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Abstract

General anaesthesia is associated with hypothermia, oxidative stress, and immune depression. Uncoupling Protein (UCP2) is
a member of the mitochondrial carrier family present in many organs including the spleen, the lung and the brain. A role of
UCP2 in the activation of the inflammatory/immune cells, in the secretion of hormones, and in the excitability of neurons by
regulating the production of reactive oxygen species has been discussed. Because of the side effects of anaesthesia listed
above, we aimed to question the expression and the function of UCP2 during anaesthesia. Induction of anaesthesia with
ketamine (20 mg/kg) or isoflurane (3.6%) and induction of sedation with the a2 adrenergic receptor agonist medetomidine
(0.2 mg/kg) stimulated infiltration of immune cells in the lung and increased UCP2 protein content in the lung, in both
immune and non-immune cells. UCP2 content in the lung inversely correlated with body temperature decrease induced by
medetomidine treatment. Challenge of the Ucp22/2 mice with isoflurane and medetomidine revealed an earlier behavioral
recovery phenotype. Transponder analysis of body temperature and activity showed no difference between Ucp22/2 and
control mice in basal conditions. However, upon an acute decrease of body temperature induced by medetomidine, Ucp22/

2 mice exhibited increased locomotion activity. Together, these results show that UCP2 is rapidly mobilized during
anaesthesia and sedation in immune cells, and suggest a role of UCP2 in locomotion.
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Introduction

The administration of anesthetics is accompanied with unde-

sired side effects, comprising lung respiratory depression and

hypothermia [1]. Although the complete muscle relaxation and

therefore the lack of shivering thermogenesis upon anaesthesia

explains, to a large extent, the decrease of body temperature, it has

been proposed that at least some anesthetics also affect thermo-

regulatory mechanisms and thermogenic pathways. For instance,

the volatile anesthetic isoflurane has been shown to inhibit key

metabolic enzymes such as adenylate cyclase and the mitochon-

drial respiratory complex one, thus impacting the cell energy

metabolism. Indeed, metabolic inhibition affects dramatically

thermogenic tissues such as brown adipose tissue [2,3] in which

UCP1 mediated uncoupling of respiration to ATP synthesis is used

to produce heat [4]. UCP1 is located in the mitochondrial inner

membrane and uncouples the ATP synthesis from the respiratory

chain by facilitating the re-entry of protons into the mitochondrial

matrix. Close relatives of UCP1 (i.e., UCP2 and UCP3) have been

isolated in tissues other than BAT [5,6]. Their mechanisms of

action are still under debate and it has been suggested that they are

involved in the regulation of mitochondrial dependent fatty acid

oxidation and reactive oxygen production [7]. While UCP3 is

mainly expressed in muscle, UCP2 is present in many organs and

cell types. It is predominantly expressed in the inflammatory/

immune system, in white adipose tissue, in the digestive system, in

the lung and in some regions of the brain, including the

hypothalamus [8,9]. Bone marrow cell transplantation has revealed

that, in the lung, inflammatory/immune cells contribute to 30% of

the amount of UCP2 immunodetected in this tissue [10]. Several

reports have suggested that UCP2 might indirectly participate in

basal or induced thermogenesis. For instance, Walder and

colleagues linked the polymorphism of markers in the Ucp2 locus

with resting metabolic rate and energy expenditure during sleep

[11]. Gnanalingham et al. have shown that in large mammals, e.g.

sheep, UCP2 RNA peaks around the time of birth in the lung [12].

Ucp22/2 mice are not cold-sensitive, and instead exhibit immune

and non-immune phenotypes linked either to oxidative stress or

mitochondrial ATP modulation [13–16]. Because general anaes-

thesia is associated with immune depression [17], inflammation

[18], hypothermia, mitochondrial perturbations [19] and oxidative
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stress [20], we aimed to investigate the expression and function of

UCP2 upon anaesthesia and sedation.

We report here that anaesthesia and sedation provoke a

transient UCP2 upregulation in the lung and a concomitant

reversible hypothermia. Locomotion recovery occurred faster in

Ucp22/2 mice than in wild type littermates upon arousal from

anaesthesia and from myorelaxant induced sedation.

Materials and Methods

Animals
Studies on mice were performed in agreement with the

institutional CNRS guidelines defined by the European Commu-

nity guiding principles and by the French decree Nu87/848 of

October 19, 1987. Authorization to perform animal experiments

was given by the French Ministry of Agriculture, Fisheries and

Food (A92580 issued February 2 1994, and 92–148 issued May

14, 2002). All protocols were declared and approved by the Necker

faculty Animal Care Committee (approval ID 75-738 to BM). Six

to eight week-old male mice were used in all experiment. Ucp22/2

mice of C57B6/J genetic background have been previously

described [21]. In some experiments, C57B6/J mice were

irradiated and then transplanted with bone marrow cells from

either Ucp22/2 or Ucp2+/+ littermate animals, as previously

described [21]. The mice were used two months after transplan-

tation.

Anaesthesia and sedation
Anaesthesia was achieved using three different methods:

i) 3.6% isoflurane (Forene; Abbot, Rungis, France) inhalation

for 5 min in an anesthetic chamber (Plexx; AB ELST, The

Nederland)

ii) intramuscular injection (50 ml) of 200 mg/kg ketamine or

intravenous injection of 20 mg/kg (Imalgen; Meriel, Lyon,

France)

iii) intramuscular injection (50 ml) of 20 mg/kg ketamine in

combination with 0.2 mg/kg of the a2 adrenergic receptor

agonist medetomidine (Domitor; Pfizer, Paris, France).

Medetomidine is a myorelaxant that induces sedation and is

commonly used to potentiate the effect of anesthetics. In some

experiments, when ketamine and medetomidine were co-injected,

mice were awoken 15 min after receiving the anesthetic by

intramuscular injection (50 ml) of 0.4 mg/kg of the a2 adrenergic

receptor antagonist atipamezole (Antisedant; Pfizer, Paris, France).

Sedation was obtained by intramuscular injection of 0.2 mg/kg

medetomidine. Control mice received 50 ml 0.9% NaCl.

Physical activity and body temperature measurements
Physical activity and core body temperature were measured in

sedated mice implanted with a transponder. Two weeks before the

sedation experiment, E-mitter (battery-free) telemetry devices

(MiniMitter Co., Sunriver, OR, USA) were implanted intraper-

itoneally into the mice under gaseous anaesthesia (O2/nitrogen

protoxide/isoflurane). The mice were recorded using the Vitalview

acquisition system from MiniMitter. Alternatively, body temper-

ature was recorded by anal probe measure (Thermocouple probe

thermometer CHY 508 BR, Bioseb, Chaville, France). Statistical

Figure 1. Induction of UCP2 expression in the lung and in the spleen upon analgesia and sedation. A, Western blot analysis of UCP2
(upper panel) and COX I (lower panel) expression in the lung of C57B6/J mice. Mice (5 per group) were injected with ketamine (20 mg/kg) in
combination with the a2 adrenergic receptor agonist medetomidine (0.2 mg/kg). Fifteen minutes after induction of anaesthesia, the mice were
awoken by injection of 0.4 mg/kg of the a2 adrenergic receptor antagonist atipamezole and euthanatized 2, 3 and 4 hours after arousal from
anaesthesia. The lungs were collected and mitochondrial preparation and Western blot analysis were performed. B, Graphic representation of the
UCP2/COX I ratio from the experiment in panel A. C, UCP2/COX I ratio in the lung of mice 3 hours after injection of 0.2 mg/kg, medetomidine (Met.),
30 min after intravenous injection of 20 mg/kg of ketamine (Ket. i.v.), 3 hours after intramuscular injection of 20 mg/kg ketamine (Ket. i.m.), or
3 hours after 5 min inhalation of 3.6% isoflurane (Isof.). COX I subunit was used to normalize the amount of mitochondrial proteins. D, UCP2
expression in the spleen of mice 3 hours after injection of 0.2 mg/kg medetomidine (Met.), 200 mg/kg of ketamine (Ket. 200), 20 mg/kg of ketamine
(Ket. 20) or 5 min inhalation of 3.6% isoflurane (Isof.). Porin was used to normalize the amount of mitochondrial proteins.
doi:10.1371/journal.pone.0041846.g001
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significance was tested by the two-way ANOVA method with

repeated measures, followed by post-hoc Bonferonni t-test

(SigmaStat, Jandel). P values,0.05 were considered statistically

significant.

Mitochondria isolation
Mice euthanasia was achieved by cervical disruption. The lung

and spleen were collected and immediately immersed in a buffer

composed of 10 mM Tris, pH 7.5, 1 mM EDTA, 250 mM

sucrose supplemented with protease inhibitors (1 mM benzami-

dine, 4 mg/ml aprotinin, 1 mg/ml pepstatin, 2 mg/ml leupeptin,

5 mg/ml bestatin, 50 mg/ml sodium-tosyl-phechloromethyl ke-

tone, and 0.1 mM phenylmethylsulphonyl fluoride, all from

Sigma, Saint Quentin Fallavier, France. Fresh or frozen tissues

were disrupted in a glass homogenizer. Unbroken cells and nuclei

were removed by two successive centrifugations of the homogenate

at 750 g for 10 min. Mitochondria were collected after centrifu-

gation of the supernatant at 10,000 g for 20 min, and protein

content was assayed using a bicinchoninic acid-based kit (Sigma,

Saint Quentin Fallavier, France).

Western blot analysis
Sodium dodecyl sulphate-gel electrophoresis was performed

with 30 mg of mitochondrial protein per lane. Blots were incubated

with anti-human UCP2 (hUCP2-605, [8]), anti- cytochrome c

oxidase subunit I (COX I) or the anti-porin monoclonal antibodies

(clones 1D6 and 20B12 respectively; Molecular Probes, Leiden,

The Netherlands) and peroxidase activity coupled to the second

antibody was revealed using chemiluminescence ECL kit (ECL,

GE Healthcare, Little Chalfont, The United Kingdom). COX I

and porin are specifically expressed in mitochondria and were

used to normalize mitochondria protein content. Direct recording

of the chemiluminescence was performed with the charge-coupled

device camera of the GeneGnome instrument, and quantification

was achieved using GeneSnap software (both from Syngene,

Ozyme, Saint Quentin en Yvelines, France). The results were

expressed as a ratio of the intensity of the UCP2 band over the

intensity of the COX I subunit or porin corresponding band. The

switch to porin antibodies was due to the lack of regular supply of

COX antibodies. There are no differences between using COX I

vs. Porin antibodies as controls; both COX I and porin antibodies

gave similar results. A Mann-Whitney test was used for statistical

analysis. Values are expressed as mean 6 sem. P values,0.05

were considered statistically significant. * P,0.05, ** P,0.01 and

*** P,0.001.

Results

Up-regulation of UCP2 during anaesthesia and sedation
in immune and non-immune cells

In order to test whether UCP2 is upregulated during

anaesthesia or sedation, we first tested non-barbituric anesthetics

such as ketamine, an antagonist of glutamate receptor. Given the

side effects of ketamine on cardio-vascular excitability, ketamine

was initially used in combination with the myorelaxant medeto-

midine (0.2 mg/kg), an a2 adrenergic agonist. Medetomidine

Figure 2. Immune cells contribute to UCP2 expression in lung
during analgesia or sedation. A, Irradiated C57B6/J mice were
transplanted with the bone marrow from Ucp2+/+ (C57B6t(Ucp2+/+)) or
Ucp22/2 (C57B6t(Ucp22/2)) mice as described in (6). Two months after
transplantation, the mice were intramuscularly injected with medeto-
midine (0.2 mg/kg) and ketamine (20 mg/kg). Fifteen minutes after
anaesthesia, the mice were awoken by injection of atipamezole and
euthanized 3 hours later. UCP2/COX I protein ratio was established by
Western blot using the anti UCP2-605 and the anti COX I antibodies. B,
Three hours after induction of anaesthesia or sedation, the awoken
mice were intraperitoneally injected with pentobarbital (50 mg/kg) and
bronchoalveolar lavage was immediately performed. Monocytes were
identified and counted under a microscope.
doi:10.1371/journal.pone.0041846.g002

Figure 3. UCP2 induction correlates with sedation-induced
hypothermia. Mice were intramuscularly injected with medetomidine
(0.2 mg/kg). A, Rectal body temperature was recorded at indicated time
after injection. B, Mice (5 on each time point) were euthanized and lung
mitochondria were analyzed for their UCP2/porin protein content by
Western blot using the anti UCP2-605 and the anti porin antibodies.
doi:10.1371/journal.pone.0041846.g003
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potentiated the anesthetic effect of ketamine. Consequently, a sub-

anesthetic dose of ketamine (i.e. 20 mg/kg) was sufficient to induce

anaesthesia. In those conditions, injection of atipamezole, a

competitive a2 antagonist efficiently woke the mice. Following

this protocol of anaesthesia/awakening, mice were submitted to

anaesthesia for 15 min and a 2 to 4 fold increase of UCP2 protein

content in the lung was observed 2, 3, and 4 hours after arousal

(Fig. 1A and 1B). In order to dissociate the effect of ketamine and

medetomidine, both compounds were injected separately (Fig. 1C).

Sedation induced by medetomidine resulted in UCP2 induction.

Similarly, UCP2 protein induction in the lung was observed

30 minutes after intravenous injection of ketamine (20 mg/kg) or

3 hours after arousal, from anaesthesia induced by intramuscular

injection of ketamine (200 mg/kg). Next, volatile anesthetics were

investigated. UCP2 expression increased three fold in lung

mitochondria 3 hours after the arousal from isoflurane-induced

anaesthesia (5 min-inhalation, Fig. 1C). In contrast, the barbituric

anesthetic pentobarbital (50 mg/kg) had no effect on UCP2

expression (data not shown). Given the large in vivo distribution of

UCP2, tissues other than lung were analyzed. UCP2 protein levels

remained unchanged in the digestive system and in the skeletal

muscle upon anaesthesia or sedation (data not shown). In the

spleen, a more complex pattern of expression was observed

(Fig. 1D). Medetomidine increased UCP2 expression of 70% only

as compared to the four-fold induction in the lung. Ketamine

treatment had dose dependent effects on UCP2 induction. A sub-

anesthetic dose of ketamine (20 mg/Kg, intramuscular) decreased

UCP2 by 40% in the spleen while a high dose of ketamine

(200 mg/Kg, intramuscular) increased UCP2 expression by 60%.

Isoflurane had no effect on UCP2 levels in the spleen. Since

ketamine and medetomidine modulated UCP2 in the spleen, we

tested whether UCP2 induction in the lung was linked to resident

or infiltrating blood cells. Anaesthesia was induced on mice

previously irradiated and transplanted with bone marrow cells

from wild type or Ucp2 null mice. A three-fold increase of UCP2

content in the lung was observed 3 hours after anaesthesia in

animals transplanted with wild type bone marrow cells, while

UCP2 expression level increased only by 70% in mice transplant-

ed with the bone marrow from Ucp22/2 mice (Fig. 2A). The

increment of UCP2 expression in animals transplanted with bone

marrow cells from UCP2 deficient mice was intermediary between

that in non-transplanted mice and in animals transplanted with

bone marrow cells from wild type mice, suggesting that UCP2 is

increased in structural cells (epithelial, endothelial, smooth muscle

cells, and/or fibroblasts) and in resident inflammatory/immune

cells (alveolar macrophages). In order to assess whether infiltrating

blood cells contributed to UCP2 increase in the lung during

anaesthesia or sedation, bronchoalveolar lavages (BAL) were

performed. A significant monocytes infiltration was observed upon

ketamine, medetomidine or isoflurane treatment (Fig. 2B). No

Figure 4. Locomotion and body temperature of Ucp22/2 mice during medetomidine induced sedation. One week before the start of the
experiment, transponders were implanted in mice (five per group). A, Activity and B, body temperature of Ucp2+/+ and Ucp22/2 24 hours before
medetomidine injection. Data were plotted every 2 hours. Mice were subsequently injected with medetomidine (180 mg/kg) and C, the physical
activity and D, the body temperature were recorded every 5 min for 7 hours. Time 0 in panels B and D corresponds to the time of medetomidine
injection. Note, using this measurement system, the detection limit of temperature was 30uC. * P,0.05 between genotypes for a given time.
doi:10.1371/journal.pone.0041846.g004
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other sign of inflammation was detected. Cytokine levels of MCP1

and IL6 for instance were undetectable in the bronchoalveolar

fluids upon medetomidine or ketamine treatment (data not

shown).

Expression of UCP2 correlates with core body
temperature during medetomidine induced sedation

Myorelaxants are well known to decrease core body tempera-

ture. As shown in Figure 3A, body temperature decreased within

the hour following medetomidine injection (0.2 mg/kg). Body

temperature returned to its normal level within 8 hours of

injection. Given the rapid increase of UCP2 content in the lung

upon medetomidine treatment, we performed a complete time

course experiment to test if UCP2 expression levels correlate with

core body temperature. Interestingly, UCP2 expression levels

followed the exact opposite course to core body temperature

(Fig. 3B). UCP2 protein content in the lung increased rapidly after

medetomidine injection. Maximum expression level of UCP2

remained for 4 hours before it progressively returned to its basal

level.

Ucp22/2 mice recover faster from sedation or
anaesthesia

In order to assess core body temperature and locomotion

activity, transponders were implanted in Ucp22/2 and Ucp2+/+

mice. Figure 4A–B shows locomotion activity and body temper-

ature of the Ucp22/2 and Ucp2+/+ in the basal condition, i.e. for

the whole day before the medetomidine challenge. In contrast to

the observation of Andrews and colleagues [22], Ucp22/2 mice did

not exhibit any significant reduction of locomotor activity at night,

as indicated by fully overlapping error bars between genotypes for

all data points, suggesting that the genetic background (C57B6/J

in our study versus C57B6/129SvJ in Andrews’s study) strongly

influences Ucp22/2 mice phenotypes. Medetomidine injection

provoked a drop in physical activity to zero and a decrease in

temperature body to or below 30uC (detection limit of the

transponder) within 30 min in both Ucp2+/+ and Ucp22/2 mice

(Fig. 4C–D). The activity of Ucp22/2 mice significantly increased

1.5 h before the activity of control mice, and physical activity was

increased in Ucp2 null animals (Fig. 4C). Body temperature

recovery was not significantly different in either of the mice

genotypes despite a higher locomotion activity in Ucp22/2 mice

that was expected to generate heat. To confirm the locomotion

phenotype observed in the sedation model, we next studied the

recovery phase of Ucp22/2 mice in the isoflurane induced

anesthetic model. Mice were placed in an anaesthesia chamber

and submitted to 3.6% isoflurane inhalation. After 5 min of

isoflurane treatment, mice were taken out of the anaesthesia

chamber and left on their back. Following isoflurane inhalation

both Ucp2+/+ and Ucp22/2 mice awoke after about 1 min and

were immediately rotated to stand on their feet (arousal time).

However, once awoken, Ucp22/2 mice needed less than 20

additional seconds to start walking while Ucp2+/+ mice remained

immobile for 60 s before moving (Fig. 5).

Discussion

In this study, we show for the first time that UCP2 responds to a

physiological change induced by several anesthetics and a

myorelaxant. Up-regulation of UCP2 in the lung occurred in less

than 1 hour after injection of medetomidine, suggesting a

translational control of UCP2 as described in response to LPS,

fasting or glutamine treatment [8,23]. After a plateau of 2 to

3 hours, UCP2 protein returned to its basal level of expression in

about 2 hours, which is also in accordance with the short half-life

of this protein previously measured [24]. However, inhibition of

UCP2 fast turnover cannot be excluded. The general time course

of UCP2 induction upon medetomidine treatment is similar to

that observed after LPS injection as described in [8], suggesting a

common origin. However, although bone marrow transplantation

demonstrated that immune cells contribute to the increases of

UCP2 in the lung, we could not detect any sign of inflammation in

this tissue. In addition, immune cell infiltration in bronchoalveolar

fluid was far below that observed during inflammation. It is likely

that resident immune cells and especially macrophages increase

UCP2 expression. A common side-effect of anesthetics and LPS-

induced inflammation in mice is hypothermia [1,25]. To explore

further a putative role of UCP2 in thermoregulation, we

performed in vivo recording of mouse activity and core body

temperature using transponders. We focused on the myorelaxant

medetomidine because its action on body temperature is dose-

dependent and severe. Transponder analysis after use of

medetomidine revealed an earlier locomotion activity upon

arousal from medetomidine-induced sedation. We did not observe

a significant lack of thermogenic function in Ucp22/2 mice.

However, the core body temperature of Ucp22/2 mice was not

significantly augmented as one would expect following an increase

of locomotion activity, and further experiments are required to test

if Ucp22/2 mice encountered thermoregulation problems upon an

acute drop of core body temperature. Locomotion activity is a

complex behavior that results from the interaction of several

neurotransmitter systems, among which the dopamine system

appears to be the most important one [26] within the striatum and

the accumbens nucleus where UCP2 mRNA is present [9]. In

these areas of the brain, medetomidine has been shown to inhibit

noradrenaline and dopamine turnover [27]. Since Ucp22/2 mice

exhibit a faster recovery to both medetomidine and isoflurane

treatment, we suggest that dopamine metabolism is modified in

Ucp22/2 mice. This hypothesis is consistent with the results of

Figure 5. Ucp22/2 mice recover faster than wild type mice upon
arousal from isoflurane-induced anaesthesia. Graphic represen-
tation of arousal and locomotion times of Ucp2+/+ and Ucp22/2 mice
after isoflurane anaesthesia. Mice inhaled isoflurane 3.6% for five
minutes in an anesthetic chamber. Anaesthesia was interrupted by
taking the mice out of the chamber. The mice were laid down on their
back and from this time-point, arousal (rotation of the mice onto their
feet) and locomotion times were recorded.
doi:10.1371/journal.pone.0041846.g005
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Yamada et al. showing that UCP2 over-expression in PC12 cells

inhibits dopamine secretion [28], However Andrews and col-

leagues have proposed that UCP2 does not directly promote

dopamine secretion; instead, it controls mitochondrial prolifera-

tion, fatty acid oxidation and ROS protection, thus increasing the

fitness of dopaminergic neurons [22,29]. At the molecular level,

further investigations are required to assess whether UCP2 acts as

an uncoupling protein, thereby preventing ROS formation and

limiting ATP supply, or as a metabolic transporter at the interface

between several neuropeptides’ metabolic pathways.
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