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Risk is not uniformly spread across financial markets and this fact can be exploited to reduce investment risk
contributing to improve global financial stability. We discuss how, by extracting the dependency structure
of financial equities, a network approach can be used to build a well-diversified portfolio that effectively
reduces investment risk. We find that investments in stocks that occupy peripheral, poorly connected
regions in financial filtered networks, namely Minimum Spanning Trees and Planar Maximally Filtered
Graphs, are most successful in diversifying, improving the ratio between returns’ average and standard
deviation, reducing the likelihood of negative returns, while keeping profits in line with the general market
average even for small baskets of stocks. On the contrary, investments in subsets of central, highly connected
stocks are characterized by greater risk and worse performance. This methodology has the added advantage
of visualizing portfolio choices directly over the graphic layout of the network.

I
n times of market instabilities managing risk is a top priority for the financial industry1,2. In this paper we
investigate how financial filtered networks, namely Minimum Spanning Trees (MST)3 and Planar Maximally
Filtered Graphs (PMFG)4, can be used to characterize the heterogeneous spreading of risk across a financial

market and how this information can be employed to reduce investment risk by constructing well-diversified
portfolios. Let us recall that financial filtered networks are constructed by retaining the highest correlated links
while constraining some overall property of the network without need to specify any threshold5,6. Specifically, the
MST is a spanning tree (a connected network with no loops or cycles) which maximizes the sum of the correla-
tions over the connections in the tree3. Similarly the PMFG is a maximal planar graph that contains the MST as a
subgraph and retains the largest correlations across edges4. The topology of these networks efficiently encodes the
complex dependency structure of financial equities extracting hierarchical and clustering properties, reducing
data complexity while preserving the fundamental characteristics of the dataset3–6. The underlying idea that we
develop in this work is that stocks differently positioned within a financial filtered graph exhibit different patterns
of behavior and therefore the selection of stocks from a plurality of alternative regions of the network can be used
to set up efficiently diversified portfolios.

As widely accepted since Markowitz seminal work7, an efficient diversification should aim to select stocks as
anti-correlated as possible and remaining consistently anti-correlated over time1,2. Identifying, from the study of
historical behavior prior to the investment, baskets of stocks with a good likelihood to remain well-diversified
over the future investment period is very challenging. Indeed, the structure of correlations between stocks is
evolving over time and changes markedly during crises. For this reason the Markowitz approach is normally
applied to a selection of stocks identified by using different criteria including the industrial sector and other
macro- or micro-economic considerations. In this way, a relatively small set of stocks (typically 10 to 50) is
individuated and on such ‘basket’ the Markowitz optimal portfolio is determined.

In this paper we propose a method to identify such ‘basket’ of stocks directly from the dependency structure
provided by the financial filtered networks. In the present study we investigated a set of highly capitalized stocks in
the American Stock Exchange market in the time period ranging from 1981 to 2010 (T 5 7570 market days). For
each market day, t, we investigated the behavior of a selection of N 5 300 stocks with high capitalization and
largest performances over the previous year (t[ Dtz1, . . . ,T{Dtz1f g, Dt 5 250 market days, see details in
Methods section). Specifically, we computed correlations over a window of six months, reducing the excessive
influence of remote market shocks on present correlations by using exponential smoothing8 (which assigns higher
weights to more recent events and incrementally lower weights to past events). We then improved the estimator
by computing the average correlation matrix with shrinkage9 over a period of six months obtaining in this way a
robust estimate of the correlations over the year preceding the investment day t (see details in Methods section).
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Such matrix shows a remarkable persistence, with autocorrelation
values ranging around 50% even after one year. (The autocorrelation
of a correlation matrix is defined as the correlation between the
vectors of the N (N – 1)/2 correlation coefficients at time t and at
time t 1 t.) This high persistence is a very important fact implying
that measurements from the past are likely to forecast the future and
the ordering of the correlations is expected to remain rather stable.
We then used these average weighted correlations with shrinkage to
construct MST and PMFG financial filtered networks3,4,10. An
example of PMFG is shown in Figure 1.

We now discuss how an efficient investment strategy can benefit
from the knowledge of such market dependency structure. In par-
ticular, we set up portfolios by selecting stocks from the peripheral
regions of the financial filtered networks and we compared the per-
formance of these portfolios with the performance of portfolios set
up by selecting central stocks, or random stocks or by using other
traditional methods. To this purpose, we first distinguish between
stocks lying in the networks’ central regions and those lying in the
peripheries. Numerous centrality/peripherality measures have been
proposed in the literature11–16; they reflect different criteria and it is
not unusual that a vertex results central for one measure and peri-
pheral for another. In particular, centrality measures on MST and
PMFG tend to distinguish well the few central vertices, highly con-
nected, important and influential, but they are less effective in rank-
ing the different levels of peripherality of non-central vertices. We
have therefore adopted an ‘agnostic’ perspective by looking at some

of the most common centrality/peripherality measures (namely
Degree (D), Betweenness Centrality (BC), Eccentricity (E), Close-
ness (C) and Eigenvector Centrality (EC)15) computed for both the
weighted MST and PMFG and their unweighted counterparts.
Specifically, we elaborated two hybrid centrality indices, X and Y,
which group together the rankings of the previous measures (see
details in Methods section). In terms of these hybrid measures, small
values of (X 1 Y) are associated with central vertices whereas large
values are associated with peripheral vertices. From the study of the
variation of these centrality indices over time we observed that cent-
ral stocks are more persistent whereas peripheral stocks have a larger
variability (see details in supporting information). We observe that,
in terms of industrial sectors17, the peripheries are mainly populated
by companies belonging to ‘‘Electric, Gas, and Sanitary Services’’
(representing 20% of peripheral companies vs. 11% of all compan-
ies), ‘‘Oil and Gas Extraction’’ (7.0% vs. 4.8%), ‘‘Petroleum Refining
and Related Industries’’ (2.3% vs. 1.7%) or ‘‘Metal Mining’’ (2.1% vs.
1.0%) while the core is mainly populated by ‘‘Depository
Institutions’’ (14% vs. 6.4%), ‘‘Security and Commodity Brokers,
Dealers, Exchanges, and Services’’ (6.6% vs. 1.4%) or ‘‘Holding and
Other Investment Offices’’ (7.8% vs. 3.0%). These findings are con-
sistent with analyses reported in references18–20. We observed that the
use of this hybrid centrality measure consistently provides more
stable and robust results than the use of any of the centrality mea-
sures in isolation. This is due to the different sensitivity of each
centrality measure to outliers and noise21.

Figure 1 | Example of PMFG, a maximally filtered planar graph with vertices 300 stocks, selected among ordinary common shares listed in the
American Stock Exchange market and edges associated with the structure of strongest correlations between stocks (in the time period from 1981 to
2010). A portfolio made of 30 peripheral stocks is represented by circles marked with ‘‘P’’; their area is proportional to the Markowitz weights in the

portfolio composition. Circles marked with ‘‘C’’ represent a basket of 30 central stocks. The thickness of the edges is proportional to the correlation

coefficients. Names of the stocks corresponding to each vertex are provided in the supporting information.
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For each day t, we constructed the MST, PMFG financial filtered
networks by using the average correlations with shrinkage computed
over the previous year; we then selected the m most peripheral stocks
(with the largest values of X 1 Y) and set up portfolios with either
uniform weights or Markowitz weights7, with or without short-sell-
ing (in the present study this corresponds to a total of 7071 3 3
portfolios). For each portfolio we have observed the returns, defined
as rt(t) 5 [Price(t 1 t) 2 Price(t)]/Price(t), over a year (t 5 1, .., 250)
following the investment date. The performance of each investment
strategy is measured by computing the average �r tð Þ and the standard
deviation s(t) of the returns over the 7071 investment dates. We have
then chosen the ‘signal-to-noise ratio’ (also known as ‘information

ratio’),
�r tð Þ
s tð Þ, as proxy for performance: good investment strategies

must consistently produce high returns associated with small fluc-

tuations being therefore characterized by large
�r tð Þ
s tð Þ ratios; conver-

sely, bad investment strategies produce small returns and larger
fluctuations (larger risk) yielding small signal-to-noise ratios.

Before presenting the results on portfolio performance, let us here
address the question whether risk is uniformly spread through indi-
vidual vertices of financial filtered graphs. To this purpose we
measured the correlations between the centrality indexes and the
signal-to-noise ratios of each stock finding that there is no significant

relation between the two. Therefore, we can conclude that, at an
individual stock level, the risk is uniformly distributed across
financial graphs. In the following sections we shall see that this
conclusion is reversed once we consider groups of stocks (i.e. port-
folios) rather than individual stocks.

Results
Average performance of different portfolios. We measured the
performance of portfolios composed of the m 5 5, 10, 20, 30 most
peripheral stocks within MST and PMFG graphs (m stocks with
largest X 1 Y) and compared it with that of portfolios made of the
m most central stocks (m stocks with smallest X 1 Y); we also
considered portfolios of m stocks chosen at random and m stocks
characterized by the best performance over the period preceding the
investment date. All these portfolios were also compared with the
performance of the whole ‘market’ of the 300 stocks. Figure 2 reports
results for the signal-to-noise ratios for the case of a basket of m
stocks from the PMFG where the relative contribution of each
stock to the portfolio is weighted uniformly. We can observe that
peripheral portfolios systematically outperform central ones, and
also outperform portfolios made of randomly chosen stocks and
those made of stocks achieving the best performance over the
previous period. Notably, the performance of peripheral portfolios
is comparable -and often better- than the market performance

Figure 2 | Demonstration that portfolios made with peripheral stocks (%) perform better than portfolios made with central stocks (,). Portfolio sizes

are respectively m 5 5, 10, 20, 30 stocks; weights are uniform. The plots report the ‘signal-to-noise ratio’
�r tð Þ
s tð Þ (average return divided by its standard

deviation) for t 5 1, .., 250 days following the investment day. The performance is compared with: (o) portfolios made of m randomly chosen stocks;

(p) portfolios made with the m stocks that have achieved the best performance over the period preceding the investment date. The thick line is a ‘market

portfolio’ made by taking all 300 stocks.

www.nature.com/scientificreports
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obtained from all 300 daily stocks. Let us stress that peripheral
portfolios, with as little as five stocks, already achieve competitive
outcomes. Very similar results are obtained for portfolios set up by
using the MSTs instead of the PMFGs, however the portfolio
compositions are different revealing that the two filtered graphs
provide alternative investment options (further details are pro-
vided in the supporting information). We also considered port-
folios weighted by using the Markowitz method with and without
short-selling. Figures 3 reports their performance in the case with no-
short-selling; the case with short-selling is very similar and it is
reported in the supplementary information (Figure S.3). Details on
Markowitz portfolio optimization and discussion of portfolio
variances are also reported in supplementary information (Sections
S.6, S.7 Figures S.4, S.5 and S.6). We note that the results are simi-
lar to those with uniform weights, with ‘peripheral’ portfolios
systematically outperforming portfolios of ‘central’, ‘random’ and
‘best’ stocks, and performing competitively with portfolios selected
from the whole market. The main difference is that Markowitz
weighting significantly improves the performance of all portfolios
with the exception of central ones. In particular, the Markowitz
method mostly improves the performance of the ‘market’ portfolio
with all 300 stocks. However, it should be stressed that Markowitz
solutions for a large number of stocks tend to be avoided by operators
because a large system is harder to control and could become more

costly to manage2. Furthermore, in the case of Markowitz portfolios
with short-selling, we observed that the leverage, measured as the
sum of all weights in absolute value, is large for ‘market’ portfolios of
300 stocks (290%). Conversely, Markowitz solutions for PMFG
peripheral portfolios exhibit very limited leverage levels of: 100%,
102%, 109%, 116%, 124% respectively for m 5 5, 10, 20, 30, 40.
Therefore PMFG peripheral portfolios are less exposed to risk,
because leverage itself is a measure of risk with high leverages
making the investment more vulnerable to large losses. In addition
we note that, for the case of Markowitz solutions with all 300
companies and no short-selling, the average number of non-null
weights is 32 (with interquartile range between 24 and 41).
Analogous averages for PMFG peripheral portfolios, for m 5 5, 10,
20, 30, 40, are respectively equal to 4.9, 9.1, 15.5, 19.8, 22.9, with very
narrow interquartile ranges, showing that the basket of stocks
selected from PMFG peripheries is already well balanced also from
the Markowitz perspective. PMFG peripheral portfolios are also
characterized by small average ‘maximum weights’; in the case
with no short sales these are 0.42, 0.30, 0.23, 0.21, 0.19 respectively
for m 5 5, 10, 20, 30, 40 with narrow confidence intervals. The case
with short sales is identical to all practical effects. From these results,
we also conclude that a reasonable number of peripheral companies
should be around m 5 20, ensuring in this way competitive signal-to-
noise ratios, together with few non-null Markowitz weights with

Figure 3 | Demonstration that portfolios made with peripheral stocks (%) perform better than portfolios made with central stocks (,) also in the case
of weights obtained by solving the Markowitz problem with no short-selling. Portfolio sizes are respectively m 5 5, 10, 20, 30 stocks. The plots report the

‘signal-to-noise ratio’
�r tð Þ
s tð Þ (average return divided by its standard deviation) for t 5 1, .., 250 days following the investment day. The performance is

compared with: (o) portfolios made of m randomly chosen stocks; (p) portfolios made with the m stocks that have achieved the best performance over

the period preceding the investment date. The thick line is a ‘market portfolio’ made by taking all 300 stocks.
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relatively small maximum weights and small leverages in case of
short sales. A comparison with the performance of the benchmark
S&P 500 Composite index reveals that PMFG peripheral portfolios
have larger average yearly excess returns (the difference between
portfolios and benchmark returns2) than the central ones and
comparable values with the market ones (see supporting
information). Similarly the Sharpe Information Ratio (information
ratio of the excess yearly returns) also shows that PMFG peripheral
portfolios perform better than the central ones (see also supporting
information, S.2, S.3). Consistently, the ‘beta coefficients’ (the slope
of the best-fit regression of the excess returns over the ‘risk free’ rate2)
reveal an anti-cyclic pattern for the excess returns of PMFG
peripheral portfolios with respect to the benchmark S&P 500
Composite index, i.e. they increase when the market goes down
and vice-versa, thus showing a fair ability to absorb the financial
systematic risk (see supporting information).

Performance over shorter sub-periods. The previous results
demonstrate that -on average, over the whole period- the
performance of portfolios made of peripheral stocks is superior to
that of portfolios made of central stocks. We now investigate whether
these good outcomes are also consistently obtained within shorter
sub-periods. To this purpose we computed, for each day t, the yearly
returns in the preceding six months (i.e. 125 returns r(s, 250) in the

period s 5 {t 2 124, …, t}) and performed an out-of-sample t-test to
measure the likelihood that in the following period peripheral
portfolios are superior to central portfolios. The proportions of
cases in which the signal-to-noise ratio of peripheral portfolios is
significantly larger than that of central portfolios, at a 5%
significance level, are reported in Table 1. These results reveal that,
indeed, in most sub-periods, portfolios made of peripheral stocks
have better performances than portfolios made of central stocks.
This is consistent with what obtained for the whole period. We
note that differences are less accentuated in portfolios with
uniform weights and more evident when weights are determined
with Markowitz solutions.

Likelihood of negative returns. Another measure of risk is the
likelihood of negative returns - which investors wish as tiny as
possible. We therefore computed the empirical probability of non-
negative returns after six and twelve months from the date when the
investment was initially made. We found that investing in the
peripheries of financial filtered networks provides a larger
likelihood of achieving positive results after both six and twelve
months with respect to investments in central stocks. This is
consistently verified for portfolios of various sizes from 5 to 40
stocks and for both PMFG and MST graphs. The results are shown
in Fig. 4 where one can note that investments, with portfolios of only
20 stocks selected from the peripheries of the financial filtered
graphs, have a comparable -and sometimes higher- likelihood of
positive returns with respect to investments made of all 300 stocks
in the market. This is consistent with the signal-to-noise ratios
discussed previously.

Likelihood of higher returns. We have so far established that
peripheral portfolios are exposed to lower risk than central
portfolios. In an investor’s perspective it is also important to
establish whether or not peripheral portfolios can provide higher
returns than other investments. For this purpose we tested the
hypothesis that the difference between returns of peripheral and
central portfolios is positive or null. Specifically, for each day, we
performed an out-of-sample t-test on the yearly returns in the
preceding 125 days. The results reveal that portfolios made of
peripheral stocks consistently yield equal or better returns than

Table 1 | Test of the hypothesis that yearly signal-to-noise ratio of
peripheral portfolios is superior to that of central portfolios in sub
periods of six months. Values are percentages of cases in which the
hypothesis is not rejected by a t-test with 5% significance level. The
total number of cases is 7071 2 124 5 6947. Symbols in the first
column refer to the portfolios weights: uniform (u), Markowitz with
no short-selling (ns) and Markowitz with short-selling (s). Cases
with m 5 5, 10, 20, 30, 40 are reported

5 stocks 10 stocks 20 stocks 30 stocks 40 stocks

u 50.14% 53.94% 58.33% 62.08% 65.99%
ns 57.43% 56.48% 67.99% 73.07% 73.46%
s 60.46% 65.58% 70.92% 69.61% 67.99%

Figure 4 | Demonstration that peripheral portfolios have larger likelihood of non-negative returns than central portfolios. (Upper panel) probability of

non-negative returns (expressed in per-cent values) after six months from the date when the investment was made; (lower panel) after one year from the

date when the investment was made. Cases with uniform weights (u), Markowitz solutions with no short-selling (ns) and with short-selling (s) are shown.

Investments based on portfolios of m 5 5, 10, 20, 30, 40 stocks selected from central (c) and peripheral (p) regions of the financial filtered graphs MST

(M-c and M-p), PMFG (P-c and P-p) and the combination of the two (MST-PMFG, i.e. PM-c and PM-p) are compared with the investment made over all

the 300 stocks (MKT).
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portfolios made of central stocks. Table 2 reports the percentage of
cases in which the hypothesis is not rejected (i.e. peripheries give
equal or higher returns than centers) for different weightings and for
different sizes (m 5 5, 10, 20, 30, 40). Significance level was set at 5%.

Portfolios from other regions of the financial filtered graphs. We
also investigated other regions of the financial filtered graphs by
looking at the positions of all companies in the plane defined by
the axes (X 1 Y) and (X – Y). Specifically we investigated the four
sides of the square of coordinates A 5 (2, 0), B 5 (1, 1), C 5 (0, 0), D
5 (1, 21). In this map the ‘peripheral’ regions used in the previous
investment strategies are around the corner A and the ‘central’
regions lie around C. For each side (AB, BC, CD and AD) we
selected the m companies which lay closer to each of these sides
and set up the optimal portfolios by using the same methodology
described previously. We found that sides AB and AD perform better
than BC and CD but worse than the ‘peripheral’ corner A; AB
performs better than AD in terms of signal-to-noise returns but
worse in terms of total returns. Overall, the results are analogous
to those described previously for the central/peripheral (C/A)
regions.

Discussion
We have shown that financial filtered graphs can be used to select
portfolios with lower risk and better returns than those obtained with
other traditional methods. This has been achieved by first defining
suitable correlation matrices, then constructing MST and PMFG
financial filtered graphs and finally establishing appropriate indices
to select portfolios made of stocks located in either central or peri-
pheral regions. We have quantified the investment performance by
using a large range of measures, including: ‘signal-to-noise’ ratio
between average returns and their standard deviations; portfolio
variance; probability to obtain larger returns; likelihood of non-
negative returns; average returns and Sharpe information ratio (see
supporting information). All results consistently show that portfolios
set up from a selection of peripheral stocks have lower risk and better
returns than portfolios set up from a selection of central stocks. Poor
performances of the central portfolios might be consequence of the
fact that the center of the network is more likely to be subject to
sudden perturbations due to the herd effect: during periods of booms
and crashes the system gets highly correlated and investors simulta-
neously rush in the same direction, buying or selling, respectively.
Hence, portfolios containing companies that are at the center of these
irrational moods are more likely to carry larger risk. An efficient
diversification is possible if the portfolio is composed of stocks char-
acterized by both low correlations and high expected returns’ signal-
to-noise ratios. We have shown that these securities are located in the
peripheries of the financial filtered graphs.

There is a large scope of applicability and testing for the present
method within a variety of different domains including FX markets

and the vast field of derivatives where it can be combined with
traditional pricing methods. Further studies will focus on the
application of a newly introduced clustering method22 which can
be used for further distinguishing between peripheral and central
stocks in the portfolio selection. Another investigation will be ded-
icated to verify whether the risk of a company default is uniformly
distributed across financial networks.

Methods
Additional material can be found in supporting information.

Data and daily selection of 300 stocks. We studied all ordinary common shares in
the American Stock Exchange market in the period from 1981 to 2010 for a total of T
5 7570 market days (data from the CRSP23, ordinary common shares of ‘‘Americus
Trust Components, Primes and Scores’’, ‘‘Closed-end funds’’, ‘‘Real Estate
Investment Trusts’’ have been excluded from the dataset). We performed our analysis
on moving time-windows of Dt 5 250 days (one market year). Contiguous missing
prices for less than five consecutive dates have been replaced with the previous value
and, for each day t, stocks with less than Dt contiguous observations until t and Dt
after t were discarded (note that keeping these stocks does not affect significantly
results21). For each market day we have then selected the first 600 stocks by
capitalization. We further reduced the dataset by retaining only the top half ‘best
performing’ subset of stocks over the previous Dt period. To this purpose, for each
stock and for each time t we computed the daily returns r(t, 1) and calculated their
average, Ær(1)æDt, and their standard deviation, sDt(1), over the previous Dt days. We

then selected the half stocks with highest
r 1ð Þh iDt

sDt 1ð Þ ratios (i.e. those on average with the

highest daily performance over the previous Dt days); leaving us with N 5 300 stocks
for each time. Note that the daily set of stocks changes very slowly, with the daily
average replacement rate (ratio between number of new companies, from a day to the
next, and total number of companies) being just 3.7%; the weekly average
replacement rate 8.1%; the monthly rate 15.6%; and the yearly rate 58.4%. In terms of
industrial sectors, our selection is not neutral, with stocks belonging to major
industrial groups such as Electric, Gas, and Sanitary Services and Chemicals and
Allied Products being most likely to be selected. With this procedure we considered a
total of 2286 different stocks over the whole period.

Dependency measure. In order to reduce the excessive influence of remote events on

present correlations, we used exponential weights (defined as wt~w0 exp
t{t

h

� �
,

such that wt . 0 and
Pt
t~1

wt~1) so that past observations count less than recent ones8.

Here, t ¼ 1,2, . . . ,t and h . 0 is the characteristic time horizon. Weighted sample
means, variance, covariance and correlation are defined from the weighted averages
from: �f w tð Þ~

Pt

s~t{tz1
wsf r sð Þð Þ8. We used this exponentially smoothed averages to

compute, for each t, weighted Pearson’s correlation coefficients Rw
ij tð Þ over a window

of six months (t 5 h 5 125). For each day t we monitored these correlations in the
previous six months and we computed their average values with shrinkage9:

�Rw
ij tð Þ~ 1

2 tz1ð Þ
Xt

s~t{t

Rw
ij sð Þz

Xj{1

i~1

XN

j~2

Xt

s~t{t

2Rw
ij sð Þ

N N{1ð Þ

" #
: ð1Þ

The shrinkage significantly improves the numerical significance of the correlation
matrix (the condition number24 is reduced by two orders of magnitude).

Centrality and Peripherality measures. We computed the Degree (D), the
Betweenness Centrality (BC), the Eccentricity (E), the Closeness (C) and the
Eigenvector Centrality (EC)15 for both weighted and unweighted graphs for both MST

Table 2 | Test of the hypothesis that, over sub-periods of six months,
yearly returns obtained with peripheral portfolios are larger or
equal than that of portfolios set up with central stocks. Values are
percentages of cases in which the hypothesis is not rejected by a t-
test with 5% significance level. The total number of cases is 7071 2

124 5 6947. Symbols in the first column refer to the portfolios
weights: uniform (u), Markowitz with no short-selling (ns) and
Markowitz with short-selling (s). Cases with m 5 5, 10, 20, 30,
40 are reported

5 stocks 10 stocks 20 stocks 30 stocks 40 stocks

u 62.26 62.50 63.06 62.65 63.29
ns 67.11 67.63 70.33 71.79 70.07
s 68.63 70.76 71.90 69.76 67.30

Table 3 | Correlation matrix for the rankings of the centrality indi-
ces (Degree D, Betweenness Centrality BC, Eccentricity E,
Closeness C and Eigenvector Centrality EC15) calculated on
PMFG

Cw
D Cu

D Cw
BC Cu

BC Cw
E Cu

E Cw
C Cu

C Cw
EC Cu

EC

Cw
D 1.00 0.97 0.82 0.94 0.37 0.23 0.37 0.33 0.34 0.36

Cu
D 0.97 1.00 0.85 0.97 0.33 0.22 0.35 0.32 0.35 0.36

Cw
BC 0.82 0.85 1.00 0.82 0.31 0.22 0.33 0.30 0.32 0.33

Cu
BC 0.94 0.97 0.82 1.00 0.35 0.25 0.37 0.35 0.35 0.36

Cw
E 0.37 0.33 0.31 0.35 1.00 0.94 0.85 0.84 0.70 0.71

Cu
E 0.23 0.22 0.22 0.25 0.94 1.00 0.81 0.81 0.65 0.66

Cw
C 0.37 0.35 0.33 0.37 0.85 0.81 1.00 0.99 0.91 0.92

Cu
C 0.33 0.32 0.30 0.35 0.84 0.81 0.99 1.00 0.91 0.92

Cw
EC 0.34 0.35 0.32 0.35 0.70 0.65 0.91 0.91 1.00 0.99

Cu
EC 0.36 0.36 0.33 0.36 0.71 0.66 0.92 0.92 0.99 1.00
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and PMFG. For the weighted degree (often called strength) and the weighted
Eigenvector Centrality the weight between vertex i and vertex j is 1z�Rw

ij . Whereas, for
the weighted Betweenness Centrality, Eccentricity and Closeness the weight isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1{�Rw
ij

� �r
(i.e. the Euclidean distance). These measures of centrality/peripherality

have been sorted, respectively, in descending order for the centrality measures (D, BC,
EC) and in ascending order for the peripherality measures (E, C). Then, for each
measure, tied ranks (or midranks)25 have been calculated so that central vertices have
been assigned higher rankings and peripheral vertices lower ones. Note that very
similar rankings are found for both PMFG and MST. All these measures of centrality/
peripherality are clearly not independent and indeed they all result positively
correlated among each other. The structure of their correlation matrix, for 300 NYSE
firms over the period 2001–2003, is reported in Table 3 for the case of PMFG. We note
that the matrix has two diagonal blocks containing high correlation values (all larger
than 0.65) while the outer block contains low values (all smaller than 0.37) indicating
the presence of two clusters, made respectively of the rankings of D and BC and the
rankings of E, C and EC, which are strongly correlated within their cluster and
scarcely correlated between clusters. Therefore, we defined two combined measures

as follows: X~
cw

Dzcu
Dzcw

BCzcu
BC{4

4| N{1ð Þ and Y~
cw

E zcu
Ezcw

Czcu
Czcw

ECzcu
EC{6

6| N{1ð Þ ,

where we denoted with cw
D the tied ranking of the weighted Degree (D) and with cu

D its
unweighted counterpart; for all other measures, we used the corresponding symbol
(BC, E, C, EC) instead of D. These two hybrid measures distinguish between highly
connected vertices connected to other highly connected vertices (small X, small Y);
highly connected vertices connected to scarcely connected vertices (small X, large Y);
scarcely connected vertices connected to highly connected vertices (large X, small Y);
scarcely connected vertices connected to scarcely connected vertices (large X, large Y).
We therefore considered as hybrid measures of centrality the sum and the difference
between X and Y. The value of X 1 Y is small for central vertices and large for
peripheral vertices; whereas the value of X – Y is large if the vertex has few important
connections and it is small if it has many unimportant connections. A Matlab code to
calculate centrality and peripherality indices is reported in the supporting
information. The choice of a hybrid measure is heuristic, based on the observation
that by using it we consistently obtain better performing portfolios than those from
the centrality and peripherality measures in isolation or in different combinations. A
comparison between performances of portfolios constructed by using alternative
combinations of centrality measures is reported in the supplementary information S.4
(Figures S.7–10; see also reference21). Let us stress that, although the use of the
proposed hybrid measure gives best performances, the main result of this paper, that
investments in peripheral equities are better than investments in central ones, is
consistently obtained for all centrality measures21.
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