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Translational modulator ISRIB
alleviates synaptic and behavioral
phenotypes in Fragile X syndrome

Rochelle L. Coulson,1 Valentina Frattini,1 Caitlin E. Moyer,2 Jennifer Hodges,3 Peter Walter,4,5,8

Philippe Mourrain,1,6 Yi Zuo,3,* and Gordon X. Wang1,7,9,*

SUMMARY

Fragile X syndrome (FXS) is caused by the loss of fragile X messenger ribonucleoprotein (FMRP), a trans-
lational regulator that binds the transcripts of proteins involved in synaptic function and plasticity. Dysre-
gulated protein synthesis is a central effect of FMRP loss, however, direct translational modulation has not
been leveraged in the treatment of FXS. Thus, we examined the effect of the translational modulator in-
tegrated stress response inhibitor (ISRIB) in treating synaptic and behavioral symptoms of FXS. We show
that FMRP loss dysregulates synaptic protein abundance, stabilizing dendritic spines through increased
PSD-95 levels while preventing spine maturation through reduced glutamate receptor accumulation,
thus leading to the formation of dense, immature dendritic spines, characteristic of FXS patients and
Fmr1 knockout (KO) mice. ISRIB rescues these deficits and improves social recognition in Fmr1 KO
mice. These findings highlight the therapeutic potential of targeting core translational mechanisms in
FXS and neurodevelopmental disorders more broadly.

INTRODUCTION

Neurodevelopmental disorders such as Autism spectrum disorder (ASD) and Fragile X syndrome (FXS) are associated with social and cogni-

tive deficits, and are increasingly prevalent, with an estimated 1 in 54 children diagnosed with ASD in the United States.1 FXS is the most com-

mon monogenic cause of inherited intellectual disability and ASD2 and is characterized by many common autistic traits including cognitive

dysfunction, social phobia, stereotyped behavior, hyperactivity, and hypersensitivity to sensory stimuli.3,4 Due to the well-defined genetic eti-

ology of FXS, pharmacological targeting of abnormal cellular and molecular pathways is possible and holds promise for the development of

therapies for the treatment of neurodevelopmental disorders and ASD in general.5

In humans, FXS is most often caused by the expansion of a CGG trinucleotide beyond 200 repeats within the 50-untranslated region (UTR)

of the fragile Xmessenger ribonucleoprotein 1 gene (FMR1). This inhibits FMR1 transcription and the production of the highly conserved frag-

ile X messenger ribonucleoprotein (FMRP).6 FMRP is an RNA-binding protein that regulates the translation of approximately 4% of all tran-

scripts in the brain.7 Many of these transcripts encode proteins that regulate synaptic function and plasticity, such as PSD-95, GluA1, GluA2,

ARC, andMAP1B.7–16 Protein translation, especially in the highly active awake brain, is extremelymetabolically demanding. Behaviors such as

socialization and learning induce significant metabolic load on a cellular and synaptic level in neurons.17,18 Translation dependent mecha-

nisms regulating this metabolic response are critical for proper synaptic network function and plasticity.19

Altered brain metabolism due to dysregulated protein synthesis in the absence of FMRP20,21 suggests that drugs targeting translational

regulation of stress pathways may alleviate FXS synaptic deficits and improve behavioral outcomes. One such drug is the small molecule in-

tegrated stress response inhibitor (ISRIB). ISRIB modulates translation in a context-specific manner, acting on a specific set of mRNAs that are

preferentially translated under stress conditions, rather than altering bulk translation throughout the cell, and impacting translational pro-

cesses involved in synaptic plasticity.22–26 Cell-type-specific dysregulation of the integrated stress response has been shown in Fmr1 KOexcit-

atory neurons,27 suggesting that context-specific local translational programs in neuronal synapses represent a key switchingmechanism that

regulates plasticity. In a normal neuron, FMRP regulates translation at the synapse.11 In the absence of FMRP, ISRIBmay compensate for some
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of the functions of FMRP as a translational regulator of plasticity and function at neuronal synapses. The efficacy of ISRIB in the absence of

FMRP is unknown, thus we examined the effects of ISRIB treatment by characterizing the synaptic mechanisms underlying ISRIB activity in

the Fmr1 KO mouse model. Specifically, we sought to determine if ISRIB could compensate for the loss of translational regulation by

FMRP and whether restoring synaptic protein expression could rescue behavioral outcomes in FXS.

In this study we examine the effects of FMRP deficiency at the molecular, synaptic, and behavioral levels to characterize the mechanisms

underlying the cognitive impairment observed in FXS. We used synapse-scale proteomic imaging28–30 and in vivo dendritic spine imaging31

to identify previously undescribed molecular and structural synaptic changes caused by the loss of FMRP and their response to ISRIB. We

further demonstrate that molecular synaptic rescue corresponds with a normalization of dendritic spine dynamics and social recognition.

In summary, we show that the loss of FMRP, and the accompanying translational modulation at the synapse, induces a heterogeneous syn-

aptic response and dysregulated protein accumulation in synapses along with social deficits in Fmr1 KOmice, which can be rescued through

the restoration of synaptic protein accumulation by ISRIB.

RESULTS

Fmr1 KO mice exhibit increased PSD-95 accumulation in a subset of synapses

In humans andmouse models, FXS is associated with increased spine density and immature spine morphology.32,33 These spine changes are

hypothesized to be physical manifestations of synaptic network alterations.34 However, the exact nature of synaptic protein changes in FXS

has been difficult to assess, especially on a synapse-specific, population level. An important synaptic protein for studying the mechanism of

excitatory synaptic network changes in FXS is PSD-95. PSD-95 plays a key role in organizing synaptic structure35,36 and activity-dependent

stabilization of spines and synaptic strengthening.37 Further, PSD-95 mRNA stability and translation are regulated by FMRP.16,38,39 We exam-

ined the effect of FMRP deficiency on PSD-95 abundance in individual synapses using a super-resolution, single synapse analysis method that

combines array tomography (AT) with a computational synapse classification algorithm developed in our lab29,30 to identify changes in spe-

cificmolecularly defined synaptic populations. This enables us to analyze all synapses of a specific class, e.g., vesicular glutamate transporter 1

(VGluT1)-expressing excitatory, cortical-cortical synapses, with single synapse resolution, and metrics across entire populations.29 Thus, we

were able to examine the unique effects of FMRP deficiency within specific synapse populations, while still maintaining our ability to resolve

individual synaptic protein changes. Wemeasured PSD-95 volume in cortical-cortical excitatory synapses. PSD-95 volume is demonstrated to

be an excellent indicator of synapse size and maturity by electron microscopy (EM).40 PSD-95 volume is dependent on both abundance and

localization at the synapse, thus changes in anchoring factors such as a-actinin may influence PSD-95 accumulation at the synapse,41 however,

compared among several postsynaptic scaffolds, PSD-95 remains stable upon F-actin disruption.42 While PSD-95 volume alone is not an ab-

solute measure of synapse size, it plays a role in the anchoring of other postsynaptic factors critical for spine stabilization and is thus an infor-

mative measure of spine maturation.35 Cumulative distribution plots of wild type (WT) and Fmr1 KO PSD-95 volume size indicate a significant

increase (p < 2.23 10�16, Kolmogorov-Smirnov) in synapse size in layer 1 cortical-cortical synapses of themotor cortex (Figure 1A). This shift is

easily visualized in a density plot (Figure 1B), where the WT distribution of PSD-95 volume across the entire synapse population is more

skewed toward smaller volumes than the Fmr1 KO synapse population. This is further reflected in a 33% increase in median PSD-95 levels

in vehicle-treated Fmr1 KO mice compared to their vehicle-treated WT counterparts (p < 2.2 3 10�16, Mann-Whitney U) (Figures 1A–1C;

Table S1). In layer 2/3, the change in PSD-95 levels is minimal, with only a 3.8% increase in median volume observed in Fmr1 KO mice (Fig-

ure S1; Table S1). Elevated PSD-95 levels in layer 1 Fmr1 KO mouse synapses are reduced by ISRIB treatment, bringing them closer to WT

levels (Figures 1A–1C). This normalization of the distribution of PSD-95 suggests that ISRIB partially compensates for the loss of FMRP inmain-

taining balanced protein abundance at the synapse.

ISRIB increases GluA1 levels at the postsynaptic terminal in Fmr1 KO mice

PSD-95 is important for the activity-dependent stabilization of spines and synaptic maturation.37 The increase in volume of PSD-95 in layer

1 suggests a possible mechanism for the elevated stabilization of spines leading to higher spine and synapse density,29,43,44 but it does not

provide a rationale for the immature morphology of the spines. A possible explanation is that loss of synaptic protein regulation in the

absence of FMRP increases PSD-95 and spine stabilization but perturbs the accompanying process of spine and synapse maturation.

One such maturation process proceeds through AMPA receptor subunit GluA1-mediated plasticity.37,45–47 PSD-95 accumulation is coupled

with the clustering of GluA1 at the postsynaptic terminal.45 The loss of FMRP-mediated translational regulation leads to reduction of mem-

brane surface AMPA receptors localized at dendritic spines.48 We hypothesized that ISRIB could compensate for this loss, normalizing

glutamate receptor-mediated maturation of the synapse. Therefore, we measured GluA1 protein levels at molecularly classified excitatory

synapses in vehicle- and ISRIB-treated WT and Fmr1 KO mice. To clearly determine the effect of ISRIB at the synapse, we calculated the

ratio of GluA1 integrated intensity in excitatory synapses with or without ISRIB treatment (Figures 1D and 1E; Figure S2; Table S2). A ratio

of one indicates no effect of treatment on GluA1 abundance, with values greater than one indicating an increase in protein abundance with

ISRIB treatment, and values less than one representing a decrease in abundance. ISRIB treatment significantly increased postsynaptic

GluA1 levels in Fmr1 KO mice compared to WT in layers 1 and 2/3 of the cortex (Figure 1D) (p = 0.031 (L1), p = 0.016 (L2/3), Mann-

Whitney U). We demonstrated that synaptic PSD-95 is elevated in Fmr1 KO synapses which, without a concomitant increase in GluA1,

may impede the normal process of synaptic strengthening and maturation. Furthermore, these FXS-specific synaptic protein changes

can be normalized by ISRIB.
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Figure 1. Array tomography (AT) analysis of PSD-95 and GluA1 abundance

(A) Cumulative distribution function (CDF) of PSD-95 size. PSD-95 volume was normalized to the maximum PSD-95 volume observed per mouse to normalize for

experimental variability and the cumulative probability was plotted across the range of PSD-95 volumes. The raw CDF is shown as steps with the smoothed CDF

overlayed for each condition. Vertical dashed lines indicate themedian PSD-95 volume for each condition. Median = 0.21WT+ vehicle, 0.27WT + ISRIB, 0.28 FXS

+ vehicle, and 0.22 FXS + ISRIB. The distribution of PSD-95 among all synapses is altered in FXS layer 1 cortex, with fewer small PSD-95 synapses and a shift toward

larger PSD-95 synapses. This shift results in a significantly altered PSD-95 synapse distribution (WT + vehicle vs. FXS + vehicle, Kolmogorov-Smirnov,

p < 2.2x10�16) and a 33% increase in median PSD-95 size (WT + vehicle vs. FXS + vehicle, Mann-Whitney U, p < 2.2x10�16), which is decreased upon ISRIB

treatment (FXS + vehicle vs. FXS + ISRIB, Kolmogorov-Smirnov and Mann-Whitney U, p < 2.2x10�16).

(B) PSD-95 size shown as a density plot. Loss of small PSD-95 synapses is accompanied by a gain of larger PSD-95 synapses. Medians are shown as vertical dashed

lines (values as stated in A).

(C) Representative AT images for PSD-95 are shown for each condition. Imaging was performed blind to genotype and condition and images were taken at the

same exposure. Images are a max projection throughout the depth of tissue. Scale bar: 5 mm. FXS = Fmr1 KO. n = 4WT + vehicle (49,631 synapses), 4 WT + ISRIB

(34,061 synapses), 5 FXS + vehicle (49,375 synapses), and 5 FXS + ISRIB (49,350 synapses).

(D) Integrated intensity for GluA1 was normalized for exposure and is the weighted average of VGluT1 and VGluT2 synapses. Tissues were processed and imaged

in pairs and the ratio of integrated intensity for ISRIB/vehicle-treated mice was plotted. A ratio of one indicates no drug effect on abundance, with values above

one indicating an increase in abundance with ISRIB treatment and values less than one indicating a decrease. ISRIB significantly increases GluA1 abundance in

FXS synapses in both layers 1 (WT vs. FXS, p = 0.031) and 2/3 (WT vs. FXS, p = 0.016).

(E) Representative AT images for layer 1 synapses in each condition including both a wide field view (scale bar: 5 mm) and individual synapses (scale bar: 200 nm).

Individual synapses show Synapsin (red), PSD-95 (cyan), and postsynaptically localized GluA1 (yellow). Images are a max projection throughout the depth of

tissue. Significance was calculated by Mann-Whitney U test. FXS = Fmr1 KO. n = 4 WT + vehicle, 4 WT + ISRIB, 5 FXS + vehicle, and 5 FXS + ISRIB. See also

Figures S1, S2 and Tables S1, S2.
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Reduced global protein synthesis in Fmr1 KO is not rescued by ISRIB

FMRP is a bidirectional regulator of translation, acting in a context-specificmanner tomodulate protein synthesis at the synapse. Factors such as

transcript length, brain region, local cellular compartmentalization, developmental stage, and activity-dependent signaling all contribute to the

functional output of FMRP regulation.49 Thus, translational dysregulation in the absence of FMRP is more nuanced than previously considered,

often resulting in a skewed translational profile, with increases, decreases, and no net changes in bulk protein abundance reported depending

on the combinatorial impact of these factors.50–57 More recently, loss of FMRP has been shown to favor the translation of short ribosomal tran-

scripts at the expense of long transcripts, many of which localize and function at the synapse.58,59 To complement our synaptic approach, we

examined total cellular de novo protein synthesis by fluorescent noncanonical amino acid tagging (FUNCAT) in WT and Fmr1 KO acute brain

slices treated with ISRIB or a vehicle control. Protein synthesis was significantly reduced in Fmr1 KO compared to WT in layer 1 of the motor

cortex (Figure 2) (p = 0.03, Mann-Whitney U). ISRIB does not restore translational regulation at the cellular level (Fmr1 KO + vehicle vs.

Fmr1 KO + ISRIB, p = 0.31, Mann-Whitney U). A similar pattern was observed in layer 2/3, but changes did not reach significance. Differences

in protein synthesis and abundance at the cellular and synaptic levels demonstrate the various mechanisms of bulk and local translation regu-

lation by FMRP. Additionally, this highlights the specificity of ISRIB, which preferentially acts on stress-mediated translational pathways. These

differences also suggest that ISRIB plays a role in regulating synaptic protein abundance in FXS that is distinct from global cellular translation.

ISRIB rescues abnormal spine dynamics in the cortex

The accumulation of PSD-95 and GluA1 in the postsynaptic density is involved in spine development and maturation.12,45 To further validate

the synaptic specificity of ISRIB treatment in FXS, we next examined Fmr1 KO spine dynamics and the effect of ISRIB in normalizing changes

elicited by FMRP deficiency. Overabundance of dendritic spines is a neuropathological hallmark of FXS and is a well-established phenotype in

mouse models of FXS.32,60–62 In vivo imaging has revealed that excess dendritic spines found on layer 1 apical dendrites of layer 5 pyramidal

neurons in the cortex of adult Fmr1 KO mice are a consequence of an overproduction and stabilization of spines during adolescence.31 To

measure spine dynamics, we treatedmice with ISRIB or vehicle control for four days andmeasured the rate of spine formation and elimination

by transcranial two-photon microscopy in layer 1 of the cortex. Spine formation was significantly increased in Fmr1 KOmice compared toWT

mice with vehicle treatment (p = 0.016, Mann-Whitney U). ISRIB treatment restored the rate of Fmr1 KO spine formation to WT levels (WT +

vehicle vs. Fmr1 KO+ ISRIB, p = 0.69, Mann-Whitney U). In contrast, the rate of spine eliminationwas not affected by FMRP deficiency and was

unresponsive to ISRIB treatment (Figure 3; Table S3). This suggests an imbalance of spine stability in FXS that contributes to spine and syn-

aptic changes in the disorder. Increased spine formation in FXS in conjunction with potential synaptic stabilization without a compensatory

increase in spine elimination likely leads to the commonly observed phenotype of increased spine density in FXS.

ISRIB ameliorates social recognition deficits in Fmr1 KO mice

Similar to individuals with FXS, adolescent Fmr1 KO mice exhibit impaired social interaction behavior.63 Proper social interaction involves

complex coordinated neural network function, and subtle deficits in cortical network function and connectivity can manifest as observable

Figure 2. Global protein synthesis in Fmr1 KO (FXS) and WT motor cortex

Protein synthesis was measured by FUNCAT in acute brain slices treated with ISRIB or a vehicle control. The noncanonical amino acid HPG is incorporated into

newly synthesized proteins andmethionine (Met) is incorporated as a negative control. Protein synthesis is significantly lower in layer 1 of the motor cortex in FXS

mice compared toWTmice (WT + vehicle vs. FXS + vehicle, p = 0.03). Global protein synthesis levels are not restored by ISRIB treatment (FXS + vehicle vs. FXS +

ISRIB, p = 0.31). Significance was measured by Mann-Whitney U test. FXS = Fmr1 KO. n = 5 WT + vehicle, 5 WT + ISRIB, 5 FXS + vehicle, 5 FXS + ISRIB.
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social interaction deficits. We thus sought to determine if the synaptic normalization we observed with ISRIB treatment is associated with im-

provements in behavioral outcomes. Using the three-chambered social novelty task, we asked whether ISRIB treatment improves social

recognition in Fmr1 KO mice (Figure 4A; Table S4). Fmr1 KO mice displayed a significant deficit in social novelty preference, spending an

equal amount of time interacting with a familiar mouse and a novel mouse (WT + vehicle vs. Fmr1 KO + vehicle, p = 0.011, Mann-Whitney

U).64,65 ISRIB treatment increased social novelty preference in Fmr1 KO mice, restoring preference to levels comparable to that of WT

mice (Fmr1 KO + vehicle vs. Fmr1 KO + ISRIB, p = 0.019; WT + vehicle vs. Fmr1 KO + ISRIB, p = 0.72, Mann-Whitney U). Conversely, WT

and Fmr1 KO vehicle and ISRIB-treated mice showed no difference in overall sociability (the preference to spend time with another mouse

over an empty chamber) (Figure 4B; Table S5). Behavioral effects were not attributable to changes in locomotor behavior, as there was no

significant difference in the total distance traveled in the arena (Figure S3; Table S6). Hyperactivity has been observed in Fmr1 KO mice in

previous studies,66,67 however, after normalization for increased locomotion, social novelty and sociability outcomeswere in line with our find-

ings, suggesting that variability in anxiety levels does not affect social behavior. Additionally, some vehicles, including DMSO at high concen-

trations (32% and 64%), have been shown to affect locomotor activity in CD2F1 mice.68 For behavioral testing, our vehicle contained only 5%

DMSO and all mice received the vehicle. Locomotor activity is unlikely to be affected at this concentration but may be considered during

interpretation. Overall, our results demonstrate that ISRIB treatment does rescue social recognition deficits in adolescent Fmr1 KO mice.

Figure 3. Transcranial two-photon imaging of dendritic spines in WT and Fmr1 KO mice (FXS)

(A) Representative images of dendritic spines at day 0 (d0) and day 4 (d4) for each condition. Spine formation is indicated by arrows and spine elimination is

indicated by arrowheads. Scale bar: 2 mm. Mice were treated with ISRIB or vehicle for four days and spines were imaged before (day 0) and after (day 4)

treatment. Spine elimination and formation represents the change in spine count between day 0 and day 4.

(B) Quantification of dendritic spine elimination and formation. Vehicle-treated FXS mice exhibit an aberrantly high rate of spine formation compared to vehicle-

treated WT mice (WT + vehicle vs. FXS + vehicle, p = 0.016). ISRIB treatment restored the rate of FXS spine formation to WT levels (WT + vehicle vs. FXS + ISRIB,

p = 0.69). No deficits were observed in spine elimination. Significance was calculated byMann-Whitney U test. FXS = Fmr1 KO. n = 5WT+ vehicle, 5WT + ISRIB, 4

FXS + vehicle, and 5 FXS + ISRIB. See also Table S3.
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DISCUSSION

In this study, we investigated a mechanism for the development of dense, immature spines in FXS and examined the therapeutic potential of

the translational regulator ISRIB in normalizing structural and molecular changes at the synapse. We demonstrated through population-level

single synapse analysis that the loss of FMRP induces an unexpected shift toward increased synaptic PSD-95 and lower synaptic GluA1. This

suggests a mechanism for the observation of increased density of spines with immature morphology in both individuals with FXS61,62 and

Fmr1 KOmice.66 Our data suggest that loss of the translational regulator FMRP leads to increased spine stabilization through elevated levels

of PSD-95 at the synapse, thus increased density of spines and synapses; while also preventing further accumulation of glutamate receptors,

which results in immature synaptic and spine development.

Interestingly, the overabundance of spines in FXS is developmentally regulated, observed early during postnatal week 1, normalized in

adolescence from weeks 2–4, and re-emerging in adulthood.29,43,44,69 Our study examined the developmental window in which spine abun-

dance is normalized, thus we observed no defect in synaptic density in P26-P32 Fmr1 KO cortex (Figure S4; Table S7). This apparent normal-

ization belies developmental dynamics that will drive the nervous system toward aberrant connectivity. Our dendritic spine dynamics data are

a window into this underlying developmental context. We show that FMRP loss corresponds with a decoupling of PSD-95 and GluA1 synaptic

accumulation and a concomitant increase in the stabilization of new dendritic spines. The resulting large population of stabilized spines

without a commensurate increase in elimination is likely the cause of the re-emergence of elevated immature spine density and synapses

in the mature FXS brain. Thus, modulation of excessive spine formation with ISRIB treatment during this developmental windowmaymitigate

the resulting overabundance of spines that emerges in adult Fmr1 KO mice and improve cognitive and behavioral outcomes.

FMRP is a synaptic regulator of translation. Its function is controlled by synaptic activity, and it acts to regulate the translation of proteins

involved in the development andmaturation of spines and synapses.2,7,12–16,19 In addition to its role in global translation, the role of FMRP on

local synaptic translation is also critically important to synaptic plasticity and neuronal network function. FMRP regulates translational pro-

grams at each synapse to tune activity-dependent processes in neural plasticity.11 This allows a neuron tomodulate and prioritize its incoming

information, thus effectively increasing the operational dynamic range of the nervous system. The loss of FMRP critically reduces the ability of

Figure 4. Behavioral analysis of Fmr1 KO mice (FXS) with ISRIB treatment

(A) Social novelty was assessed using the three-chamber apparatus as diagrammed. One chamber houses a novel mouse, and the other chamber houses a

familiar mouse. The amount of time spent investigating each mouse was quantified. The discrimination index is calculated as (novel interaction time - familiar

interaction time)/(novel interaction time + familiar interaction time). FXS mice exhibit a deficit in social novelty preference compared to WT mice (WT +

vehicle vs. FXS + vehicle, p = 0.011) and this effect is rescued by ISRIB treatment (FXS + vehicle vs. FXS + ISRIB, p = 0.019; WT + vehicle vs. FXS + ISRIB, p =

0.72). Significance was measured by Mann-Whitney U test. FXS = Fmr1 KO. n = 16 WT + vehicle, 16 WT + ISRIB, 11 FXS + vehicle, and 11 FXS + ISRIB.

(B) Sociability was assessed using the three-chamber apparatus as diagrammed. One chamber houses an empty cage, and the other chamber houses a novel

mouse. The amount of time spent investigating each cage was quantified and the discrimination index was calculated as described for social novelty. FXS mice

showed no deficit in overall sociability (WT + vehicle vs. FXS + vehicle, p = 0.25). Significance wasmeasured byMann-Whitney U test. FXS = Fmr1 KO. n = 16WT+

vehicle, 16 WT + ISRIB, 11 FXS + vehicle, and 11 FXS + ISRIB. See also Figure S3 and Tables S4–S6.
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synapses to plastically respond to intercellular communication. A molecule that can restore, even partially, this synaptic control of

translation could in theory compensate for some of the functions of FMRP and return the synaptic network to near normal function. We pro-

posed that ISRIB, a stress-mediated translational modulator, might function as a compensatory mechanism in the absence of FMRP at the

synapse.

ISRIB belongs to a class of small molecules that can modulate translation at the initiation phase, much like FMRP, and reduce the trans-

lation of specific classes of mRNAs.70,71 Our study showed that ISRIB improves molecular accumulation of synaptic proteins, dendritic spine

dynamics, and behavioral function in a mouse model of FXS. ISRIB improves social recognition memory, rescuing social novelty preference

in Fmr1 KO mice. Behavioral outcomes are a key functional measure of underlying improvements in molecular and cellular function, which

often impact central regulatory pathways. Previously, ISRIB has been shown to improve cognitive function in brain injury,72,73 cancer,74

neuropsychiatric disorders,75 neurodegenerative disorders,25,76,77 and even healthy cognition.70 Our study demonstrated the beneficial ef-

fects of ISRIB in a mouse model of FXS, which in combination with recent studies showing the impact of ISRIB treatment in models of Down

syndrome78 and MEHMO (mental retardation, epileptic seizures, hypogonadism and hypogenitalism, microcephaly, and obesity), a rare

X-linked disorder,79 expands its therapeutic potential to neurodevelopmental disorders. This broad efficacy of ISRIB treatment suggests

a potentially shared framework of dysregulated translation across neurological diseases. We demonstrate that ISRIB rescues synaptic

and behavioral phenotypes in FXS, highlighting the therapeutic potential of local synaptic protein regulation in alleviating the impact of

FMRP deficiency in the brain.

Limitations of the study

We have shown previously that the cellular and synaptic changes observed in Fmr1 KO cortex are layer and population specific and respond

differentially to drug treatment.29 In this study, we again demonstrated the layer and synapse-specific impact of FMRP loss and its pharma-

cological rescue. We showed that specific layer 1 synaptic deficits in Fmr1 KO cortex respond to ISRIB treatment and can affect functional

rescue in social recognition of Fmr1 KO mice. While ISRIB decreases elevated PSD-95 levels and increases GluA1 levels in layer 1, PSD-95

levels are much less affected by both FMRP loss and ISRIB treatment in layer 2/3. The layer and population specific differences observed

in this study as well as our previous study exemplify the heterogenous deficits and responses among synapses. Therefore, specific changes

are not generalizable across all synapses and regions, and it is highly likely and expected that the behavioral outcomes described are depen-

dent on the interplay between unique region-specific changes throughout the brain.
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Gordon X. Wang

(gordon.wang@stanford.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� Data: All data reported in this paper will be shared by the lead contact upon request.
� Code: This paper does not report original code.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The Institutional Animal Care and Use Committee of University of California Santa Cruz approved all animal care and experimental proced-

ures. Mice were group housed under a 12-h light-dark cycle with ad libitum food and water. The Fmr1 KOmice were a gift fromDr. Stephen T.

Warren at Emory University. Thy1-YFP-H transgenic mice (stock number 003782), used for dendritic spine experiments were purchased from

The Jackson Laboratory (Bar Harbor, ME). All mice were backcrossed with C57BL/6J mice more than 10 generations to produce congenic

strains. Males (Fmr1 KO and WT littermates) were used in all experiments. Experiments were conducted on adolescent mice, age P26-P32

for all experiments except FUNCAT (P27-P37).

METHOD DETAILS

Drug treatment

Animals received ISRIB at 2.5 mg/kg in 50%DMSO and 50% PEG400 for two-photonmicroscopy or 1 mg/kg in 5%DMSO, 2% Polysorbate 80,

20% PEG400, and 73% dextrose water for array tomography and behavioral testing, or a matched volume of the appropriate vehicle once per

day by intraperitoneal injection.Mice were treated for 4 days for array tomography and two-photon imaging and 2 days for behavioral testing.

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

GluA1 Millipore Cat# AB1504; RRID: AB_2113602

VGlut2 Millipore Cat# AB2251; RRID: AB_1587626

PSD-95 Cell Signaling Cat# 3450; RRID: AB_2292883

VGlut1 Millipore Cat# AB5905; RRID: AB_2301751

Synapsin-1 Cell Signaling Cat# 5297; RRID: AB_2616578

Goat anti-Mouse Alexa 594 Invitrogen Cat# A110032

Goat anti-Guinea Pig Alexa 594 Invitrogen Cat# A11076

Goat anti-Mouse Alexa 488 Invitrogen Cat# A11029

Goat anti-Rabbit Alexa 594 Invitrogen Cat# A11034

Goat anti-Rabbit Alexa 647 Invitrogen Cat# A21245

Chemicals, peptides, and recombinant proteins

ISRIB Millipore Sigma Cat# 50-958-40001

L-Homopropargylglycine (HPG) Vector Laboratories Cat# CCT-1067

Alexa Fluor 647 Azide Invitrogen Cat# A10277

Experimental models: Organisms/strains

B6.129P2-Fmr1tm1Cgr/J (backcrossed to C57BL/6J) Stephen Warren, Emory University Strain # 003025

B6.Cg-Tg(Thy1-YFP)HJrs/J (backcrossed to C57BL/6J) The Jackson Laboratory Strain # 003782
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Array tomography

Tissue and ribbon array preparation, immunohistochemistry, andmicroscopy were performed as described previously,28 and outlined below.

Tissue and ribbon array preparation

Mice were perfusedwith 4% paraformaldehyde and brains were removed. A small piece of tissue (�2mmdeep x 1mmwide x 1mm long) was

cut from the motor cortex of WT and Fmr1 KO males age P26-P32. Tissue was dehydrated in 50%, 70%, 95%, and 100% ethanol, then

embedded in LRWhite resin (hard grade) in gelatin capsules. Sections of 70 nm were cut using an ultramicrotome, creating a ribbon array

of serial sections, which was placed on a gelatin-coated coverslip. Tissues were paired so that each coverslip contained two ribbons, one

of each genotype for a given treatment (vehicle or ISRIB), to minimize slide to slide variability.

Immunohistochemistry

For immunostaining, coverslips containing ribbon arrays were washed in Tris buffer (Tris/50mMglycine/0.05% Tween) and primary antibodies

were applied in Tris buffer containing 0.1% BSA. Coverslips containing antibodies were incubated at 4�C overnight in a humidified chamber.

Coverslips were washed in Tris buffer 33 5 min and secondary antibodies were applied in Tris buffer containing 0.1% BSA for 30 min at room

temperature. Coverslips were washed with Tris buffer 33 5 min, rinsed with milliQ H2O, and mounted in SlowFade Gold anti-fade with DAPI

(Invitrogen). After imaging, mounting media was washed with milliQ H2O and antibodies were eluted with 0.2M NaOH/0.02% SDS for 5 min.

The next round of staining was performed immediately after elution or coverslip was allowed to dry completely.

Microscopy

Ribbons were imaged on a Zeiss Axio Imager.Z1 Upright Fluorescence Microscope with a motorized stage and Axiocam HR Digital Camera.

The same field of view for each Layer 1 and Layer 2/3 cortical region were imaged for every section within each array and for every round of

staining. Images were taken using a Zeiss 63x/1.4 NA Plan Apochromat objective with the same exposure for both ribbons on each coverslip.

All microscopy was performed blinded to genotype and treatment.

Image processing

Image stacks were imported into FIJI and registered across all image sessions using a rigidmodel with interpolation. Registered images were

deconvolved in MATLAB using the Richardson-Lucy technique with background subtraction and an empirical point spread function (PSF)

through ten iterations. Empirical PSF were measured using the actual imaging system with 110 nm beads mounted on slides. Images

were aligned with TrakEM in FIJI by both rigid least squares (linear feature correspondences) and elastic (non-linear block correspondences)

alignments.

Synapse classification

Synapse classification is based on a set of requirements, as described previously.29,80,81 Utilizing specific protein localization profiles for each

synaptic population, established by Wang et al., 2016, synapses are identified and classified using three points: the origin (PSD-95), the ter-

minus (Synapsin), and a thirdmarker with a defined pre- or post-synaptic distance (VGlut1 or VGlut2).30 A vector is drawn between the centers

of mass from origin to terminus, defining a colocaliztion sphere centered around the origin. A third marker, such as VGlut1 or VGlut2 must fall

within this sphere. Distances to the pre- and post-synapticmarker are utilized to confirmpotential synapses identified by this PSD-95/Synapsin

colocalization and provide more specificity in synapse type. For a presynaptic marker, the synapse is verified if the distance to Synapsin is

smaller than the distance to PSD-95, otherwise, the potential synaptic axis is removed. If more than one-third point falls within a colocalization

sphere, the dataset is checked for overlapping spheres and points are assigned to maximize verified synapses. If a single third point is shared

between two spheres, it is assigned to the synapse with the shortest pre- or post-synaptic distance as previously defined. Synaptic density is

calculated as the total number of cortical-cortical excitatory synapses per non-nuclear volume of tissue.

Synaptic protein analysis

Signal volume represents the number of voxels per puncta. Volume was used as a measure of PSD-95 abundance and postsynaptic size for

each individual synapse, and the distribution was plotted as a cumulative distribution function and density curve. Significant shifts in distri-

bution were tested by Kolmogorov-Smirnov and significant differences in median volume were tested by Mann-Whitney U. Integrated inten-

sity was used as a measure of GluA1 abundance. GluA1 abundance is a weighted average of VGlut1 and VGlut2 synapses based on their

relative contribution to the excitatory synapse population (L1: 89.144% VGlut1, 10.856% VGlut2; L2/3: 85.008% VGlut1, 14.992% VGlut2).

The ratio of ISRIB/vehicle was calculated for each pair of tissue imaged at the same time for each genotype. Significant differences were tested

by Mann-Whitney U.

Normalization

All tissues were processed in pairs (fix, dissect, embed, section, and stain). Exposure levels and segmentation thresholds were set with iden-

tical parameters based on previously validatedmethods. The pairing of animals and tissues allows us to reduce variability andminimize animal
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use. For ratio analyses (e.g., ISRIB/vehicle), pair information is maintained, and direct comparisons are made. When pairs are mixed (e.g., dis-

tribution curves), normalization of the entire distribution is performed on a per animal basis based on each animal’smaximumobserved value,

correcting for shifts in distribution bounds.

Acute slice preparation

Male Fmr1 KO andWTmice (P27-P37) were anesthetized with isoflurane and decapitated. The brain was quickly removed and submerged in

ice-cold oxygenated ACSF (125 mM NaCl, 2.5 mM KCl, 25 mM NaHCO3, 1.25 mM NaH2PO4, 25 mM glucose, 3 mM MgCl2, 0.1 mM CaCl2).

Brains were sliced on a vibratome (Leica) into 400 mm sections and slices were transferred to 32�C oxygenated ACSF supplemented with su-

crose (ACSF, 30 mM sucrose, 2 mMMgCl2, 1 mMCaCl2) and left to recover for 1 h. After recovery, slices were transferred to 32�C oxygenated

Ringer’s solution (ACSF, 1 mM MgCl2, 2 mM CaCl2) for FUNCAT.

FUNCAT (fluorescent noncanonical amino acid tagging)

Slices were treated with 200mM ISRIB or DMSO for 1 h in 32�C oxygenated Ringer’s solution. 4 mMHPG ormethionine was added, and slices

were incubated for 2 h for metabolic labeling. Slices were then washed briefly with PBS-MC (1 mM MgCl2, 0.1 mM CaCl2) and fixed in 4%

formaldehyde/4% sucrose for 20 min at room temperature. Slices were washed again with PBS-MC, then transferred to 30% sucrose at

4�C until slices sunk to the bottom of the dish. Slices were then frozen in blocks of 30% sucrose and sliced to 50 mm on a microtome (Leica).

Slices were permeabilized (0.5% Triton X-100, 10% normal horse serum, 5% sucrose, 2% bovine serum albumin in PBS), shaking gently over-

night at room temperature. Slices were washed three times with 0.1% Triton X-100 in PBS and the FUNCAT reaction mixture was added

(1.25 mM THPTA, 2.5 mM sodium ascorbate, 2 mM Alexa Fluor 647 azide (Thermo Fisher), 250 mM CuSO4 in PBS) and the reaction was incu-

bated overnight at room temperature with gentle shaking. Slices were washed 33 20 min at room temperature (0.5 mM EDTA, 1% Tween 20

in PBS), then in PBS/0.1% Tween 20. 5 mg/mL DAPI was added to slices in PBS and slices were mounted with ProLong Diamond Antifade

Mountant (Thermo Fisher). Slices were imaged on a Zeiss LSM980 inverted confocal microscope. z stack images were acquired with a Zeiss

253 oil objective using Nyquist settings. Stacked images were sum projected and layer 1 and layer 2/3 were segmented as separate ROIs for

analysis. ROIs were segmented based on DAPI and fluorescence intensity was measured for cell bodies as a halo around each nucleus. All

images were normalized for background fluorescence and HPG-labeled slices were normalized to methionine controls. Individual cell mea-

surements were averaged and reported for each sample.

In vivo dendritic spine imaging

Transcranial two-photon imaging of dendritic spines and data analysis were conducted as described previously.31 Tg(Thy1-YFP)H were

crossed into the Fmr1 KO line to produce a line expressing YFPwithin the apical dendrites and spines of motor cortex layer 5 neurons, making

them amenable to transcranial two-photon imaging of spine dynamics. P26-P32 YFP-expressingWT and Fmr1 KOmales were used for in vivo

two-photon imaging experiments. Collected image stacks were analyzed using ImageJ. Mice received daily vehicle or ISRIB treatment for

4 days between the day 0 and day 4 imaging sessions. The percentage of eliminated and formed spines was calculated as the difference

in the number of spines between the day 0 and day 4 imaging sessions divided by the number of spines counted for the day 0 imaging session.

Mann-Whitney U test was used to determine differences in spine dynamics.

Three-chamber tests

The samegeneral testing protocol was used to evaluate both sociability and social novelty in vehicle and ISRIB-treated P26-P32 Fmr1 KOmice

andWT littermates. The test apparatus consists of three chambers (203 403 20 cm each) with openings to enable free access to each cham-

ber.82 The two side chambers contain cylindrical wire cages as confinements for novel and familiar age-matched, same sex probe mice. First,

the mice were allowed to freely explore all three chambers for 10 min without any additional mice present in the wire enclosures. During the

sociability test phase, an unfamiliar C57BL/6J mouse was put inside one wire cage while the other wire cage remained empty. During the

social novelty test phase, an unfamiliar male C57BL/6J mouse was placed in one wire cage, while the other wire cage contained a familiar

mouse. During both testing phases, the subject mice were allowed to freely explore all chambers for 10 min. Chambers and cages were

cleaned with 70% ethanol between each testing session. Mice were video recorded and the duration of time each mouse spent investigating

each wire cage was quantified using Behavioral Observation Research Interactive Software (BORIS v. 7.10.2).83 Interaction is determinedwhen

the mouse is close to and facing the wired cage. Behaviors were annotated manually, and analysis was performed blind to genotype. Assess-

ment of general locomotion was carried out bymeasuring the total distance traveled by eachmouse during habituation and testing. Changes

in social novelty, sociability, and locomotion were tested by Mann-Whitney U test.

QUANTIFICATION AND STATISTICAL ANALYSIS

Significance was measured by Mann-Whitney U, which does not require the data to conform to the normal distribution assumptions of para-

metric tests. We have represented the distribution of our data as much as possible in each plot (e.g., density plots, boxplots with individual

points) to provide a more transparent display of the data and its distribution.
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