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ABSTRACT Allele-specific siRNAs (ASP-siRNAs) have emerged as promising therapeutic molecules owing
to their selectivity to inhibit the mutant allele or associated single-nucleotide polymorphisms (SNPs) sparing
the expression of the wild-type counterpart. Thus, a dedicated bioinformatics platform encompassing
updated ASP-siRNAs and an algorithm for the prediction of their inhibitory efficacy will be helpful in tackling
currently intractable genetic disorders. In the present study, we have developed the ASPsiRNA resource
(http://crdd.osdd.net/servers/aspsirna/) covering three components viz (i) ASPsiDb, (ii) ASPsiPred, and (iii)
analysis tools like ASP-siOffTar. ASPsiDb is a manually curated database harboring 4543 (including
422 chemically modified) ASP-siRNAs targeting 78 unique genes involved in 51 different diseases. It
furnishes comprehensive information from experimental studies on ASP-siRNAs along with multidimen-
sional genetic and clinical information for numerous mutations. ASPsiPred is a two-layered algorithm to
predict efficacy of ASP-siRNAs for fully complementary mutant (Effmut) and wild-type allele (Effwild) with one
mismatch by ASPsiPredSVM and ASPsiPredmatrix, respectively. In ASPsiPredSVM, 922 unique ASP-siRNAs with
experimentally validated quantitative Effmut were used. During 10-fold cross-validation (10nCV) employing
various sequence features on the training/testing dataset (T737), the best predictive model achieved a
maximum Pearson’s correlation coefficient (PCC) of 0.71. Further, the accuracy of the classifier to predict
Effmut against novel genes was assessed by leave one target out cross-validation approach (LOTOCV).
ASPsiPredmatrix was constructed from rule-based studies describing the effect of single siRNA:mRNA mis-
matches on the efficacy at 19 different locations of siRNA. Thus, ASPsiRNA encompasses the first database,
prediction algorithm, and off-target analysis tool that is expected to accelerate research in the field of RNAi-
based therapeutics for human genetic diseases.
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RNA interference (RNAi) is an evolutionarily conserved phenomenon
to inhibit gene expression in eukaryotes including mammals (Fire et al.
1998; Paulson and Gonzalez-Alegre 2006). One of the most important
implications of RNAi technology is the development of potent and
highly effective siRNAs imparting exquisite specificity (Keiser et al.
2015). They have already been utilized as a vital research tool for
loss-of-function studies and the suppression of phenotypes generated
by dominantly acting mutant genes (Rodriguez-Lebron and Paulson
2006). Thus, siRNA-mediated selective suppression of dominantly in-
herited mRNA transcripts holds curative potential for gain-of-function
human genetic diseases (Lopes et al. 2016; Loy et al. 2012).
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In this context, allele-specific RNAi (ASP-RNAi) is an innovative
categoryofRNAiwith theobjectiveof suppressing thedominantmutant
allele while sparing expression of the corresponding normal allele with
the specificity of single-nucleotide differences between the two
(Gonzalez-Alegre 2007). Therefore, allele-specific siRNAs (ASP-siRNAs)
are potentially a novel and better remedial alternative for the treat-
ment of autosomal dominant genetic disorders especially in cases
where wild-type allele expression is crucial for organism survival
(Miller et al. 2003). The mechanism of ASP-RNAi gene silencing is
illustrated in Figure 1.

Numerous studies have been conducted to assess the potency and
specificity of ASP-siRNAs for various neurodegenerative disorders like
Huntington disease (HD) (Drouet et al. 2014; Miniarikova et al. 2016),
DYT1 dystonia (Gonzalez-Alegre et al. 2003, 2005), Alzheimer’s dis-
ease (Sierant et al. 2011), Parkinson’s disease (PD) (Takahashi et al.
2015), amyloid lateral sclerosis (ALS) (Schwarz et al. 2006), and
Machado–Joseph disease (Alves et al. 2008). Their therapeutic potential
has also been assessed for various skin disorders like epidermolysis
bullosa simplex (Atkinson et al. 2011), epidermolytic palmoplantar
keratoderma (EPPK) (Lyu et al. 2016), and lattice corneal dystrophy
type I (LCDI) (Courtney et al. 2014). They have also been utilized to
suppress the mutations associated with other diseases like cancer (Iyer
et al. 2016), viral diseases (Teng et al. 2011), and sex-linked disorders
(Caplen et al. 2002). Various in-vivo studies have been reported in

different animal models, for e.g., HD (Drouet et al. 2014), EPPK
(Miniarikova et al. 2016), and hyper-trophic cardiomyopathy
(Miniarikova et al. 2016). The potential of this therapeutic modality
has been studied in human embryonic stem cells (Miniarikova et al.
2016), and allele-specific gene silencing (ASGS) approaches have
started to move from the laboratory to the clinic (Liu et al. 2016).
The first ASP-siRNA TD101 for the human skin disorder pachyony-
chia congenita (PC) has entered into phase1b clinical trials (Leachman
et al. 2008).

Currently there is no cure available for dominant negative genetic
maladies (Squitieri and deYebenes 2015). Although, a few symptomatic
pharmacological and nonpharmacological drugs have been used in
clinical practice (Marelli and Maschat 2016), they were aimed at tem-
porary relief and delay of disease progression (Jamwal andKumar 2015;
Kulshreshtha and Piplani 2016; LeWitt et al. 2016). Similarly peptide-
based drugs have been used to suppress the aggregate formation of toxic
mutant protein (Aharony et al. 2015; Arribat et al. 2013). However, it is
reported that indiscriminate sustained suppression at the protein level
may have harmful effects on the cell (Rodriguez-Lebron and Paulson
2006), and they are not aimed at disease reversal.

Likewise, traditional antisense molecules are also candidates for
mutant-specific suppression (Pandey et al. 2015). However, the one-
to-one ratio of binding to target requires high concentrations of these
molecules in the cell, which may result in toxic situations (Allen et al.

Figure 1 Mechanistic representation of ASP-RNAi.
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2013). On the other hand, ASP-siRNAs exhibit multiplicity i.e., a single
siRNA can cause cleavage ofmultiple copies of the target mRNA (Allen
et al. 2013). Moreover, antisense molecules exhibit irreversible binding
to their target making them poor candidates for ASP-RNAi, especially
when the system demands one nucleotide discrimination (Allen et al.
2013). Antisense Oligonucleotide (ASO), being single stranded, is un-
stable and less potent, thus requiring high concentrations and, conse-
quently, leading to off-target effects more severe than dsRNA (Watts
and Corey 2012).

Despite unprecedented specificity and immense therapeutic utility
of ASP-siRNAs, bioinformatics repositories in the field are lacking.
Although there are several resources available for siRNAs like
siRECORDS (Ren et al. 2006), HusiDa (Truss et al. 2005), HIVsirDB
(Tyagi et al. 2011), VIRsiRNAdb (Thakur et al. 2012b), siRNAmod
(Dar et al. 2016b), and RNAiAtlas (Mazur et al. 2012), they lack in-
formation related to ASP-siRNAs (Supplemental Material, Table S1 in
File S1). Likewise, there are numerous algorithms (Ahmed andRaghava
2011; Dar et al. 2016a; Filhol et al. 2012; Huesken et al. 2005; Kaur et al.
2016; McQuisten and Peek 2009; Mysara et al. 2011; Pan et al. 2011;
Peek 2007; Qureshi et al. 2013; Saetrom 2004; Shabalina et al. 2006;
Vert et al. 2006) and design rules (Amarzguioui and Prydz 2004;
Elbashir et al. 2001a; Reynolds et al. 2004; Ui-Tei et al. 2004) for siRNA
efficacy prediction. But, none of the available web servers was dedicated
to predicting two efficacies associated with a single siRNA.

This prompted us to develop ASPsiRNA, a web resource offering
multiple modules. The first module, ASPsiDb, delivers updated and
manually curated ASP-siRNA sequences targeted against human ge-
netic diseases available in the literature, coupled with clinicopathogenic

information about various mutations and the annotation of genes. In
the second module ASPsiPred, using data from the database, we have
developed a two-layered algorithm for prediction of inhibitory efficacy
of ASP-siRNA for mutant and wild-type alleles. We have provided
Support Vector Machine (SVM) and matrix-based algorithms for the
prediction of the efficacy of ASP-siRNA for both diseased (Effmut) and
wild-type alleles (Effwild). This algorithm is aimed to help experimental
biologists in designing optimum allele discriminatory siRNAs along
with minimum off-targets. In the third module, we have integrated
useful analysis tools like ASP-siOffTar (seed and full sequence based),
BLAST, and ASP-siMAP.

MATERIALS AND METHODS

ASPsiDb database development

Data collection: Information extractionwasprimarilydivided into four
parallel data systems (SupplementalMethods Section I and II in File S1):
(a) ASP-siRNA data extraction: An extensive literature search was
executed to obtain articles indexed in PubMed using the following
combination of keywords (((Allele)) AND (((((((sirna) OR shrna)
OR small interfering RNA) OR short interfering RNA) OR RNA in-
terference) OR RNAi) OR silencing)) AND (((specific) ORmismatch�)
OR discrimination). Patents pertaining to ASP-siRNAs were extracted
from “The Lens” (www.lens.org). (b) Clinical information regarding
various mutations: Clinical data associated with different mutations
were mined from ClinVar (Landrum et al. 2014), dbVar (Lappalainen
et al. 2013), dbSNP (Sherry et al. 1999), and OMIM (Hamosh et al.
2000). (c) Annotation of genes targeted by ASP-siRNAs: It involves

Figure 2 ASPsiRNA architecture.
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standard nomenclature of every gene from HGNC (HUGO Gene No-
menclature Committee), cytogenic/chromosomal coordinates of a gene
from UniProt, UCSC genome browser. (d) Molecular/biological/genetic
information regarding diverse human genes and corresponding diseases:
Information about the genetic basis of disorders was compiled from
various resources; e.g., OMIM, ClinVar, and KEGG disease modules.

Database schema: Database content is systematically organized to
provide easy access of ASP-siRNAs data coupled with comprehensive
information of clinical and genetic data. It is maintained using MySQL
and launched on Apache HTTP Server installed on an IBM machine
underRedHatEnterpriseLinux5background. The responsive front end
was implemented with CSS, PHP, HTML5, and JavaScript as employed
in our previous resources (Qureshi et al. 2014). Detailed architecture of
the resource is depicted in Figure 2.

ASPsiDb web interface: searching and browsing: Proficient searching
and browsing is provided in the resource “Search” section that provides
three suboptions for convenient data mining in the database, i.e., (i)
keyword search, (ii) literature search, and (iii) sequence mapping based
search (Figure S1 in File S1). Additionally, we have also offered database
browsing in six categories: disease, gene, mutation, cell line, mismatch,
and Pubmed ID (Supplemental Methods Section III in File S1).

The output of the searching and browsing page provides a list of
ASP-siRNAs matching the input query. By clicking on the individual
ASP-siRNA ID, the user can get complete details of the respective entry
structured in nine modules (Supplemental Methods Section IV and
Figures S2–S5 in File S1).

ASPsiPred: prediction algorithm development

Dataset preparation: Since designing effective and discriminatory
ASP-siRNAs is associated with two efficacy values, i.e., one for a fully
complementary target allele and a second for the nontarget allele, we
have integrated a two-tiered algorithm in ASPsiPred (ASPsiPredSVM

andASPsiPredmatrix) to predict Effmut and Effwild, respectively (Figure 3).
In the first layer, i.e., ASPsiPredSVM, we have screenedASPsiDbwith

4543 ASP-siRNAs to get a unique and representative working dataset.
After removing the 422 chemically modified (cm) ASP-siRNAs, we
have processed the remaining 4121 sequences to extract 922 nonredun-
dant 19mer siRNA sequences with quantitative efficacies (D922) (Sup-
plemental Methods Section V and Table S2 in File S1). From D922, we
have randomly extracted 185 sequences as independent/validation
datasets (V185), while the remaining 737 sequences were used for
the 10-fold cross-validation (10nCV) training/testing datasets (T737)
(Tables S3 and S4 in File S1). This process was repeated five times to
generate five training/testing and external validation sets.

Features used for model development: Nucleotide composition and
position-related features, thermodynamic stability and secondary struc-
ture based features were used in this study (see Supplemental Methods
Section VII in File S1). We have selected these models/features and
applied 10nCV on these sets. Once we obtained optimal results on
selected hyper-parameters, we applied 10nCV on the full T922 dataset
as a final classifier (Table S4 in File S1).

Algorithm development and validation: The SVMlight (http://
svmlight.joachims.org) software package was used to train the different

Figure 3 Computational workflow employed to extract ASP-siRNAs and developing the algorithm for the prediction of inhibitory efficacy: left arm
describes the development of the SVM-based algorithm (ASPsiPredSVM) for prediction of efficacy for fully complementary mutant allele (Effmut),
while the right arm depicts the process of making ASPsiPredmatrix for the prediction of the efficacy for wild-type allele having one mismatch (Effwild).
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siRNA features and develop predictive models using 10nCV. In this
study, we have used the radial basis function kernel for development of
ASPsiPredSVM.We have evaluated the performance of ourmodels using
the Pearson correlation coefficient (PCC) (Supplemental Methods Sec-
tion VIII and IX in File S1).

For the prediction of Effwild, i.e., the efficacy to inhibit target
sequences with one mismatch, we have developed ASPsiPredmatrix

(Tables S5–S8 in File S1) utilizing data from the following articles
(Birmingham et al. 2006; Huang et al. 2009; Ohnishi et al. 2008;
Schwarz et al. 2006) (Supplemental Methods Section X in File S1).

Implementation of ASPsiPred webserver: ASPsiPred was developed
on a SUN server using PERL, HTML, and CGI-PERL (Qureshi et al.
2013; Thakur et al. 2012a). Upon clicking ASPsiPred, a user is asked to
enter the target and wild-type allele in FASTA format with the nucle-
otide mutation in lower case. For user convenience, we have provided a
clickable example sequence. Our tool will generate ASP-siRNAs against
mutation at all possible 19 locations followed by the prediction of Effmut

and Effwild using ASPsiPredSVM and ASPsiPredmatrix.
We have integrated the ASP-siOffTar tool on the output page to

provide seed-based off-targets for all predicted 19 ASP-siRNAs against

user-providedmutation. This will give an idea about the potency as well
as specificity of ASP-siRNA (Figure 4A). Thus, a user can select optimal
allele-differentiating siRNAs with minimum off-target effects. The re-
sult is also displayed in a graphical format to analyze at which position
ASP-siRNA displays relatively high discrimination for both alleles
(Figure 4B).

Analysis tools

ASP-siOffTar (seed based): This provides a list of off-targets based on
the alignment of hexamer (2–7) or heptamer (2–8) seed regions of ASP-
siRNA or any siRNA on the human genome (build GRCh37). Since off
targeting is majorly associated with the presence of perfectly comple-
mentary 39-UTR matches with the seed region of the antisense strand
of the siRNA (Birmingham et al. 2006), we have not allowed any mis-
match in the alignment of seed regions on the human genome (Figure
S6 in File S1).

ASP-siOffTar (full sequence based): Full sequence based off-targets
are also integrated as a separate tool on the web interface with a
maximum of three allowed mismatches (Figure S7 in File S1).

Figure 4 Description of ASPsiPred web server with result output. (A) Screenshot demonstrating ASP-siRNAs generated against a T . G mutation
at all possible 19 positions along with Effmut and Effwild predicted from ASPsiPredSVM and ASPsiPredmatrix, respectively. Their relative difference
between the two efficacies is also displayed along with the prediction of seed-based off-targets for all 19 ASP-siRNAs. (B) The output of the Effmut

and Effwild of 19 ASP-siRNAs in graphical form.
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ASP-siRNA-BLAST: This matches a user-provided siRNA sequence
against the ASPsiRNAdatabase to find out whether similar siRNA/s are
already reported.

ASP-siMAP: Experimental biologistswhoseek todesignanASP-siRNA
on their target gene can take advantage of theASP-siMAP tool. It simply
mapsASP-siRNAsreported inour archive toauser-specified target gene
along with its start position.

Data availability
All the data necessary for the results and conclusions in this paper are
provided in the article or ASPsiRNA repository (http://crdd.osdd.net/
servers/aspsirna/).

RESULTS

ASPsiDb

Database statistics: ASPsiDb is a manually curated and highly anno-
tated depository of 4543 experimentally validated ASP-siRNA entries
including 422 chemically modified (cm) ASP-siRNAs affecting 78
unique genes causing 51 various diseases out of which hemolytic
uremic syndrome, HD, ALS, cancer, and PDwere the top five diseases
targeted (Figure S8a in File S1). Likewise, the CD46 gene followed by
HTT, SOD1,DBI, and PPIB were the top five genes (Figure S8b in File
S1).

ASP-siRNAs were transfected using diverse transfection reagents;
out of these lipofectamine 2000 was the most commonly used. Among
the variousmethods reported to deliverASP-siRNAs to the target locus,
transfection (87.80%) was the major delivery method followed by
shRNA expression vector (19.85%), lentiviral vector (1.66%), electro-
poration (1.38%), stereotaxic injection (0.76%), atelocollagen (0.57%)
mediated delivery, and other methods (0.42%) (Figure S9 in File S1).

The efficacy of various ASP-siRNAs was determined using 45 dif-
ferent cell-lines, among themHEKfollowedbyHeLa,fibroblast,AD293,
DU145, and HaCaT were most frequently used (Figure 5A). Animal
models were also employed for in vivo studies including the transgenic

mouse model, male Wistar rat, and Caenorhabditis elegans, out of
which the mouse model was most common. In a particular study,
human plantar calluses were also used to assess the potency of ASP-
siRNA TD-101 targeting PC in a phase1b clinical trial (Leachman et al.
2010). BothRNA and protein level experimentalmethods were used for
evaluating the efficacy; however DLRA (dual luciferase reporter assay)
was reported in the majority of studies followed by western blot,
RT-PCR, fluorescence microscopy, and microarray (Figure 5B).

Dominant genetic disorders are ideal candidates of ASGS due to its
capability to target mutant alleles selectively. Our resource covers these
disorders from seven different categories namely neurological disorders
(ND) (51%), followed by skin (16%), skeletal (10%), cancer (5%),
muscular disorders (4%), autoimmune diseases (3%), and others
(11%) as depicted in Figure 5C.

For thedesign of effective and specificASP-siRNAs,wehave to select
such an siRNA that causes least harm to the wild-type allele while
keeping the mutant allele inhibition at the maximum level and display-
ing optimum allele discrimination (Davidson and Paulson 2004).
Therefore, to analyze and find the discriminatory siRNAs, we have
plotted the Effmut vs. the Effwild efficacies in the form of a scatter plot
(Figure S10 in File S1). Statistical inspection reveals that the lower right
section of the plot is quite dense as compared to the other quartiles.
This section represents a high Effmut but low Effwild. Thus, these se-
quences exhibit experimentally validated allelic discrimination most
helpful for experimental biologists to target specific mutant alleles.

Statistical analysis of gene variants/mutations:Wehave analyzed the
pathogenic status of various gene variants/mutations and found that
�64% of ASP-siRNAs target pathogenic mutations (Figure 5D). We
have also sketched allmutations and their associatedmolecular changes
collected from ClinVar in the form of 3D-line graphs represented in
Figure 6. It shows the statistical distribution of different sequence var-
iations such as single-nucleotide variation (snv), microsatellite (expan-
sion mutations), deletion (del), copy number gain (CNG), and
insertion-deletion (InDel), which are associated with molecular conse-
quences like missense mutation, frame shift variation (fsv), synonymous

Figure 5 ASPsiRNA database statistics. (A and B) Pie charts exemplifying the distribution of cell lines and experimental methods used for
validation of ASP-siRNAs. (C and D) Bar graphs describing the percentage coverage of different categories of genetic diseases and the statistical
distribution of the clinical significance of diverse types of gene variants reported in the archive, respectively; described in ASPsiRNA.
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mutation, and 39-UTR variant (variation in 39 UTR region). Investiga-
tion of the graph indicates that: (i) in siRNAs targeting snvs, the molec-
ular consequence is missense mutation in �98% of the cases; (ii)
similarly, siRNAs targeting deletion variants cause fsv in�98% of cases;
and (iii) siRNAs targeting microsatellite mutations mostly have a ten-
dency to show fsv and missense mutations.

A mutational landscape was summarized to investigate all gene
variants/mutations examined by ASP-siRNAs with the help of circos
plot (Krzywinski et al. 2009). It shows that ASP-siRNAs mostly target
genes that had single-nucleotide substitutions (SNPs) and missense
mutations (Figure 7). This observation is in accordance with the
Human Genome Database (HGDB), which states that out of 73,411
reported mutations responsible for causing genetic diseases,.60% are
caused by SNPs (Seyhan 2011).

ASPsiPred performance evaluation

ASPsiPredSVM: performance during 10nCV: Selected sequence fea-
tures (mdtt+binary) (see Supplemental Methods Section VII in File S1)
were used to perform 10nCV on five random training/testing sets
(T737). Their performancewasmeasured on an independent validation
dataset (V185) (Table S3 in File S1). After confirming that all five sets
performed approximately similarly, we have selected Random Set-2 to
build final classifier without any bias (random set-2).

During 10nCV on the selected set, predictive models based upon
sequence composition based features like mono-, di-, tri-, tetra-, and
penta-nucleotidecompositionsachievedamaximumcorrelationof0.53,
0.68, 0.70, 0.69, and 0.68, respectively. Position-based features like the
binary pattern of nucleotides attained a PCC of 0.55. We have also
developed hybrid models using .1 nucleotide features as input, e.g.,

hybrid ofmono- (m) anddinucleotide (d) composition (md).We achieved
correlations of 0.67, 0.70, 0.71, 0.71, 0.71, and 0.71 in the md, mdt, mdtt,
mdttp, mdtt + binary, andmdttp + binary hybridmodels, respectively (see
Table 1). Accordingly, performance of thermodynamic and secondary
structure based features achieved a PCC of 0.41 and 0.24, respectively;
however, their hybridwith our bestmodel did not lead to an improvement
in correlations (Table 1, model 12+13, 12+14, and 12+13+14). The se-
quence features, which performedbest on set-2, i.e., ASPsiPredSVM (mdtt +
binary), were applied to the total dataset (D922) as a final classifier on the
webserver termed as ASPsiPredSVM# (Table S4 in File S1).

Performance on independent validation dataset (V185): The
performance of the predictive models was assessed on V185. Our best
modelachievedamaximum(PCC)of0.71during10nCVonthe training
dataset (T737) termed as ASPsiPredSVM. On V185, a comparable PCC
of 0.65 was obtained (Table 1). Scatter plots depicting the correlation
between the actual and predicted efficacy during 10nCV and indepen-
dent validation are shown as Figures S11 and S12 in File S1.

Performance during leave one target out cross-validation
(LOTOCV): Since D922 contains sequences having single-nucleotide
sliding difference (seemore in SupplementalMethods SectionVI in File
S1), a simple 10nCV on random training/testing dataset in which some
sequences are in the training dataset while others are in the test set can
inflate the performance of classifier. Therefore, to deal with overlapping
sequences and to check the predictive contribution of each target gene
in the D922, we have used the LOTOCV method.

In thismethod, we have assigned ASP-siRNAs targeting a particular
gene in the validation dataset, while sequences from other genes were
assigned to the training set. In total, 22 different sets have been made
including one heterogeneous set titled “Others” which includes genes

Figure 6 Different mutations and molecular consequences represented by 3D line-graph. fsv, frame shift variation; del, deletion; CNG, copy
number gain; Indel, insertion-deletion.
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for which fewer ASP-siRNAs (,10) were reported (Table 4). Overall
performance during 10nCV ranged from PCC values of a minimum of
0.53 to a maximum of 0.74 with an average PCC of 0.66. Performance
on validation sets ranged from a PCC value of 0.20 to 0.88 with an
average PCC of 0.40.

Comparison of ASPsiPredSVM with other webservers: While
comparing the performance of any two algorithms, one should use
the same dataset for training and testing (Ahmed andRaghava 2011). In
the literature, second-generation siRNA efficacy prediction tools were
developed using the Huesken dataset and exhibit a very good PCC in

the range of 0.56–0.85 (Train# column of Table 2). On the other hand,
ASPsiPredSVM is developed on an updatedASP-siRNAdataset. Therefore,
finding no similarity in the datasets employed to develop these tools, we
have done comparative evaluation in three ways, i.e., by assessing the
performance of (i) our algorithm with previously developed methods,
(ii) cross-replacement of datasets, and (iii) our algorithm on an indepen-
dent benchmarking dataset designated as “V419” (Ichihara et al. 2007).

Ourbestmodel has achievedamaximumPCCof 0.71on10nCVand
0.65 on independent validation; which is comparable to previously
developed siRNA efficacy prediction methods (Table 1). In the cross-

Figure 7 Mutational landscape of different genes described in ASPsiRNA epitomized by a circos plot: left and right hemi circle represents the
mutation categories and gene names, respectively. The length of the main circular segments is proportional to the total number of ASP-siRNAs
belonging to that segment, while the width of the ribbon connecting the gene with the mutation represents the proportion of ASP-siRNA
sequences belonging to the particular mutation type. The two outer rings are contribution tracks, i.e., stacked bar plots with a gradient of color
signifying the proportion of entries from different genes.
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replacement strategy, we have assessed the performance of available
algorithms on our dataset (Table 2) and ASPsiPredSVM on theirs (Table
3). We found algorithms developed on Huesken2431 achieved PCCs in
the range of 0.18 to 0.27 and 0.09 to 0.25 on our T737 andV185 datasets,
respectively (see Table 2). On the other hand, ASPsiPredSVM has
achieved PCCs of 0.23 and 0.26 on Huesken2431 (T2182/V249) (Table 3).

Further, we have checked the performance of our algorithm on an
independent benchmarking dataset, V419 (Ichihara et al. 2007). This
dataset has also been utilized in previous tools to assess their perfor-
mance. While Huesken-based methods have achieved correlation of
0.23 to 0.56 on V419 (extreme right column in Table 2), we attained
a PCC of 0.22 (Table 3).

ASPsiPredmatrix: performance evaluation of ASPsiPredmatrix on
validation datasets: The second tier of our algorithm is the mismatch
information matrix generated from the rule-based studies. It had
achieved a PCC of 0.63 on V185 (Table S8 in File S1).

Comparison of ASPsiPredMatrix with other webservers: Currently,
there is no webserver to predict Effwild, although one method desiRm exists
that describes the improvement in the efficacy of an siRNAafter introducing
mismatches in it. On the other hand, ourmethod has the sameASP-siRNA
but assessed against mismatches with the wild-type allele. Therefore, we
have compared the performance of both methods using four experimental
studies in which 19mer ASP-siRNAs complementary to a sliding window
across a mutation were assessed. Performance of desiRm was not satisfac-
tory on single-nucleotide sliding trails, while the matrix-based method
attained a collective PCC in the range of 0.35–0.52 (Table S8 in File S1).

DISCUSSION
Post-ENCODE (Lussier et al. 2013; Venter et al. 2001), a plethora of
information has been released about genome sequence, structure and

multifaceted ways of its regulation. This information has provided new
opportunities to understand complex genetic disorders at themolecular
level. Thus, it will be useful for tailoring the conventional gene therapy
into a custom-made one (Lander 2011). In this context, RNA targeting
approaches up to the precision of single-nucleotide discrimination are
emerging as a potential and therapeutic alternative to traditionally
undruggable targets (Keiser et al. 2016).

ASGS is aprogressive technique for tailored treatmentofdominantly
inherited disorders. An ASP-siRNA is designed to target an allele of
interest/mutant allele at any location where it differs from its wild-type
counterpart (Lombardi et al. 2009). Despite its immense medical im-
portance, a dedicated informatics resource in this field was lacking,
which encouraged us to develop resources on ASP-siRNAs implicated
in various genetic diseases. While existing archives hold information
about siRNAs targeted against one gene with a single inhibitory efficacy
(Table S1 in File S1),ASPsiDb harbors ASP-siRNAs targeted against the
mutant and wild-type alleles of a gene and hence associated with two
inhibitory efficacies (Effmut/Effwild).

Itwas after the breakthroughdiscovery thatRISC-mediated cleavage
occurs at the phosphodiester bond of the 10th nucleotide position on
the guide strand (Elbashir et al. 2001b; Haley and Zamore 2004) that
researchers around the world started utilizing its role in achieving
ASGS by placing the nucleotide complementary to the mutation at
the 10th or central positions of siRNAs to make it less accessible to
the normal allele. This scrutiny was employed in achieving ASGS by
directly targeting disease-causing mutations (Jiang et al. 2013; Lyu et al.
2016) or indirectly targeting disease-associated SNPs in linkage disequi-
librium (Drouet et al. 2014; Yu et al. 2012). Moreover, mutation-specific
suppression has also been accomplished for mutant alleles exhibiting
deletions by placing mutation-specific nucleotides at the central posi-
tions (Gonzalez-Alegre et al. 2003). Although there were several reports
studying the effect of placing nucleotides complementary at the

n Table 1 Performance of different predictive models on the training/testing dataset of 737 sequences (T737) during 10-fold
cross-validation. Evaluation of the models on an independent validation dataset (V185)

PCC on Training/Testing Sets (T737) and Independent
Validation Sets (V185) Using 10nCV

Predictive
Model No.

siRNA Feature
Name No. of Features T737 V185

1 Mononucleotide composition 4 0.53 0.54
2 Dinucleotide composition 16 0.68 0.64
3 Trinucleotide composition 64 0.70 0.66
4 Tetranucleotide composition 256 0.69 0.65
5 Pentanucleotide composition 1024 0.68 0.63
6 Binary 76 0.55 0.56
7 1+2 20 0.67 0.63
8 1+2+3 84 0.70 0.63
9 1+2+3+4 340 0.71 0.65

10 1+2+3+4+5 1364 0.71 0.65
11 1+2+3+4+6 (ASPsiPredSVM) 416 0.71 0.65
12 1+2+3+4+5+6 1440 0.71 0.65
13 Thermodynamic feature 21 0.41 0.30
14 Secondary structure 19 0.24 0.07
15 13+14 40 0.35 0.23
16 12+13 437 0.71 0.65
17 12+14 435 0.71 0.65
18 12+13+14 456 0.71 0.65
19 ASPsiPredmatrix Matrix based Developed on

rules-based studies
0.63

PCC, Pearson correlation coefficient; 10nCV, 10-fold cross-validation; T737, training/testing dataset for 10-fold cross-validation; V185, independent validation
dataset. PCC is between actual and observed Effmut. Training/testing dataset is used to train different predictive models, while independent validation dataset was not
used anywhere during training/testing of algorithm.
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mutation on the efficacy of the mutant allele (Effmut), but an algo-
rithm employing these studies was lacking.

Correspondingly, there were some rule-based studies reporting the
effect of siRNA: mRNA residue clash on efficacy at all 19 locations of
the siRNA guide strand (Birmingham et al. 2006; Huang et al. 2009;
Ohnishi et al. 2008; Schwarz et al. 2006). It is also testified that siRNA:
mRNA residue clash of purine: purine (pur:pur) type is less tolerable
than pyrimidine: pyrimidine (pyr:pyr) clash. For example, siRNA
“siC7/8” having G: G clash with the wild-type allele suppresses
the mutant allele three fold more than its counterpart (Miller et al.
2003). In some cases, when siRNA: mRNA have a pyr:pyr or pyr:pur
clash, an additional mismatch is introduced in the siRNA to make it
more discriminative (Miller et al. 2004). Despite these rule-based stud-
ies, there is no algorithm employing these findings for prediction of
Effmut and Effwild. We have developed ASPsiPred, the first web server in
this field incorporating a two-tiered algorithm (ASPsiPredSVM and
ASPsiPredmatrix) for predicting efficacies Effmut and Effwild.

In the literature, initially many mammalian siRNA efficacy pre-
diction algorithms were developed using heterogeneous siRNAdatasets
and achieved a good PCC of 0.46–0.56 (Holen 2006; Saetrom 2004;
Shabalina et al. 2006). Thereafter, algorithms to predict siRNA effica-
cies were reported using the Huesken dataset (Huesken et al. 2005) and
exhibited very good PCC values in the range of 0.56–0.85. Likewise,
ASPsiPredSVM has achieved a correlation of 0.71 on 10nCV and 0.65 on
an independent validation set (Table 1). The ASP-siRNA dataset
(D922) has not been employed anywhere in the present mammalian
siRNA efficacy algorithms. Moreover, our algorithm has not utilized
currently available siRNA datasets other than D922. Further, it has
been reported that siRNA algorithms perform less well on datasets in
which they have not been trained (Qureshi et al. 2013). Correspond-
ingly, the performance of other available algorithms on our dataset
(Table 2) and ASPsiPredSVM on their datasets was lower (Table 3).

ASPsiPredSVM performed better on the ASP-siRNA datasets includ-
ing T737 and V185 sets (Table 3). However, it achieved a PCC of 0.23
and 0.26 on theHuesken2431 dataset (T2182/V249). Thismay be because it
has only been trained on an allele-specific dataset and suggests the need
of an ASP-siRNA efficacy prediction algorithm. Thus, ASPsiPredSVM

will be helpful for researchers in designing and predicting Effmut for
consecutive single-nucleotide sliding siRNAs for a given gene that is not
necessarily linked to disease. For this purpose, we have provided our best
predictive model as a general siRNA efficacy predictor under the sepa-
rate ASPsiPredSVM section on the web server.

As the D922 dataset covers sequences with single-nucleotide sliding
differences, there is overlap among them. Therefore, the simple 10nCV
in which overlapping sequences are randomly assigned to training and
test sets could inflate the performance of the algorithm. Thus, to further

address this issue, we have used the LOTOCV method in which ASP-
siRNAs fromeach target geneare iteratively excludedand the classifier is
trained on sequences from the remaining genes followed by testing on
the sequences from the excluded gene (Table 4). Out of the 21 genes,
predictive performance of 14 genes was satisfactory despite the fact that
data from that gene were not present in the training set. Therefore,
results from the above strategy show that ASPsiPredSVM can act as
a general ASP-siRNA efficacy prediction algorithm for other genes
(Table 4). However, predictive performance of some of the genes was
less than satisfactory. This may be due to the difference in the pattern of
the target gene mutation, which might be improved in the future based
on the availability of more data.

Additionally, there is no web server to predict the efficacy of ASP-
siRNAs with a wild-type allele having a single mismatch (Effwild).
Though desiRm also deals with mismatches and efficacy, it aims to
improve the efficacy of an siRNA by introducing mismatches in the
same target sequence. On the other hand, ASPsiPredmatrix is intended to
predict the efficacy of ASP-siRNA targeting a wild-type allele (Effwild)
with one mismatch. desiRm is associated with one efficacy value at a
time, while ASPsiPred predicts two efficacies (Effmut/Effwild) simulta-
neously from two methods. In the former, a mismatch is introduced in
the siRNA for the same target sequence to improve efficacy, while in the
latter case, a mismatch is present between wild-type allele and ASP-
siRNA. desiRm was developed on the Huesken dataset and ASPsiPred
is developed using ASPs-RNAs, which is a novel siRNA dataset in the
literature.We have also compared the performance of bothmethods on
four experimental studies of multiple 19mer siRNAs offset along a
target and found that ASPsiPredmatrix performs better in predicting
single-nucleotide sliding 19mer trails (Table S9 in File S1).

It is well established that off-target effects are a major issue during
siRNA-based gene silencing and seed regions are a key determinant for
these effects (Birmingham et al. 2006; Jackson et al. 2003; Kamola et al.
2015). Therefore, to deal with off-targets, we have also integrated the
ASP-siOffTar tool to deliver a list of off-target hits based on the align-
ment of the seed regions of ASP-siRNA or any siRNA to the human
genome. To extend the off-targets repertoire of particular siRNAs, a full
sequence based off-target tool is also integrated on the web interface
with a maximum of three allowed mismatches. Furthermore, many
chemical modifications (cm) on siRNAs have been used to reduce
off-target effects and increase the half-life of siRNAs by making it
nuclease resistant (Dar et al. 2016b). We have also compiled a list of
422 cm ASP-siRNAs and provided it on our web server.

AlthoughASP-RNAi is apowerful tool, various factorsmustbe taken
into account before it enters clinic, such as binding of siRNAs to
unintended off-targets via partial sequence complementarity (Kamola
et al. 2015), stability, and half-life (Dar et al. 2016b). Successful siRNA

n Table 2 Performance of second-generation siRNA efficacy prediction algorithms on T737, V185, and V419

Pearson Correlation Coefficient (PCC)

S. No. Reference Technique siRNA Dataset ASP-siRNA Dataset Train# Val# T737 V185 V419�

1 Huesken et al. (2005) ANN Huesken2431 ✗ 0.67 0.66 Webserver not working 0.54
2 Vert et al. (2006) LR Huesken2431 ✗ 0.67 0.57 Webserver not working 0.55
3 Jiang et al. (2007) RFR 3589 ✗ 0.85 0.59 Webserver not working NA
4 Ichihara et al. (2007) LR Huesken2431 ✗ 0.72 NA 0.18 0.14 0.56
5 Ahmed and Raghava (2011) SVM Huesken2431 ✗ 0.65 0.65 0.27 0.25 0.55
6 siRNApred Kumar et al., (2009) SVM Huesken2431 ✗ 0.56 0.47 0.27 0.09 0.23

Second-generation siRNA efficacy algorithms were developed on the Huesken dataset. S.No., Serial number; RFR, random forest regression; ANN, artificial neural
network; LR, linear regression; Train# and Val# is the performance during n-fold cross-validation and independent validation of a particular algorithm. T737 and V185
column reflects the performance of algorithms on training/testing and independent validation sets of ASPsiPredSVM (in bold italics), while extreme right column
indicates performance of algorithms on benchmarking dataset V419.
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delivery is also an important contributing factor, which depends upon
choice of transfection reagent and the intrinsic susceptibility of the
target cell type (Nabzdyk et al. 2011).

Thus, the ASPsiRNA resource would be immensely helpful for in
silico design and predicting efficacy of ASP-siRNAs for various mal-
adies, e.g., in cancer-associated SNPs (Iyer et al. 2016;Mook et al. 2009),
for treatment of genetic diseases, e.g., from currently incurable autoso-
mal dominant (Miller et al. 2004) to severe sex-linked disorders
(Caplen et al. 2002), in combating viral drug resistance (Teng et al.
2011), and many more. It will also be beneficial for researchers who
wish to study the function of alleles.

Currently, our method is limited to the prediction of Effwild with a
singlemismatch due to limited data onmultiple mismatches. It also has
limited performance on unseen or novel genes owing to a limited
number of target genes in the dataset. In the future, there would be a
need to develop an algorithm for .1 mismatch, which can improve
allelic discrimination.Nevertheless, the upcoming use of ASP selectivity
will not only be useful to suppress disease-associated SNPs, but can also
be applied as a research tool where you can silence one splice variant
from other (Trochet et al. 2015).

Conclusion and future implications
Understanding distinctive aspects of ASGS by ASP-siRNAs may be
exploited in the treatment of currently incurable dominant genetic
disorders. In this ASPsiRNA resource, ASPsiDb provides a highly

annotated dataset of ASP-siRNAs and their associated targets. It
also provides a two-layered algorithm to design effective and dis-
criminatory siRNAs against heterozygous SNPs (ASPsiPredSVM)
and wild-type alleles (ASPsiPredmatrix) coupled with useful tools like
ASP-siOffTar for off-target analysis. We hope ASPsiPred will be
immensely helpful to target not only disease-causing mutations,
but also to study the biological function of alleles that are not nec-
essarily linked to disease.
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n Table 3 Performance of ASPsiPredSVM on Huesken2431 and V419

S. No. Reference Technique siRNA dataset ASP-siRNA T737 V185 T2182 V249 V419

1 ASPsiPredSVM SVM ASP-siRNA (D922) ✓ 0.71 0.65 0.23 0.26 0.22

S.No., Serial number. The Huesken2431 dataset is divided into T2182 and V249 as training/testing and independent validation set. T737 and V185 column reflects the
performance of ASPsiPredSVM on training/testing and independent validation sets; while V419 indicates performance on benchmarking dataset.

n Table 4 Performances of the SVM models during 10-fold cross-validation using LOTOCV method

No. of ASP-siRNAs Pearson Correlation Coefficient (PCC) During 10nCV and IV

S. No. Gene Name Training Dataset Validation Dataset 10nCV IV

1 APP 907 15 0.71 0.88
2 AR 912 10 0.71 0.19
3 COL1A1 912 10 0.71 0.49
4 COL3A1 903 19 0.71 0.34
5 COL6A3 911 11 0.70 0.24
6 COL7A1 903 19 0.71 0.55
7 HTT 883 39 0.56 0.28
8 KRAS 844 78 0.68 0.31
9 KRT12 884 38 0.71 0.48

10 KRT5 884 38 0.71 0.24
11 KRT6a 903 19 0.70 0.31
12 KRT9 830 92 0.63 0.26
13 LRRK2 901 21 0.71 0.26
14 Others 844 78 0.74 0.20
15 P. Luciferase 865 57 0.71 0.23
16 PPIB 695 227 0.53 0.61
17 PRNP 904 18 0.71 0.79
18 PSEN1 903 19 0.43 0.30
19 SNCA 906 16 0.71 0.50
20 SOD1 881 41 0.53 0.34
21 TGFBI 903 19 0.55 0.64
22 TP63 884 38 0.58 0.33

ASP-siRNAs targeting a particular gene are assigned to the validation dataset, while sequences from other genes were assigned to the training set. Validation of the
models was done using respective gene in the independent validation set. Standard HGNC gene symbols have been used. PCC is between the actual and observed
Effmut. The training dataset is used to train different predictive models, while independent validation datasets were not used in any training algorithms. S.No., Serial
number; 10nCV, ten-fold cross-validation; IV, independent validation.
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