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Abstract: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led
to coronavirus disease (COVID-19), a global health pandemic causing millions of deaths worldwide.
However, the immunopathogenesis of COVID-19, particularly the interaction between SARS-CoV-2
and host innate immunity, remains unclear. The innate immune system acts as the first line of
host defense, which is critical for the initial detection of invading pathogens and the activation
and shaping of adaptive immunity. Toll-like receptors (TLRs) are key sensors of innate immunity
that recognize pathogen-associated molecular patterns and activate downstream signaling for pro-
inflammatory cytokine and chemokine production. However, TLRs may also act as a double-edged
sword, and dysregulated TLR responses may enhance immune-mediated pathology, instead of
providing protection. Therefore, a proper understanding of the interaction between TLRs and SARS-
CoV-2 is of great importance for devising therapeutic and preventive strategies. The use of TLR
agonists as vaccine adjuvants for human disease is a promising approach that could be applied
in the investigation of COVID-19 vaccines. In this review, we discuss the recent progress in our
understanding of host innate immune responses in SARS-CoV-2 infection, with particular focus on
TLR response. In addition, we discuss the use of TLR agonists as vaccine adjuvants in enhancing the
efficacy of COVID-19 vaccine.
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1. Introduction

Coronaviruses (CoVs) are agents of emerging and re-emerging infection that pose
a significant challenge to human health [1]. CoVs have a wide host range, including a
variety of avian and mammalian species [2,3]. CoVs are members of the family Coron-
aviridae, which has four genera, including Alphacoronavirus, Betacoronavirus, Gammacoro-
navirus, and Deltacoronavirus [4]. The first human CoV, B814, was reported in 1965 [5].
To date, seven human CoVs (HCoVs) have been identified, including two alpha-CoVs
(HCoV-229E and HCoV-NL63) and five beta-CoVs (HCoV-OC43, HCoV-HKU1, severe
acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome (MERS)-CoV,
and SARS-CoV-2) [4]. However, SARS-CoV-2 is one of the most pathogenic and highly
infectious zoonotic CoVs. SARS-CoV-2 contains a positive-sense single-stranded RNA
genome, with a size of 29.9 kb [6]. It contains 4 structural proteins, including surface
(S), envelope (E), membrane (M), and nucleocapsid (N) [7]; 16 non-structural proteins
(NSP1–16); and nine accessory proteins [8]. The ongoing coronavirus disease (COVID-19)
pandemic was caused by SARS-CoV-2 [9], which is the third zoonotic CoV infecting hu-
mans in a short span of only two decades, after the emergence of SARS-CoV in 2002 [10]
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and MERS-CoV in 2012 [11]. Since the emergence of SARS-CoV-2 in Wuhan, China in
December 2019, it has rapidly spread worldwide, and as of 30 September 2021, there have
been 233,136,147 confirmed cases of COVID-19, including 4,771,408 deaths globally [12].
The COVID-19 epidemic was declared a global pandemic on 11 March 2020 by the World
Health Organization and still continues [13]. The immunopathogenesis of SARS-CoV-2
remains unclear. In addition, several new variants of the virus have also evolved, which
may threaten the success of the currently available SARS-CoV-2 vaccines [14]. Thus, there
is a need for further investigation of the host immune response to SARS-CoV-2 infection,
including newly emerging variants, as well as the efficacy of vaccines against them.

The innate immune system is a key component of host immunity and acts as the first
line of defense against invading pathogens, including viruses [15]. The innate immune
response is elicited upon detection of conserved structures on microbes, which are known
as pathogen-associated molecular patterns (PAMPs) [16]. The key innate immune sens-
ing receptors are germ line-encoded pattern-recognition receptors (PRRs), which mediate
the initial sensing of infection by recognition of PAMPs, upon microbial invasion of the
host [17,18]. PRRs recognize molecules released by damaged cells, which are known as
damage-associated molecular patterns [19]. PRRs belong to different families, including
Toll-like receptors (TLRs), retinoic acid-inducible gene I (RIG)-like receptors, nucleotide-
binding oligomerization domain-containing protein-like receptors, C-type lectin receptors,
and DNA-sensing receptors [16,17]. TLRs are the key components of innate immunity that
are evolutionarily conserved and play an important role in early host defense [15,17], by
recognizing PAMPs of invading microorganisms, initiating innate immune responses, and
shaping adaptive immunity [20–22]. TLRs are encoded by a large gene family that includes
10 and 12 members in humans (TLR1–TLR10) and mice (TLR1–TLR9 and TLR11–TLR13),
respectively [23]. TLRs can be localized either on the cell surface, such as TLRs 1, 2, 4, 5, 6,
and 10, or on the endoplasmic reticulum, such as TLRs 3, 7, 8, and 9 [24,25]. TLR response
ultimately may lead to the induction of interferons (IFNs), cytokines, and chemokines
by several distinct signaling pathways, thereby limiting infection and promoting adap-
tive immune responses [17,26]. However, TLR activation may act as a double-edged
sword, and its dysregulated response may lead to immune-mediated pathology, instead
of protection [27–29], which has also been observed in cases of SARS-CoV-2 infection [30].
Therefore, a clear understanding of the role of TLRs in SARS-CoV-2 infection is critical
for learning about the immunopathogenesis involved and for the development of thera-
peutic and preventive strategies against the disease. The focus of this article is to provide
an overview of our recent understanding of TLR response to SARS-CoV-2 infection. In
addition, the potential of TLR agonists as adjuvants for COVID-19 vaccines has also been
discussed herein.

2. TLR Response to SARS-CoV-2 Infection

The innate immune response is a key issue to act as the first line of defense against
many viral infections [31]. However, the innate immune response does not always work
for the host defense but also induces pathogenesis [32]. TLRs constitute the most im-
portant family of PRRs. TLR signaling is involved in the regulation of both pro- and
anti-inflammatory cytokines secretion working for early innate immune responses and
adaptive immunity [33]. TLR activation can act as a double-edged sword, which may
activate immune-mediated pathogenesis instead of inducing an immune response which
works for defense against pathogens [27,28,34].

The host immune response to SARS-CoV-2 infection is critical in determining the
severity of COVID-19 [35]. It is assumed that cytokine storms, which are the consequence
of hyperinflammation driven by innate immunity, play an important role in the patho-
genesis of severe COVID-19 [36]; however, the underlying mechanisms of the altered
pathological inflammation in COVID-19 remain largely unknown. Nevertheless, previous
studies on related CoVs, including SARS-CoV and MERS-CoV [37–40], have enhanced our
understanding of SARS-CoV-2 infection. Moreover, in silico studies have also promoted
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the understanding of SARS-CoV-2 interactions in the host. It has been indicated that cell
surface TLRs, mainly TLR4, are most likely to be involved in sensing molecular patterns,
including SARS-CoV-2 S protein, to induce inflammatory responses [41,42]. It has been
reported that the SARS-CoV-2 S protein S1 subunit can induce pro-inflammatory cytokines
through TLR4 signaling in murine and human macrophages, and inhibition of TLR4 by
using its antagonist attenuates pro-inflammatory cytokine induction [43], suggesting that
TLR4 is a therapeutic target for controlling COVID-19 severity caused by TLR4-mediated
hyperinflammation. Another in vitro study also demonstrated the sensing of SARS-CoV-2
S protein by TLR4 and subsequent induction of interleukin (IL)-1B [44]. It has also been
indicated that SARS-CoV-2 S protein can bind to bacterial lipopolysaccharide, a ligand
for TLR4 activation [45]. SARS-CoV-2-mediated TLR4 and TLR7 upregulation upon peri-
odic thermomechanical modulation has been observed in adipose-derived mesenchymal
stromal cells [46]. The expression of interleukin-1 receptor-associated kinase M (IRAK-M),
a negative regulator of TLR signaling [47], is suppressed by SARS-CoV-2 S protein in
macrophages [48], which may promote pro-inflammatory cytokine production.

It is considered that pro-inflammatory cytokines greatly contribute to the pathogenesis
of COVID-19 and its severity. Zheng et al. reported the sensing of SARS-CoV-2 E protein by
TLR2, which results in the hyperexpression of pro-inflammatory cytokines (Figure 1) that
may contribute to disease severity [30], suggesting that TLR2-mediated inflammation plays
a pathogenic role in SARS-CoV-2 infection. TLR1, TLR4, TLR5, TLR8, and TLR9 expression
levels were also significantly elevated in severe and critical COVID-19 patients; however,
TLR3 expression was not correlated with the development of COVID-19, and an increased
expression of TLR7 was observed only in patients with moderate COVID-19 [30]. In a
preprint study, another group reported TLR2 activation by SARS-CoV-2 S protein, but not
the E protein, and subsequent production of cytokines and chemokines (Figure 1) in human
and mouse macrophages [49]. Although this study supports the sensing of SARS-CoV-2
by TLR2, it differs in terms of the sensing protein reported in a previous study [30], which
requires further investigation [50].

Another study reported that alveolar macrophages activated by SARS-CoV-2 through
TLR signaling may produce IL-1, which further stimulates mast cells to produce IL-6 [51].
In addition, an association between mast cell/eosinophil activation and COVID-19 inflam-
mation was reported [52]. A significantly elevated expression of IL-6 and tumor necrosis
factor-α (TNF-α) was found to be associated with TLR expression in obese individuals but
not in the controls [53]. TLR/myeloid differentiation factor 88 (MYD88) signaling, which is
upregulated in obese individuals, may contribute to the excessive inflammatory response
observed in severe infection with SARS-CoV-2 [54].

It is also hypothesized that desensitization of TLR7 signaling may occur due to chronic
stimulation of TLR7 by intrinsic substrates in obese and elderly people. This may support
the virus to replicate more easily, which upon re-sensitization of TLR7 signaling due to
severe viral infection could result in an overwhelming TLR7 response that may promote the
development of severe COVID-19 [55]. Several studies have shown that the TLR7 response
is critical for favorable outcome of COVID-19 [56,57], highlighting the clinical importance
of the innate immune system in SARS-CoV-2 infection. However, in an in vitro study, it
has been shown that SARS-CoV-2 induces a TLR7/8-dependent type I and III IFN response
in peripheral blood mononuclear cells, which could be protective or may contribute to the
cytokine storm observed in COVID-19 [58] and requires future investigation. Although
there is a need for further investigation in this regard, IFN-α2b treatment has been shown
to reduce viral replication, as well as IL-6 and CRP levels [59]. There was an upregu-
lation in the levels of TLR4-mediated inflammatory signaling molecules in peripheral
blood mononuclear cells from COVID-19 patients (Figure 1), as compared to those in the
healthy controls, which may suggest an involvement of TLR4 signaling in the induction of
pathological inflammation during COVID-19, suggesting that targeting TLR4-mediated
inflammation may serve as a new therapeutic strategy [60]. Therefore, TLR2 and TLR4
signaling might be involved in the induction of pro-inflammatory mediators. Infrared light
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therapy has been shown to decrease TLR4-dependent induction of IL-6, IL-8, TNF-α, INF-α,
and INF-β in COVID-19 hyperinflammation [61]. It was observed that a child with hepati-
tis after SARS-CoV-2 infection had a polymorphism, Gln11Leu (rs179008), in TLR7 [62],
which could impair an efficient initial immune response. Elevated cytokine levels have
been linked to SARS-CoV-2 infection in adults (median age, 51 years) [63]. Another study
observed elevated levels of IL-6 and TNF-α in children with COVID-19, as compared to
those in controls; however, the increased levels of these cytokines lacked any correlation
with disease severity [64]. It has also been reported that human biological sex, including
sex steroids, sex chromosomes, and genomic and epigenetic differences between two sexes,
might play a significant role in heterogeneous COVID-19 outcomes by impacting host
immune response to SARS-CoV-2 infection [65]. It has been reported that sensing of viral
RNA by TLR7 is sex-biased, where TLR7 escapes X chromosome inactivation, resulting in
greater expression in female immune cells [66]. However, TLR response in SARS-CoV-2
infection based on sex differences largely remains to be investigated. Aging impacts both
innate and adaptive arms of the immune system, and TLR expression and function may
decline with increased age, which may affect controlling of viral infections [67,68]. Aging is
linked to high morbidity and mortality in various infections [69], which is also applicable
for SARS-CoV-2 infection [70,71]. However, the exact role of aging in TLR response against
SARS-CoV-2 infection remains to be investigated. A multi-omics study of immunological
responses in COVID-19 patients also revealed increased cytokines and chemokines levels
in severe COVID-19 patients [72], which is also consistent with the findings of a previous
study [73].
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SARS-CoV-2 infection has been indicated.

IFN signaling cascade is crucial for controlling viral infection. It has been demon-
strated that hypoxia-inducible factor-1α (HIF-1α) is a direct transcriptional suppressor of
interferon regulatory factors (IRFs), the transcriptional activators of type-I IFN, and hy-
poxia suppresses type-I IFN but not NF-κB-dependent pro-inflammatory cytokine produc-
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tion [74], which may at least partly explain COVID-19 pathogenesis. Increased expression
of HIF-1αmRNA has also been reported in myeloid blood cells from critically ill COVID-19
patients, along with the expression of other genes, TLR2 and TLR4 [75], which could be
involved in SARS-CoV-2 sensing. A predominance of cells co-expressing HIF-1α and
TLR2 has also been reported [75]. Another study revealed that peripheral blood immune
cells from severe COVID-19 patients have diminished type-I IFN response but enhanced
pro-inflammatory IL-6 and TNF-α responses [76].

In an in vitro study, it was shown that there was no inhibitory effect of famotidine, a
histamine-2 receptor antagonist, on SARS-CoV-2 proteases [77]; however, although famoti-
dine has been found to reduce the risk of intubation and death in COVID-19 patients [78,79],
the mechanism involved remains unknown. Recently, it has been reported that famotidine
inhibits TLR3-dependent signaling processes that culminate in the activation of IRF3 and
the NF-κB pathway in SARS-CoV-2 infection [80]. In response to SARS-CoV-2 infection in
human induced pluripotent stem cell (iPSC)-derived lung organoids, most of the key genes
associated with innate immunity, cytokine/chemokines, and inflammasomes, including
STAT1/2, IRF7, CCL5, CXCL10, TNF-α, IL-6, IL-8, and IFN were upregulated. In the case
of human iPSC-derived neuronal cells, in response to SARS-CoV-2 infection, TLR3, TLR7,
OAS2, complement system, and apoptotic genes were found to be activated [81]. These
findings may further enhance our understanding of COVID-19 pathogenesis. Lactoferrin,
a naturally occurring non-toxic glycoprotein of the transferrin family, which is synthesized
by exocrine glands and neutrophils, has been shown to partially inhibit SARS-CoV-2 repli-
cation in Caco-2 intestinal epithelial cells and also induce the expression of TLR3, TLR7,
IFNA1, IFNB1, IRF3, IRF7, and MAVS genes [82], which could be linked to the suppression
of viral replication.

Type I and III IFNs are key antiviral mediators against SARS-CoV-2 infection. An
in-depth analysis of the transcriptional response to SARS-CoV-2 revealed suppression of
type I and III IFN responses, in addition to induction of chemokine and pro-inflammatory
cytokine gene expression [83]. One preprint study demonstrated the restriction of SARS-
CoV-2 spread by a local IFN-I/III response produced by pDCs; in addition, pDCs response
was found to be correlated with the severity of the disease, and the response was impaired
in severe COVID-19 patients [84]. Bastard et al. reported that neutralizing auto-antibodies
(Abs) against type I IFNs associated with severe COVID-19, of which male patients had
the vast majority (95/101, 94%), is suggestive of gender linkage to pathogenic gene encod-
ing auto-Abs [85]. SARS-CoV-2 also possesses the strategies to escape the innate immune
response by encoding a wide range of viral structural and nonstructural protein (nsp), affect-
ing the IFN signaling pathway and impairing the IFN-mediated antiviral responses [86,87].
It has been shown that SARS-CoV-2 ORF9b negatively regulates antiviral immunity by
suppressing several components of innate immune signaling, including RIG-I, MDA-5,
MAVS, TBK1, and IKKε, thereby facilitating viral replication [88]. It has been reported
that SARS-CoV-2 nsp6 and nsp13 inhibit IRF-3 phosphorylation by binding TANK binding
kinase 1 (TBK1), resulting in a reduced production of IFN-β, while the ORF6 prevents
IRF-3 nuclear translocation by binding importin Karyopherin α2 [87,89]. Another study
found that SARS-CoV-2 ORF6, ORF8, and nucleocapsid proteins can inhibit type I IFN
signaling pathway [90]. It has been demonstrated that SARS-CoV-2 M protein can suppress
the expression of IFN-β expression through ubiquitin-mediated degradation of TBK1 [91].
For further details on the immune evasion strategies of SARS-CoV-2, please see the recently
published review [92]. However, future investigations are required for clear understand-
ing of the inhibition of TLR signaling by SARS-CoV-2. Therefore, further investigations
are required for a clear understanding of the innate immune response, including TLR
response, which may open up a new window for therapeutic and preventive strategies
against SARS-CoV-2 infection.
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3. TLR Agonists as COVID-19 Vaccine Adjuvants

There is a growing interest in the use of TLR agonists as immunomodulators for
the treatment of inflammation, cancer, infection, allergy, and autoimmunity. The use
of TLR agonists to modify immunotherapeutic effects also appears promising [93–99].
Moreover, TLRs, which are considered as important triggering molecules of trained im-
munity, trigger a long-term boosting of innate immune responses [100]. To combat the
COVID-19 pandemic, there is a critical need for the development of efficient and safe
vaccines. Vaccine adjuvants are important for enhancing the immune response against
corresponding pathogens, and selecting an appropriate adjuvant is important for vaccine
efficacy [101]. It has been reported that second-generation adjuvants that interact with
TLRs, such as TLR ligand adjuvants, are superior to first-generation adjuvants, such as
Al(OH)3. TLR agonist adjuvants may induce dendritic cell maturation, which is lacking
in first-generation adjuvants, such as Al(OH)3 [102]. TLR agonists are capable of stimu-
lating innate immune responses, which also trigger adaptive immune responses, thereby
improving vaccine efficacy.

Subunit vaccines, for which adjuvants are required to enhance the magnitude and
durability of immune responses, are the safest and most widely used vaccine platforms
that are suitable against a multitude of infectious diseases. In a study of SARS-CoV-2
subunit vaccines, the combined use of TLR1/2 and TLR3 agonist (L-pampo) was found
to be a potent adjuvant; the SARS-CoV-2 antigens, along with L-pampo, induced strong
humoral and cellular immune responses, with a substantial decrease in viral load, in
a ferret model [103]. In another study, it was shown that the TLR2/6 agonist INNA-
051 significantly reduced viral RNA levels in throat swabs (96% reduction) and nasal
wash (93% reduction) [104], which requires further investigation and may support the
clinical development of a therapy based on the prophylactic use of TLR2/6 agonist. The
first plant polymer-based TLR4 agonist, inulin acetate, which is synthesized from plant
polysaccharide inulin [105], has been reported to induce strong systemic and mucosal
immunity [106] and may be useful in the development of a COVID-19 vaccine. CpG
ODN, Poly I:C, and resiquimod (R848), which are agonists of TLR9, TLR3, and TLR7/8,
respectively, were evaluated in candidate vaccines against SARS-CoV [107], which also
supports an investigation into SARS-CoV-2 vaccine.

In a previous study, CD8+ T cells were found to be augmented to varying degrees
by CpG ODN, PolyI:C, and R848 [107]; it has also been reported that CD8+ T cell re-
sponses might play significant role in preventing SARS-CoV-2 infection [108,109]. How-
ever, alum lacks the ability to stimulate CD4+ and CD8+ T cell responses, which has been
shown to coordinate with the antibody responses toward protective immunity against
SARS-CoV-2 [110]. Recently, the efficacy of a COVID-19 subunit vaccine in promoting
protective immunity against SARS-CoV-2 was investigated in rhesus macaques [111]. The
vaccine contained the SARS-CoV-2 S protein receptor-binding domain displayed on an
I53-50 protein nanoparticle scaffold with five different adjuvants, including a squalene-in-
water emulsion (Essai O/W 1849101), an α-tocopherol-containing oil-in-water emulsion
(AS03), a TLR7 agonist adsorbed to alum (AS37), a TLR9 agonist formulated in alum
(CpG1018-alum), and alum. Notably, variations in the neutralizing antibody production
were observed due to the adjuvant differences [111], which indicates that the selection of
an adjuvant is critical for vaccine efficacy. In a phase I, randomized, double-blind, placebo-
controlled trial, the SCB-2019 vaccine, comprising of S-trimer protein formulated with either
AS03 or CpG/Alum adjuvants, induced strong humoral and cellular immune responses
against SARS-CoV-2, with high viral neutralizing activity [112]. Both the adjuvanted vac-
cine formulations were well tolerated and supported further clinical development [112].
It has been suggested that TLR agonists, including imiquimod, an immune stimulator
of TLR7, could serve as an effective therapeutic approach in the early stages of COVID-
19 [113] and could be more favorable. However, so far, no phase II and III clinical trial
results of TLR agonists for COVID-19 vaccines have been published. The TLR agonists
currently under development for COVID-19 vaccines are listed in Table 1.
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Table 1. TLR agonists as vaccine adjuvants for enhancing COVID-19 vaccine efficacy.

Vaccine Sponsor TLR Agonist
Adjuvant

Target
TLR

Clinical Phase of
Development

Effects on Host
Immunity

Clinical Trials.
Gov Identi-

fier/Reference

IMP CoVac-1
(SARS-CoV-2-derived

multi-peptide
vaccine)

University Hospital
Tuebingen

TLR1/2 ligand
XS15 TLR1/2 Phase I Results not

published yet NCT04546841

VXA-CoV2-1 Vaxart dsRNA TLR3 Phase I Results not
published yet NCT04563702

VXA-CoV2-1.1-S Vaxart dsRNA TLR3 Phase II Results not
published yet NCT05067933

SCB-2019 vaccine
Clover

Biopharmaceuticals
AUS Pty Ltd.

CpG 1018 plus
alum TLR9 Phase I

Well-tolerated in
healthy volunteers;

elicited
T-helper-1-biased

CD4+ T-cell responses

[112]

SCB-2019 vaccine
Zhejiang Clover

Biopharmaceuticals
Inc.

CpG 1018 and
alhydrogel TLR9 Phase II Results not

published yet NCT04954131

SCB-2019 vaccine
Clover

Biopharmaceuticals
AUS Pty Ltd.

CpG 1018 plus
alum TLR9 Phase III Results not

published yet NCT05012787

4. Conclusions

Current evidence suggests that the hyperinflammation that results from a dysregu-
lated host innate immune response has a negative effect on the COVID-19 outcome. The
innate immune response appears to be a double-edged sword in SARS-CoV-2 infection.
Its dysregulated signaling may lead to the production of detrimental pro-inflammatory
cytokines and chemokines that cause severe disease, instead of providing protection [30].
In this review, we discussed the important role of TLRs in shaping the innate response in
SARS-CoV-2 infection. From the currently available data, it is assumed that TLRs, mainly
TLR2 and TLR4, may play a pathogenic role by inducing hyperinflammation, and thus,
may lead to severe COVID-19. The use of TLR antagonists targeting TLR2 and TLR4
might exert a beneficial effect, by attenuating the deleterious hyperinflammatory response
triggered by TLR2 and TLR4 upon sensing SARS-CoV-2 S or E protein; thus, this approach
warrants further investigation. In addition, a timely optimum TLR response, mainly me-
diated by TLR3 and TLR7, could play a protective role against SARS-CoV-2 infection.
Application of adjuvant with RBD-NP can enhance neutralizing antibody production and
CD4 T cell responses through TLRs. It is understood that optimal IFN production and
controlled inflammation are necessary for reducing COVID-19 pathogenesis caused by
excessive cytokine production, which could be achieved through the regulation of the
TLR-mediated response [114,115]. Therefore, it is critical to obtain a clear understanding
of TLR interactions in SARS-CoV-2 infection, which may provide a new basis for the de-
velopment of therapeutic and preventive approaches to fight the disease, including a TLR
agonist-adjuvanted SARS-CoV-2 vaccine.
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