designated as normalization coefficient 2, C2(i), for biomarker i in the indirect approach. 337 
The C2(i) was further standardized by the C0 as 338 
 339 

2345	6ℎ89:; = D/(&)
D+

  (11) 340 

 341 
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2.6 Validation of normalization coefficients 342 
The regression function of two approaches were established to normalize SARS-CoV-2 load 343 
using the 24 samples collected in January 2021 (Table 1). Samples collected from 64 WWTPs 344 
in May 2021 (Table S1) were utilized as testing data set to validate the estimation of the 345 
normalization coefficients (C1(i) and C2(i)) from two approaches. During the validation, C0 was 346 
calculated using Metadata in Eq. (5). The C1(i) and C2(i) were calculated using the concentration 347 
of CAF and PARA with Eq. (7) and (10), respectively, followed by standardization with C0 to 348 
evaluate the fitness, precision, and the variability. 349 

 350 
2.7 Estimation of population contributing to the wastewater  351 
2.7.1 Linear regression model 352 
To determine the accuracy and precision of population estimated by different biomarkers, the 353 
log-transformed biomarkers loads (n=24) , collected from 12 WWTPs across the State of 354 
Missouri (Table1), were used as predictor variable to fit the linear regression model in R.  355 

 356 
" = &%%% + ?% (12) 357 
 358 
Nineteen of the data points (approximately 80%) was randomly selected as training data set to 359 
fit the model, and the rest 5 data points were used as test data set. The adjusted R2 and the mean 360 
square error (MSE) were utilized to evaluate the model fitting and prediction accuracy, 361 
respectively. A k-fold cross-validation (k = 5) was performed to eliminate the poor prediction 362 
from the outliers and determine the overall predictive capability of the model based the 5-fold 363 
cross-validation MSE [36].  364 
 365 
2.7.2 Estimation of real-time populations for City of Columbia (college Town) and a 366 

Tourist Town 367 
The population contributing to the sewershed was expected to fluctuate over the surveillance 368 
period due to tourism, weekday commuters, temporary workers, and quarantine etc. To monitor 369 
the population fluctuation, wastewater samples were collected from the WWTPs of City of 370 
Columbia (college town) and a tourist town over 10 time points (Table S2). The PARA load at 371 
each given time was calculated using PARA concentration and the daily flow volume reported 372 
in the metadata as in Eq. (3). The population at each given time was further estimated using the 373 
linear regression model built from Eq. (4) and the calculated PARA loads. 374 

 375 
2.8 Relationships between SARS-CoV-2 load in wastewater and clinical prevalence 376 
The weekly average of SARS-CoV-2 clinical case numbers in City of Columbia was collected 377 
from May to September 2021. C0 was calculated using metadata in Eq. (5); C2(PARA) was 378 
calculated using the concentration of PARA in Eq. (10). SARS-CoV-2 concentration was 379 
normalized by C0 and C2(PARA) depending on the scenarios: (1) SARS-CoV-2 load per capita 380 
normalized by metadata versus clinical cases normalized by metadata, (2) SARS-CoV-2 load 381 
per capita normalized by C2(PARA) versus clinical cases normalized by metadata and (3) SARS-382 
CoV-2 load per capita normalized by C2(PARA) versus clinical cases normalized by PARA-383 
estimated population using Eq. (12). Spearman’s correlation analysis was performed to examine 384 
the correlation between normalized SARS-CoV-2 concentration and one-week average clinical 385 
case numbers. 386 
  387 
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3. RESULTS 388 
3.1 Relationships between biomarkers and population 389 
Twenty-four samples collected from 12 WWTPs in the state of Missouri (Table 1) were used 390 
to explore the correlation between biomarkers and population using Eq. (2) or biomarker and 391 
population concentrations using Eq. (4). The linear regression models were fitted by either the 392 
biomarker concentration and population concentration ([P]) in Eq. (2) or biomarker loads and 393 
population in Eq. (4). The R square (R2) represents the variation of population/population 394 
concentration explained by the model. The Pearson’s correlation coefficient (r) represents the 395 
strength of the correlation.  396 
 397 
The concentrations of CAF showed the highest correlation (Pearson coefficients, r = 0.810) 398 
with the population concentration in wastewater ([P]), followed by the concentrations of PARA 399 
(r = 0.774), pMMoV (r = 0.598), 5-HIAA (r =0.59), and CRE (r = 0.06) (Fig. 2 and Table S3). 400 
Log-transformation has been widely used to process the skewed data. It helps to decrease the 401 
variability of data and make data conform more closely to the normal distribution [37]. After 402 
log-transformation, the correlation coefficients were increased to 0.886 for CAF, 0.861 for 403 
PARA, 0.720 for 5-HIAA, and 0.707 for pMMoV (Fig. 3), however, it was not improved for 404 
CRE. 405 
 406 
The daily load of CAF exhibited the highest correlation (r = 0.99) with population, followed by 407 
the daily load of 5-HIAA (r = 0.98), pMMoV (r = 0.98), PARA (r = 0.97), and CRE (r = 0.22) 408 
(Fig. 4 and Table S4). Similarly, log-transformation significantly improved the correlation of 409 
all five coefficients. The PARA and CAF daily load showed the highest correlation (r = 0.97 410 
and 0.97, respectively) with the population, followed pMMoV load (r = 0.92), 5-HIAA load (r 411 
= 0.87), and CRE load (r = 0.33) after log-transformation (Fig. 5).  412 
 413 
3.2 Comparison of Normalization coefficients among Different Biomarkers 414 

The normalization coefficient (C1(i) or C2(i)) calculated from biomarker concentration were 415 
utilized to normalize SARS-CoV-2 viral load.  A reliable biomarker for population normalization 416 
should achieve high precision and low variability, meaning that the normalization coefficient 417 
(C1(i) or C2(i) for biomarker i) should be comparable to C0 calculated from the population and 418 
daily flow volume derived from metadata. Hence, when the normalization coefficients from 419 
different biomarkers were standardized by C0 as fold change (C1(i)/C0), the closer to 1 (y=1) the 420 
fold change is, the higher precision and lower variability the biomarker obtains.  421 
 422 
In the direct normalization approach, C1(i) were calculated using the Eq (7) and biomarker 423 
concentrations. CAF outperformed other biomarkers resulting from the lower variation, and 424 
higher precision in comparison of the C1(i) of all other biomarkers (Fig. 6 and Table S5). Most of 425 
C1(5-HIAA) and C1(pMMoV) among wastewater facilities showed variation above the baseline (y = 1), 426 
which could result in over-normalization of SARS-CoV-2. The relatively high variation of C1(5-427 
HIAA) and C1(pMMoV) could over-normalize or under-normalize. The C1(CRE) results were not 428 
included in this comparison due to its poor correlation with population. Therefore, the results 429 
suggested that the CAF should be the most suitable biomarker for the direct normalization 430 
approach, followed by PARA, 5-HIAA and then pMMoV at last.  431 
 432 
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In the indirect normalization approach, the normalization coefficients (C2(i)) were calculated with 433 
the data-transformed biomarker concentrations in Eq (9), followed by standardization by C0 and 434 
expressed as fold change (C2(i)/C0). The fold change (C2(PARA)/C0) of PARA outperformed other 435 
biomarkers due to its lower variation, and higher precision (Fig. 7 and Table S6). Among all 436 
biomarkers, CRE exhibited the highest variation and lowest precision. Thus, the most suitable 437 
biomarker for the indirect normalization approach would be PARA, followed by CAF, pMMoV 438 
and 5-HIAA. 439 
 440 
3.3 Normalization of SARS-CoV-2 load per capita 441 
The SARS-CoV-2 loads normalized by biomarkers (copies/person) were directly calculated by 442 
multiplying the viral concentrations with the normalization coefficient of the corresponding 443 
biomarker. Fig. 8 demonstrated the biomarker-normalized viral per capita of each selected 444 
facility in the State of Missouri for the week of January 19th and week of January 23rd, 2021. 445 
Among all the facilities, the community within BROOK sewershed was identified as the most 446 
vulnerable community due to the highest viral loads per-capita (Fig. 8). 447 

 448 
3.4 Validation of normalization coefficients 449 
Based on the value of fold change, CAF and PARA achieved the lowest variability and highest 450 
accuracy, and precision (Figures 6 and 7). These normalization approaches were further 451 
validated the using wastewater samples collected from 64 WWTPs in the State of Missouri in 452 
May 2021 (Table S1). The normalization coefficients, C1(CAF), C1(PARA), C2(CAF) and C2(PARA), for 453 
each WWTP was calculated using the established regression functions between CAF/PARA 454 
and population (Table S3 and S4) without metadata. These coefficients were normalized by C0 455 
derived from metadata to assess the fitness, precision, and variability.  456 
 457 
There was no significant difference between the normalization coefficients of CAF and PARA 458 
when the direct approach or indirect approach was applied (Fig. 9). The fold changes of CAF 459 
and PARA from direct and indirect approach were close to 1 (high precision and low variability). 460 
These results not only consistent with the results shown in Figure 4 and 5 but also indicated that 461 
the regression functions developed in this study could be used for normalizing SARS-CoV-2 462 
load without metadata in the future. 463 

 464 
3.5 Estimation of real-time population contributing to the wastewater 465 
The precision of real-time biomarker-estimated populations were assessed by fitting regression 466 
models with the biomarker loads using R program. PARA achieved the highest adjusted R 467 
square, followed by CAF, 5-HIAA, pMMoV and CRE (Table 4). PARA showed the lowest 468 
mean square error (MSE), which is the parameter used for assessing the prediction accuracy by 469 
the developed model and it was increased in the order of CAF, pMMoV, 5-HIAA and CRE. 470 
Again, PARA obtained the lowest 5-fold cross-validation MSE, suggesting that PARA is the 471 
most suitable biomarker for estimating the population. 472 
 473 
To accurately normalize SARS-CoV-2 loads per capita over time, the populations at a college 474 
town and a tourist town were estimated using the PARA concentrations in wastewater samples 475 
collected through May to early September in 2021. When the daily flow volume was available, 476 
the real-time population was predicted by the biomarker loads using the established biomarker 477 
loads vs. populations regression functions in Eq. (3) (Table S4). The results showed the real-478 
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time population dynamic of population at City of Columbia, especially in late May, August, and 479 
early September (Fig. 10A). The variation of estimated populations in Columbia were from -480 
36% to 8% compared to the population reported in Metadata. The change in the real-time 481 
population from May to early September in a tourist town were observed in similar pattern (Fig. 482 
10B). 483 

 484 
3.6 Correlation between SARS-CoV-2 load per capita and clinical prevalence. 485 
It was demonstrated in Fig. 11 that the relation between SARS-CoV-2 levels in the wastewater 486 
and clinical cases could be mispresented without a proper normalization using a reliable 487 
population marker.  This is mainly attributed to that the population in the City of Columbia was 488 
constantly fluctuating over the surveillance period (Fig. 10A). The Spearman’s rank correlation 489 
was performed to understand the correlation between viral loads and prevalence data [38].  490 
Spearman’s correlation coefficient, rho, represents strength of the correlation between viral 491 
loads and prevalence data.  492 
 493 
For instance, the correlation between the average weekly case number and the SARS-CoV-2 494 
concentration over time was insignificant (rho = 0.5152, p < 0.1) before normalization (Fig. 495 
11A). The rho was reduced to 0.47 (p < 0.1) after the viral concentration and clinical case 496 
number were both normalized by the fixed population from the metadata (through population 497 
census) (Fig. 11B). Similarly, as the viral concentration normalized by PARA-estimated 498 
population plotted against the clinical case numbers normalized by metadata, rho dropped to 499 
0.50 (p < 0.1) (Fig. 11C). In contrast, when both viral load and clinical case number were 500 
properly normalized using PARA, the correlation was positive and moderate (rho = 0.59, p < 501 
0.05) (Fig. 11D).   502 
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4. DISCUSSION 503 
4.1 Population Biomarker selection 504 
Although the United States Centers for Disease Control (CDC) has recommended using 505 
pMMoV as population fecal biomarker to normalize SARS-CoV-2 concentrations, our findings 506 
suggested that the chemical marker, PARA, is more reliable population biomarker, due to its 1) 507 
better population indicators with higher accuracy, lower variability and higher temporal 508 
consistency, 2) very limited exogenous sources, 3) high extraction efficiency with low 509 
variability, 3) high stability, 4) resistant to chemicals in the wastewater, and 5) low sample 510 
volume requirement with simple sample preparation process. 511 
 512 
The log-transformed PARA daily load demonstrated better correlation with population (r =0.97) 513 
as compared to pMMoV (r = 0.92, Fig.4). For both direct and indirect normalization approaches, 514 
PARA always outperform pMMoV and showed more accurate normalization coefficients with 515 
lower variability. 516 
 517 
Pepper Mild Mottle virus (pMMoV), a single stranded RNA virus commonly found in the diet, 518 
has been an attractive marker used for human fecal normalization since it has high 519 
concentrations in sewage and can be used simultaneously quantified as the targets SARS-CoV-520 
2 viral nucleic acid using the multiplex platforms. The PMMoV is constantly excreted by human 521 
and unaffected by seasonal variations in wastewater [3,19,39]. Our findings demonstrated that 522 
this genetic biomarker showing positive correlation with population (r =0.92, Fig. 4), which is 523 
consistent with the findings reported by D'Aoust et al. [40].   524 
 525 
However, the exogenous sources [16,18], variation in the extraction rates [41], and relatively 526 
short half-life as compared to several chemical biomarkers have been the main drawbacks of 527 
pMMoV. These drawbacks might have contributed to its lower correlation coefficients as 528 
compared to CAF and PARA in this study. The pMMoV has been widely detected in the 529 
groundwater, irrigation water and surface water (rivers, ponds). For example, Rosiles-González 530 
et al. detected pMMoV in the groundwater during the raining season and the concentration of 531 
pMMoV didn’t correlate with other fecal indicator, such as E. coli. Asami et al. also reported 532 
similar results that pMMoV concentrations changed between dry and wet seasons in dirking 533 
water sources, whereas E. coli counts remained unchanged [42]. The pMMoV was also detected 534 
in 100% of river water samples collected near North Rhine Westphalia region (NRW), one of 535 
the most populated areas in Germany, at concentrations ranging from 103–106 genome copies 536 
GC/L, while the concentrations of pMMoV in wastewaters is often ranging from 106 to 1010 537 
GC/L [43].  Previous studies also reported the presence of pMMoV in pond and irrigation waters. 538 
Kuroda et al. reported that pMMoV was detected in 91% of samples collected form the pond 539 
waters, with concentrations ranging from non-detectable to 1.2 × 105 GC/L. Similarly, pMMoV 540 
was found in 100% samples collected from the irrigation waters [44]. In addition, recently, 541 
several SARS-CoV-2 wastewater surveillance projects in the U.S. have reported the increased 542 
levels of pMMoV after the major stormwater events. Further investigation suggested the 543 
potential exogenous sources of the pMMoV from agricultural soils, suspended sediments and 544 
fertilizers (personal communication).  545 
 546 
Variations in the extraction rates of pMMoV that have been widely reported is another 547 
drawback [45–47].  Feng et al. reported a recovery of 45±26% pMMoV using direct extraction 548 
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with HA filters. The pMMoV was also poorly correlated with the recovery of the SARS-CoV-549 
2 enveloped virus [40]. Similarly, Kato et al. reported a wide variability of the pMMoV recovery 550 
efficiencies with typical recovery rates only greater than >10% when concentrating using 551 
electronegative filters [47]. The high variability among different concentration techniques for 552 
pMMoV analysis, including direct extraction, HA filtration, filtration with bead bearing, PEG 553 
precipitation, and ultrafiltration have been illustrated by LaTurner et al.[46]. The coefficient of 554 
variation (%CV) for these concentration techniques range from 25.9% to 49.8%. Feng et al. 555 
reported that the variability in the pMMoV extraction rates might have contributed to the 556 
decreased correlation coefficient between the normalized SARS-CoV-2 concentration and the 557 
clinic cases in most of WWTP facilities reported by previous studies [45]. Among the genic 558 
fecal markers, although pMMOV has demonstrated a less variable RNA signal compared to 559 
Bacteroides 16S rRNA or human eukaryotic 18S rRNA, the variability of pMMOV assay could 560 
be significant with Ct variance from 1.18 to 1.34 [40,45]. 561 
 562 
Although pMMoV has been known to be persistent in the soils, the results of an incubation 563 
study suggested that the half-lives of the pMMoV in river water ranges from 7 to 10 days, 564 
depending on the temperatures. At 0oC, PMMoV showed 1.1 log10 reduction (7.9 % remaining) 565 
after 21 days of incubation in river water with PMMoV half-life of about 7 days. At 25C, 566 
PMMoV showed 3.7 log10 reduction (0.02 % remaining) after 21 days of incubation in river 567 
water with a half-life of about 10 days. As compared to more stable CAF and PARA, the relative 568 
short half-life of the pMMoV suggest that the pMMoV assays need to be completed within 1 569 
week after the samples are received, even they are properly stored at 4C. Moreover, despite that 570 
no inhibition observed in  the one step RT-qPCR assay in our study, RT-qPCR inhibition have 571 
been reported by several studies [47]. Quality control internal standards, and dilution protocols 572 
are often required to account for any PCR inhibition.  Incorporation of the internal positive 573 
control, such as a modified targeted gene sequence or CGMMV are often required to correct 574 
the variation in the extraction efficiency plus any potential inhibition [47]. 575 
 576 
On the other hand, both CAF and PARA, the major metabolite of caffeine, exhibited good, 577 
consistent high recovery rates and high stability in the wastewater as compared to pMMPoV 578 
(Table 5). The average recovery rates of CAF and PARA in our study were 101% and 92% with 579 
standard deviation of ±7% and ±3%, respectively, similar to 73% to 109% for  CAF and its 580 
metabolites reported by Driver et al. [24]. Both CAF and PARA were found to be relatively 581 
stable in the sewer system [48]. The CAF and PARA have several unique characteristics that 582 
are critical to serve as the reliable chemical fecal population markers. They are highly soluble 583 
in water (13 g L−1) with a very low hydrophobicity (octanol-water coefficient log Kow = −0.07), 584 
insignificant volatility and its half-life is about 10 years [49–52]. Due to the high polarity and 585 
water solubility, CAF and PARA will less likely to adhere to the solids fraction of wastewaters 586 
via electrostatic and/or hydrophobic partitioning effects as the pMMoV biomarker described by 587 
Armanious et al.[53]. As the wastewater stored at  -20°C, the PARA could be stable for at least 588 
4 weeks or more [25,48]. With the new modified direct methanol dilution extraction protocol 589 
(50% methanol), we anticipate that the CAF and PARA extracts could be stable beyond several 590 
months when they are stored at -20 Co under the 50% methanol sterilized solution [54].  591 
 592 
In addition, the sample volume required for analysis for PARA is less than 2 mL (0. 1mL with 593 
a modified methanol extraction protocol), that is significantly less than 25-50 mL sample 594 
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volume required for pMMoV analysis (Table 5). Another advantage for using PARA as the 595 
fecal marker is that it required less sample preparation time and processes. An average sample 596 
preparation time for PARA analysis was less than 30 minutes/6 samples, with new modified 597 
methanol extraction protocols, it could be further reduced to 10 minutes/6 samples, while the 598 
sample preparation time (e.g., extraction and concentration) for pMMoV analysis often takes 599 
approximate 3 hours. Most importantly, unlike CAF and pMMoV, PARA is the metabolite 600 
product generated through the human consumption of the caffeinated products (coffee, tea and 601 
caffeinated drinks), indicating that human is the major source contributing PARA in the 602 
wastewater. In humans, 80% of caffeine is metabolized into paraxanthine [55]. The production 603 
of the PARA could be also attributed to the microbial degradation of caffeine in the 604 
environments, however since it is not the predominant microbial degradation pathway, the 605 
amount of PARA produced through this process is very limited [56]. Therefore, we could 606 
assume that PARA loading in WWTP was mostly generated through human consumption of 607 
caffeine.  Unlike the PARA, the CAF loading might result from discarded caffeinated products, 608 
and therefore, make CAF less desirable population biomarker. 609 
 610 
Other biomarkers do not meet the criteria of population biomarker. Creatinine, the metabolite 611 
of muscle, didn’t correlate with population, consistent with the results reported by Thai et al. 612 
[57,58]. The poor correlation could be due to its instability in wastewater treatment designs and 613 
processes, high variance of intra- and extra- individual excretion [57,59]. The 5-HIAA, one of 614 
the major metabolites of serotonin, correlated with population well and it has been reported to 615 
be stable in wastewater [58]. Nevertheless, the low concentrations in the wastewater and the 616 
observed coeluted interferences in the LCMSMS analysis, the time required for sample 617 
preparation and cleanup, particular the time-consuming concentration and cleanup processes 618 
through solid-phase extraction (SPE), make the 5-HIAA not an ideal marker candidate for real-619 
time and rapid analysis. In addition, a sensitive tandem mass spectrometer is the only option for 620 
quantifying the 5-HIAA in the wastewater due to its low sub-ppb to ppb concentration range, 621 
while CAF and PARA could be quantified by other less-expensive alternative analytical 622 
techniques, such as gas chromatography–mass spectrometer (GC-MS), high-performance liquid 623 
chromatography coupled with photodiode-array detector (HPLC-PDA) due to their much higher 624 
concentrations in the wastewater sample[60,61].  625 
 626 
4.2 Normalization of SARS-CoV-2 load and method validation 627 
The utility of chemical biomarkers for human fecal normalization in SRAS-CoV-2 WBE 628 
surveillance was so far very limited. This study investigated several alternative chemical 629 
population biomarkers in SARS-CoV-2 WBE. These chemical population biomarkers were 630 
extracted and analyzed by LCMSMS. The concentrations of biomarkers were applied to the 631 
exercise in correlation with population to generate their normalization coefficient. The SARS-632 
CoV-2 loads per capita were normalized using the normalization coefficient of each chemical 633 
population biomarker. Both direct and indirect approaches aimed at precisely estimating the 634 
population concentration (population per MGal) that would be applied in the following 635 
determination of the viral load per capita (Fig. 3 and 5). The normalization coefficient calculated 636 
from different biomarker can be compared and evaluated before SARS-CoV-2 concentration 637 
involved. Most importantly, our normalization approaches can be proceeded without daily flow 638 
volume and the size of the population using the regression functions established in this study 639 
(Table S3 and S4). However, the traditional normalization requires the information of the daily 640 
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flow volume and population size. The SARS-CoV-2 concentration was converted to mass using 641 
daily flow volume, followed by being divided by population served by the WWTP (Fig. 1A) to 642 
obtain viral loads per capita.  643 
 644 
In our normalization approaches, the parameter fold changes, the normalization coefficients (C1 645 
and C2) standardized by C0 (from metadata), were utilized to evaluate the fitness of the 646 
biomarkers for each normalization approach as compared to the traditional method. The fold 647 
change that is closes to 1 indicates the highest accuracy. For example, in the direct approach, 648 
fold changes for CAF and PARA were 1.041±0.3111 (mean±standard deviation) and 649 
1.057±0.389, respectively, and 0.967±0.324 and 1.042±0.341, respectively, in the indirectly 650 
approach.Both CAF and PARA showed high accuracy and low variability in either approach. 651 
On the contrary, the fold changes of 5-HIAA and pMMoV showed significantly difference by 652 
between two approaches. The 5-HIAA fold change was 1.150±0.661with the direct approach 653 
but 1.470±1.144 in the indirect approach, whereas pMMoV performed better (1.003±0.586) 654 
with the indirect approach than (1.166±0.737) in the direct approach. (Table S5 and S6). The 655 
high accuracy and low variability by CAF and PARA are possibly attributed to high 656 
reproducibility of the analysis, high recovery rates, stability of these molecules, and low 657 
adsorption affinity to the solids fraction of wastewaters. 658 
 659 
Furthermore, the regression functions established by CAF and PARA in our two approaches 660 
can be utilized to determine the population concentration in the long-term monitoring without 661 
knowing daily flow volume and population size in the future WBE applications. The 662 
normalization approaches were validated using additional 64 samples collected from May 2021 663 
(Table S1) with the established regression functions of CAF and PARA. The fold changes of 664 
CAF and PARA from these additional 64 samples obtained high precision and low variation in 665 
both direct and indirect approaches (Fig 9), consistent with our results from the developed 666 
models (Fig 6 and 7). 667 
 668 
This is the first study to normalize the SARS-CoV-2 load with biomarker estimated population 669 
and to accomplish viral load per capita with a universal unit ¾ copies/person. Most of the 670 
previous studies utilized biomarker to normalize SARS-CoV-2 concentrations but got a unitless 671 
results (eg. N1/N2 copies/copies of genetic biomarker). Green et al. reported the ratio of SARS-672 
CoV-2:crAssphage in the wastewater; N1 or N2 copies/copies of biomarker (pMMoV, BCoV, 673 
HF183, crAssphage, and Bacteroides rRNA) in the wastewater were reported by Feng et al.; 674 
Greenwald et al., and Ai et al.; D'Aoust et al. and Wolfe et al. presented copies/copy of pMMoV 675 
in solids (Table S9). Nevertheless, the biomarker-estimated population should be incorporated 676 
into surveillance programs, so the normalization can reflect the real viral per capita to be 677 
compared over time and cross facilities and be further utilized for predicting the trend of 678 
COVID-19 prevalence.  679 

 680 
4.3 Relationship among estimated real-time population, SARS-CoV-2 in wastewater and 681 

prevalence. 682 
The fluctuations in the population posed a challenge to WBE long-term monitoring [3]. If the 683 
population contributing to the sewershed is expected to constantly change over the surveillance 684 
period (due to tourism, weekday commuters, temporary workers, etc.), population 685 
normalization is extremely critical to interpret SARS-CoV-2 concentrations and predict the 686 
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trend and the infected population over time. We successfully demonstrated the utility of PARA 687 
for gauging small-area populations in real-time and captured population dynamics in a college 688 
town and a tourist town (Fig. 10) resulting from PARA gave the highest adjusted R square with 689 
lowest MSE and 5-fold cross validation MSE in the population predicting model (Table 4). Our 690 
findings directly corresponded the fluctuations in the population due to seasonal activities in 691 
these tourist town and university community, such as the summer breaks, holidays (e.g., Labor 692 
Day weekend in September) and tourisms. 693 

 694 
We strongly believe that population dynamic should be taken into consideration when the 695 
clinical cases are normalized for long-term monitoring. CAF and its metabolites, PARA, have 696 
been proposed as anthropogenic markers to assess the population size and trace the discharge 697 
of domestic wastewater in rivers and lakes [54]. Senta et al. reported the PARA loads in the 698 
wastewater reflected the population dynamics [25].We demonstrated the greatly improved 699 
correlation between PARA-normalized SARS-CoV-2 load per capita and the prevalence using 700 
a college town as an example (Fig. 11). Among 3 normalization scenarios (Fig. 11), only the 701 
PARA-normalized SARS-CoV-2 load per capita and PARA-normalized cases per capita 702 
yielded a statistically significant correlation (rho = 0.5878, p<0.05).  Our results indicated that 703 
a fixed population often derived from population census is not ideal for long term monitoring. 704 
It can be challenging to capture the population dynamic during the COVID-19 pandemic with 705 
the conventional methodologies based on periodic public surveys (such as census taking), 706 
augmented with a wide array of demographic statistics. Most of the inaccurate population data 707 
often derived from aged or incomplete sources such as census surveys or utility customers billed 708 
(e.g., Anderson et al., 2004 [62]; Banta-Green et al., 2009 [63]; Clara et al., 2011[64]; 709 
Kasprzyk-Hordern et al. , 2009 [65]; Neset et al., 2010 [66]; Ort et al., 2009 [67]; Rowsell et 710 
al., 2010 [68]; Tsuzuki, 2006[69] ). Particularly during current pandemic, population dynamics 711 
often deviate significantly from the population estimated by the conventional methodologies 712 
due to the introduction of restrictions in control of the spread of SARS-CoV-2. 713 
 714 
Unreliable population biomarkers often result in the poor correlation between the normalized 715 
SARS-CoV-2 levels and prevalence. For example, Feng et al. reported normalizing SARS-716 
CoV-2 concentration in the wastewater to fecal marker HF183 and pMMoV reduced 717 
correlations in 5 and 8 of 12 WWTPs, respectively, compared to the correlation before 718 
normalization [45]. Greenwald et al. also reported normalizing SARS-CoV-2 load using 719 
crAssphage, pMMoV, and Bacteroides rRNA in the wastewater samples deteriorated the 720 
correlation with daily case number per capita in comparison with the correlation between non-721 
normalized concentrations and daily case numbers [70]. According to our results, the worsen 722 
correlations could result from using fixed populations to normalize clinical cases. 723 
 724 
5. CONCLUSION 725 
 726 
Our findings suggested that the CAF metabolite, PARA, is a reliable population biomarker in 727 
SARS-CoV-2 wastewater-based epidemiology studies, due to its 1) better population indicators 728 
with higher accuracy, lower variability and higher temporal consistency as a population 729 
indicator to reflect the change in population dynamics and dilution in wastewater, 2) very 730 
limited exogenous sources, 3) high extraction efficiency with low variability in the extraction 731 
rates, 3) high stability, 4) resistance to chemicals in the wastewater, and 5) low sample volume 732 
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requirement with simple sample preparation process. This chemical biomarker offers an 733 
excellent alternative to the currently CDC-recommended pMMoV genetic biomarker to help us 734 
understand the size, distribution, and dynamics of local populations for forecasting the 735 
prevalence of SARS-CoV2 within each sewershed. Furthermore, the regression functions 736 
embedded in the direct and indirect approaches of normalizing viral loads by biomarker could 737 
be applied to new data without known daily flow volume and population. Finally, the clinical 738 
cases should also be normalized by population dynamics when the correlation between SARS-739 
CoV-2 and prevalence were examined. Based on the findings in this study, we recently launched 740 
a long-term study to compare the utility of CAF, PARA and pMMoV for SARS-CoV-2 741 
population normalization cross 64 facilities in the Missouri. 742 
 743 
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TABLES 
Table 1. Site summary of the 12 wastewater treatment plants for the model development. 

No. Project ID City County Samples/
Week 

Population 
Served 

Source of 
Population 

aFacility 
Capacity 

Composite 
sampling 

mode 

bDaily 
influent 

flow 

c Daily 
influent 

flow 
1 CARTH Carthage Jasper 1 12000 Operator information 7 Time Based 3.95 4.18 

2 WARNE Warrensberg Johnson 1 7990 Operator information 1.5 Flow Based 0.897 0.844 

3 FULTN Fulton Callaway 1 12790 Operator information 2.9 Time Based 1.6 3.5 

4 SFDNW Springfield Greene 1 26078 Connections with 
population correction 6.8 Time Based 4.17 4.2 

5 HANBL Hannibal Marion/Ralls 1 16000 Operator information 12 Time Based 3.045 3.099 

6 MSDBP St. Louis St. Louis City 1 306647 Operator information 150 Time Based 89.2 226.7 

7 COLMB Columbia Boone 1 123180 Operator information 20.6 Time Based 14.48 24.47 

8 MSDFN St. Louis St. Louis 1 24174 Operator information 6.75 Time Based 3.7 9.27 

9 BROOK Brookfield Linn 1 4600 Operator information 2 Time Based 0.534 0.394 

10 CAPEG Cape 
Girardeau 

Cape 
Girardeau 1 38000 Operator information 11 Flow Based 4.24 12.13 

11 NEVAD Nevada Vernon 1 8000 Connections with 
population correction 2 Time Based 0.994 0.888 

12 Anonymous 
facility #1 - - 1 10559 Operator information 5.3 Time Based 1.51 4.44 

a Unit: million gallon per day (MGD). 
b Samples were collected during the week of Jan 18th, unit: MGD. 
c Samples were collected during the week of Jan 25th, unit: MGD.
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Table 2. The sequences of pMMoV, primers, and probes.  
No. Name Sequence 

1 pMMoV gene fragment 

5’TTTTCCCGGATGTGTAATACATTAGGCGTAGATCCATTGGTGGCAG
CAAAGGTAATGGTAGCTGTGGTTTCAAATGAGAGTGGTTTGACCTTA
ACGTTTGAGAGGCCTACCGAAGCAAATGTCGCACTTGCATTGCAACC
GACAATTACATCAAAGGAGGAAGGTTCGTT GAAGATTGTG 3’ 

2 COVID19-N 5p 5’ ATGTCTGATAATGGACCCCAAAATCAGCG 3’ 

3 COVID19-N 3p 5’ TTAGGCCTGAGTTGAGTCAGCACTGC 3’ 

4 2019-nCoV_N1-Probe FAM-5’ ACCCCGCATTACGTTTGGTGGACC 3’ BHQ1 

5 2019-nCoV_N1-F 5’ GACCCCAAAATCAGCGAAAT 3’ 

6 2019-nCoV_N1-R 5’ TCTGGTTACTGCCAGTTGAATCTG 3’ 

7 2019-nCoV_N2-Probe FAM 5’ ACAATTTGCCCCCAGCGCTTCAG 3’ BHQ1 

8 2019-nCoV_N2-F 5’ TTACAAACATTGGCCGCAAA 3’ 

9 2019-nCoV_N2-R 5’ GCGCGACATTCCGAAGAA 3’ 

10 pMMoV Probe VIC-5’ GCTGTGGTTTCAAATGAGAGTGG 3’-QSY 

11 pMMoV Forward 5’ GGCGTAGATCCATTGGTGG 3’ 

12 pMMoV Reverse 5’ CGAACCTTCCTCCTTTGATG 3’ 
* Acceptable Alternative Primer and Probe Sets: https://www.cdc.gov/coronavirus/2019-ncov/downloads/List-of-
Acceptable-Commercial-Primers-Probes.pdf. 
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Table 3. Summary of the optimized LC-MSMS Parameters for chemical population biomarkers.  
No. compound RT ES MS1 MS2 

Cone 
Voltage 

Collision 
Energy 

1 Caffeine 6.273 ES+ 195.05 138.12 45 22 
2 Caffeine-13C3 6.167 ES+ 198.04 140.07 45 22 
3 Paraxanthine 5.715 ES+ 181.06 124.11 45 22 

4 
1,7-Dimethylxanthine-

(dimethyl-D6) 
5.72 ES+ 187 127.1 30 Tune 

5 5-hydroxyindoleacetic acid 6.135 ES+ 192 146 30 14 

6 
5-hydroxyindoleacetic acid-

13C6 
6.145 ES+ 198 152 30 14 

7 Creatinine 2.189 ES+ 114.05 44.06 30 14 
8 Creatinine-D3 2.189 ES+ 117 47 30 14 
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Table 4. Estimation of population using biomarker loads 
aBiomarkers P value Adjusted R2 aMSE c k-fold Cross-validation MSE 

CAF 0.00 0.938 0.0723 0.0251 
PARA 0.00 0.9404 0.0516 0.0182 

5-HIAA 0.00 0.8351 0.6124 0.1065 
pMMoV 0.00 0.9043 0.5125 0.0501 

CRE 0.10 0.1189 0.9400 0.2517 
a The biomarker loads, and population were transformed using log10. 
b MSE: mean square error. 
c k-fold Cross-validation was performed when k=5 and averaged MSE was calculated.
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Table 5. Comparison of selected biomarkers in this study. 
 CAF PARA 5-HIAA pMMoV CRE 

Stability in Wastewater Stable [20,48] Stable [48] Stable [58] Poor Poor [57] 

Storage stability 
Stable  

> 40 days 
Stable  

> 40 days 
- 

Poor  
(half-life 6-10 days) 

- 

Recovery/ 
Extraction Rate 

a101±7% a92±3% a78 ± 19% 10%-45%± 40%-50% a123±31% 

LOD b1.06 µg/L b0.72 µg/L b14.74 µg/L 100 copies/µL b1.19 µg/L 

Signal inhibition No No No Sensitive No 

Concentration in wastewater  47.3 ± 22.9 
µg/L 

4.2 ± 2.5 
µg/L 

13.5 ± 5.5 
µg/L 

959920 ± 773834  
copies/µL 

102.8 ± 120.4 
µg/L 

Sample Volume 1.5-2 mL 1.5-2 mL 25-50 mL 50 mL 1.5-2 mL 

Sample Preparation time 
(for 12 samples) 30 mins 30 mins 2-3 hours 3-4 hours  30 mins 

Analysis time  15 minutes per sample 15 minutes per sample 15 minutes per sample 2 hours for 64 samples 
15 minutes per 

sample 

Other exogenous sources Disposal of the coffee 
or caffeinated products 

Microbial degradation 
of caffeine (small 

amount)[56] 
- 

Ground water, 
agriculture soils, 

fertilizers. 
- 

a The recovery rate was calculated from the isotope fortified in wastewater samples. 
b The limit of detection of LC-MS/MS method as described in the Material and Method. 
c The limit of detection of RT-qPCR assay as described in the Material and Method. 
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FIGURES 

 
Figure 1. Normalization processes of determining SARS-CoV-2 load per capita. (A) When the 
population size, daily flow volume and viral concentration of the metadata are used in the 
normalization process. (B) When the real-time population size of the sewershed is estimated using 
regression functions developed from the correlation between biomarker and population size from 
metadata in direct or indirect approach.
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Figure 2. Population concentration [Population] versus biomarker concentration (mg/L) in the 
wastewater. (A) CAF: caffeine, (B) PARA: paraxanthine, (C) 5-HIAA: 5-hydroxyindoleacetic 
acid, (D) pMMoV: Pepper Mild Mottle Virus (E) CRE: creatinine. The concentrations of caffeine, 
paraxanthine, 5-hydroxyindoleacetic acid, and creatinine in 24 wastewater samples (Table 1) were 
determined by LC-MS/MS analysis and the Pepper Mild Mottle Virus concentration was 
determined by RT-qPCR as described in Methods and Materials. The population concentrations 
were calculated using the daily flow volume and population size in Eq. (1). The trendline (dashed 
line) was calculated using linear regression; R2 represented the percentage of the population 
concentration variation that is explained by the linear model. 
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Figure 3. Log-transformed population concentration [Population] versus biomarker concentration 
(mg/L) in the wastewater. (A) CAF: caffeine, (B) PARA: paraxanthine, (C) 5-HIAA: 5-
hydroxyindoleacetic acid, (D) pMMoV: Pepper Mild Mottle Virus (E) CRE: creatinine. The 
concentrations of caffeine, paraxanthine, 5-hydroxyindoleacetic acid, and creatinine in 24 
wastewater samples (Table 1) were determined by LC-MS/MS analysis and the Pepper Mild 
Mottle Virus concentration was determined by RT-qPCR as described in Methods and Materials. 
The population concentrations were calculated using the daily flow volume and population size in 
Eq. (1). The trendline (dashed line) was calculated using linear regression; R2 represented the 
percentage of the population concentration variation that is explained by the linear model.   
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Figure 4. Population versus biomarker load in the wastewater. (A) CAF: caffeine, (B) PARA: 
paraxanthine, (C) 5-HIAA: 5-hydroxyindoleacetic acid, (D) pMMoV: Pepper Mild Mottle Virus 
(E) CRE: creatinine. The concentrations of caffeine, paraxanthine, 5-hydroxyindoleacetic acid, 
and creatinine in 24 wastewater samples (Table 1) were determined by LC-MS/MS analysis and 
the Pepper Mild Mottle Virus concentration was determined by RT-qPCR as described in Methods 
and Materials. The biomarker loads were calculated using the daily flow volume (million gallon, 
MGal) and biomarker concentrations in Eq. (3). The trendline (dashed line) was calculated using 
linear regression; R2 represented the percentage of the population concentration variation that is 
explained by the linear model.
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Figure 5. Log-transformed population versus biomarker load in the wastewater. (A) CAF: caffeine, 
(B) PARA: paraxanthine, (C) 5-HIAA: 5-hydroxyindoleacetic acid, (D) pMMoV: Pepper Mild 
Mottle Virus (E) CRE: creatinine. The concentrations of caffeine, paraxanthine, 5-
hydroxyindoleacetic acid, and creatinine in 24 wastewater samples (Table 1) were determined by 
LC-MS/MS analysis and the Pepper Mild Mottle Virus concentration was determined by RT-
qPCR. The biomarker loads were calculated using the daily flow volume and biomarker 
concentrations in Eq. (3). The trendline (dashed line) of each graph was generated using linear 
regression; R2 represented the percentage of the population concentration variation that is 
explained by the linear model.  
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Figure 6. The fold changes of normalization coefficients from direct approach. A) CAF: caffeine, 
(B) PARA: paraxanthine, (C) pMMoV: Pepper Mild Mottle Virus, (D) 5-HIAA: 5-
hydroxyindoleacetic acid. The normalization coefficients, C0 and C1(i), of 24 wastewater samples 
(Table 1) were calculated using metadata and biomarker concentration in Eq. (5) and Eq. (7), 
respectively. The fold changes, C1(i) divided by C0, were used to standardize C1(i) for each 
biomarker at each WWTP. In the box plots, the upper whisker represents the maximum, the lower 
whisker the minimum; “X” represents the mean and open circles are the outliers. The data of CRE 
is not shown due to poor correlation between biomarker concentration and population 
concentration in wastewater.  
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Figure 7. The fold changes of normalization coefficients from indirect approach. A) CAF: caffeine, 
(B) PARA: paraxanthine, (C) 5-HIAA: 5-hydroxyindoleacetic acid, (D) pMMoV: Pepper Mild 
Mottle Virus (E) CRE: creatinine. The normalization coefficients, C0 and C2(i), of 24 wastewater 
samples (Table 1) were calculated using metadata and biomarker concentration in Eq. (5) and Eq. 
(10), respectively. The fold changes, C2(i) divided by C0, were used to standardize C2(i) for each 
biomarker at each WWTP. In the box plots, the upper whisker represents the maximum, the lower 
whisker the minimum; “X” represents the mean and open circles are the outliers.   
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Figure 8. The normalized SARS-CoV-2 load per capita by biomarkers using either direct or 
indirect approaches at WWTPs. The direct normalization approach was applied to 12 samples 
collected in the week of (A) January 19th and (B) January 23rd. The indirect approach was applied 
to 12 samples collected in the week of (C) January 19th and (D) January 23rd. (Grey: Metadata, 
yellow: CAF, blue: PARA, green: pMMoV, orange: 5-HIAA; error bars showed standard deviation, 
n=4). The SARS-CoV-2 load per capita was normalized using the average of duplicated N1 and 
N2 concentrations at each WWTP and the normalization coefficients of each biomarker in Eq. (7) 
for direction approach in (A) and (B), or in Eq. (10) for indirect approach in (C) and (D). The viral 
loads were normalized using metadata in Eq. (5) and included in all graphs for comparison. The 
data of CRE was not shown due to its poor correlation with population. 
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Figure 9. Validation of normalization approaches. The direct approach for (A) CAF and (B) PARA 
and the indirect approach for (C) CAF and (D) PARA were applied and shown for validation. In 
the box plots, the upper whisker represents the maximum, the lower whisker the minimum; “X” 
represents the mean and open circles are the outliers. The PARA and CAF concentrations in 64 
wastewater samples collected from WWTPs in the State of Missouri (Table S1) were quantified 
by LC-MS/MS, and the normalization coefficients, C0, C1(i) and C2(i), were calculated as described 
in Methods and Materials. The fold changes (C1(i) /C0 or C2(i) /C0) were used to standardize C1(i) 
and C2(i). 
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Figure 10. Estimation of real-time population in the college town and the tourist town. (A) College 
town (B) Tourist town (blue triangle: population estimated using PARA, orange circle: population 
reported by Metadata). The PARA concentrations in 10 wastewater samples collected from 
WWTPs in City of Columbia and a tourist town (Table S2) were quantified by LC-MS/MS as 
described in Methods and Materials and further converted to daily PARA load using daily flow 
volume from metadata. The population was estimated using the daily PARA load using the 
developed regression function (Table S4).   
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Figure 11. The correlation between normalized SARS-CoV-2 loads in wastewater and the clinical 
reported case numbers. (Orange dashed line: clinical case, blue solid bar: normalized N1/N2 
average concentration/load). The PARA concentrations in 10 wastewater samples collected from 
WWTP in City of Columbia (Table S2) were quantified by LC-MS/MS as described in Methods 
and Materials and applied in Eq. (10) to normalize viral load using indirect approach. (A) Viral 
concentrations and clinical cases before normalization (B) Both viral load per capita and clinical 
cases normalized using metadata. (C) Viral load per capita normalized by PARA load and clinical 
cases normalized by Metadata (D) Both viral load per capita and clinical cases normalized by 
PARA loads. The Spearman’s correlation was performed to examine the correlation between 
normalized SARS-CoV-2 and clinical case numbers; rho represented the strength of the correlation.
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