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Abstract

Background

Dynamic HIV transmission models can provide evidence-based guidance on optimal combi-

nation implementation strategies to treat and prevent HIV/AIDS. However, these models

can be extremely data intensive, and the availability of good-quality data characterizing

regional microepidemics varies substantially within and across countries. We aim to provide

a comprehensive and transparent description of an evidence synthesis process and report-

ing framework employed to populate and calibrate a dynamic, compartmental HIV transmis-

sion model for six US cities.

Methods

We executed a mixed-method evidence synthesis strategy to populate model parameters in

six categories: (i) initial HIV-negative and HIV-infected populations; (ii) parameters used to

calculate the probability of HIV transmission; (iii) screening, diagnosis, treatment and HIV

disease progression; (iv) HIV prevention programs; (v) the costs of medical care; and (vi)

health utility weights for each stage of HIV disease progression. We identified parameters

that required city-specific data and stratification by gender, risk group and race/ethnicity a

priori and sought out databases for primary analysis to augment our evidence synthesis. We
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ranked the quality of each parameter using context- and domain-specific criteria and verified

sources and assumptions with our scientific advisory committee.

Findings

To inform the 1,667 parameters needed to populate our model, we synthesized evidence

from 59 peer-reviewed publications and 24 public health and surveillance reports and exe-

cuted primary analyses using 11 data sets. Of these 1,667 parameters, 1,517 (91%) were

city-specific and 150 (9%) were common for all cities. Notably, 1,074 (64%), 201 (12%) and

312 (19%) parameters corresponded to categories (i), (ii) and (iii), respectively. Parameters

ranked as best- to moderate-quality evidence comprised 39% of the common parameters

and ranged from 56%-60% across cities for the city-specific parameters. We identified varia-

tion in parameter values across cities as well as within cities across risk and race/ethnic

groups.

Conclusions

Better integration of modelling in decision making can be achieved by systematically report-

ing on the evidence synthesis process that is used to populate models, and by explicitly

assessing the quality of data entered into the model. The effective communication of this

process can help prioritize data collection of the most informative components of local HIV

prevention and care services in order to reduce decision uncertainty and strengthen model

conclusions.

Introduction

In the United States, more than 1.1 million people were estimated to be living with HIV in

2015, including 162,500 (15%) people who had not been diagnosed [1]. Although the number

of people living with HIV is increasing and access to antiretroviral medications is extending

life expectancy [2], current political uncertainty related to health financing is straining

resources and challenging public health departments to use available funding efficiently [3].

Further complicating these decisions is the fact that HIV epidemics tend to be heterogeneous

across geographic regions [4–6]. In the United States, the majority of people living with HIV/

AIDS (PLHIV) reside in large urban centers that have unique underlying epidemiological and

structural features [7]. This heterogeneity across regional microepidemics necessitates priori-

tizing resources according to the greatest public health benefit, accounting for the local epide-

miological and structural context [6, 8, 9].

Increasingly, mathematical models are being used to help set priorities to address HIV

microepidemics internationally [10–13]. Dynamic HIV transmission models can estimate,

within a causal framework, all relevant costs and benefits attributable to HIV care interven-

tions over an extended time horizon [14]. Such models can be adapted for multiple settings,

capturing the heterogeneity across settings and also estimating the potentially synergistic

effects of combinations of public health interventions to treat and prevent HIV [15]. However,

these models are often data intensive because they require context-specific information

about the demographics of HIV-negative and infected populations, heterogeneous HIV risk

behaviors and access to health services such as HIV testing and antiretroviral treatment

(ART), among other factors. While efforts to collect and compile population-based health
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administrative and surveillance data are rapidly increasing, the availability of representative,

high-quality data still varies substantially within and across countries [16–18].

Comprehensively reporting the evidence synthesis process and sources of data used in a

model can help readers assess its validity and the credibility of its inferences. In addition, cali-

brating a model to match a jurisdiction’s microepidemic over a stated period is a necessary

condition for ensuring a model’s external validity [19]. Despite the importance of the quality

of evidence entered into a model, there are no explicit guidelines for reporting the evidence

synthesis process for models used in health economic evaluation [20–23]. While the efficiency

and appropriateness of systematic searching for every model parameter has been questioned, it

has been suggested that search approaches should reflect the complexity of the evidence [23,

24]. A recent modeling study for Vietnam [25] described the estimation techniques and trian-

gulation methods that were used to approximate parameter values. The study drew on national

surveillance data and behavioral surveys and provided a greater level of transparency in report-

ing on input data sources than had been seen elsewhere. Comprehensively and transparently

reporting the evidence used in mathematical models improves reproducibility and allows it to

be updated more easily as newer and higher-quality data become available. More importantly,

this reporting process can reveal the areas of greatest uncertainty for sensitivity analysis, and,

through value of information analysis [26], identify areas where additional surveillance data

are worth collecting.

We aim to provide a comprehensive description of an evidence synthesis process and

reporting framework that can be used to populate and calibrate a dynamic, compartmental

HIV transmission model for six US cities. We hope to maximize the transparency of our

model so that interested parties can review and evaluate its structure and equations, as well as

the generating process and assumptions for all parameters (25), in order to promote the use of

modeling recommendations in decision making to address city-level HIV microepidemics.

Methods

Model structure

We adapted a previously published dynamic, compartmental HIV transmission model [27–

30] to simulate the HIV microepidemics in six US cities: Atlanta, Georgia; Baltimore, Mary-

land; Los Angeles, California; Miami, Florida; New York City, New York; and Seattle, Wash-

ington (boundaries defined in S1 Supplement). We selected these six cities because they

represent nearly one-quarter of the US population of PLHIV [31] and because they have exten-

sive epidemiological and structural differences in their public health responses to HIV [7]. For

each city, the adult population aged 15–64 was stratified on the basis of gender (male or

female), race/ethnicity (black/African American, Hispanic/Latino, and non-Hispanic white/

others), and HIV risk behavior type (men who have sex with men (MSM), people who inject

drugs (PWID), MSM who inject drugs (MWID), and heterosexual (HET)). MSM, MWID, and

HET were further stratified into subgroups based on HIV sexual risk behavior intensity (high

vs. low), and PWID and MWID were categorized based on whether they were receiving opioid

agonist treatment (OAT).

Individuals within each of these 42 strata (MSM: 6 groups; MWID: 12 groups; PWID: 12

groups; HET: 12 groups) progress through the model according to the health states outlined in

Fig 1. Prior to HIV infection, HIV-negative individuals can be screened for HIV (screened in

the past 12 months), and screened MSM or MWID can take pre-exposure prophylaxis (PrEP).

HIV transmission can occur through three modes: heterosexual contact, homosexual contact

and needle sharing. We specified sexual mixing assortativity between risk groups and race/eth-

nicity to determine the proportion of sexual contacts within the same group, and varied the

Developing a dynamic HIV transmission model for 6 U.S. cities: An evidence synthesis

PLOS ONE | https://doi.org/10.1371/journal.pone.0217559 May 30, 2019 3 / 26

https://doi.org/10.1371/journal.pone.0217559


level of assortativity across cities [32, 33]. Following HIV infection, individuals transition

through various stages beginning with acute infection (three months). They are then classified

as infected but not diagnosed, diagnosed but ART-naïve, and on- or off-ART, and partitioned

according to CD4 cell count (CD4� 500, 200–499, and<200). Health state transitions occur

at monthly intervals and transition to death is a possibility from each of the health states

depicted, with varying probabilities.

Data requirements

We organized the data needed for the model into six model parameter categories: (i) initial

HIV-negative and HIV-infected population estimates; (ii) parameters used to calculate the

probability of HIV transmission; (iii) screening, diagnosis, treatment and HIV disease progres-

sion; (iv) HIV prevention programs, including syringe service programs (SSP), OAT, and

PrEP; (v) the costs of medical care for HIV-negative and HIV-infected individuals; and (vi)

health utility weights for each stage of HIV disease progression.

Each parameter in the model required a point estimate and range to facilitate model calibra-

tion and probabilistic sensitivity analysis according to best practice guidelines in model-based

cost-effectiveness analysis [34, 35].

In addition to evidence informing model parameters, we required annual city-specific data

for at least two time points to be used as calibration and validation targets for comparison of

model projections [36, 37]. We chose the model calibration period (2012–2015) according to

the availability of city-level surveillance data (stratified by gender, race/ethnicity, and risk

Fig 1. Dynamic compartmental HIV transmission model schematic diagram. For each city, the adult population aged 15–64 was stratified into

compartments on the basis of (1) gender (male or female), (2) race/ethnicity (black/African American, Hispanic/Latino, and non-Hispanic white/others), and

(3) HIV risk behavior type (men who have sex with men (MSM), people who inject drugs (PWID), MWID, and heterosexual (HET)). MSM, MWID, and HET

were further stratified into subgroups based on HIV sexual risk behavior intensity (high vs low), and PWID and MWID were categorized based on whether

they were receiving opioid agonist treatment (OAT). Individuals within each of these 42 strata (MSM: 6 groups, MWID: 12 groups; PWID: 12 groups; HET: 12

groups) progress through the model according to the 19 health states illustrated above. Prior to HIV infection, HIV-negative individuals can be screened for

HIV (screened in past 12 months), and screened MSM or MWID can take pre-exposure prophylaxis (PrEP). HIV transmission can occur through three modes:

heterosexual contact, homosexual contact, and needle-sharing. We specified the pattern of sexual mixing between risk groups and race/ethnicity, where

assortativity determines the proportion of sexual contacts within the same group, and we varied the level of assortativity across cities (28). Following HIV

infection, individuals transition through acute infection (3 months), then are classified as infected but not diagnosed, diagnosed but ART-naïve, and on- or off-

ART, and partitioned according to CD4 cell count (CD4� 500, 200–499, and<200). Health state transitions occur at monthly intervals, with transition to

death a possibility from each of the health states depicted, with varying probabilities.

https://doi.org/10.1371/journal.pone.0217559.g001
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group) for critical clinical and epidemiological endpoints characterizing the course of each

HIV microepidemic [34].

Evidence synthesis strategy

We first identified parameter estimates that we determined to be common across cities and

generalizable across city-level microepidemics. The remaining parameters required context-

specific data to adequately characterize the population mix, HIV risk behaviors and health care

utilization patterns for a given city. We divided our search strategy into two parts: (i) identify-

ing a rank order of a priori potential data sources for each model parameter category; and (ii)

selecting the best data to use, given additional factors and constraints (S1 Supplement).

The best possible data source for each parameter depended on factors unique to each

parameter category. For example, the most accurate and reliable source for total population

numbers was city-level census data, while the best source for ART effectiveness estimates came

from randomized controlled trials. For each non-city-specific (common) parameter, we

selected source data based on study quality, how well a study matched the ideal study type for

a given model parameter, and recency of the evidence. For city-specific parameters, we selected

source data based on geographic representativeness and stratification level relative to our

model requirements and recency of the evidence. We assessed recency according to evidence

type as we required more up-to-date surveillance data for initial populations and calibration

targets in comparison to other non-city-specific evidence such as efficacy data from RCTs

or untreated HIV disease progression. When necessary, parameter estimates and ranges

were derived from triangulation, defined as using numbers from multiple sources and/or

from the same source but requiring additional assumptions to match our model’s level of

stratification.

We used several search methods to identify evidence sources for the disparate data types,

including searches in bibliographic databases (PubMed searches for (ii) parameters used to

calculate the probability of HIV transmission conducted for all articles published prior to May

31, 2017; searches for (iii) Screening, diagnosis, treatment and HIV disease progression con-

ducted for all articles published prior to February 8, 2018; searches for (iv) HIV Prevention

Programs conducted for all articles published prior to October 26, 2018; and searches for (vi)

Health utility weights conducted for all articles published prior to August 30, 2017), non-data-

base searches, “snowballing” (such as searching references from key sources to identify further

sources) (Google Scholar snowball searches for (ii) Parameters used to calculate the probability

of HIV transmission conducted for all articles published prior to May 31, 2017), and local sur-

veillance reports [23, 24, 38]. Where necessary due to a paucity of available published data, we

sought out large and representative databases that could be used for primary analysis to further

augment our evidence synthesis.

Ranking data quality

The quality of each parameter was determined using context- and category-specific criteria,

incorporating an adapted version of the Oxford Centre for Evidence-based Medicine–Levels

of Evidence scale for common parameters (S1 Supplement) [39]. We ranked common parame-

ter inputs according to the best quality of evidence that could be used to inform a given model

parameter category. Best quality indicated a perfect match, moderate quality indicated that the

evidence did not match perfectly or required some triangulation, and lowest-quality indicated

that we derived parameter inputs by assumption or by another low quality evidence source.

For city-specific model parameters, we ranked the inputs according to how closely the evi-

dence mapped onto the model stratification. Best quality indicated that the evidence data
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mapped onto the model parameter inputs by city perfectly (e.g., population-level data acquired

since 2010 at the city level and stratified by risk group, gender, and race/ethnicity), moderate

quality indicated that the evidence was stratified by city or region, with some level of popula-

tion stratification or other triangulation, and lowest quality indicated that the evidence was at

the national level, aggregated across population strata, or derived from expert opinion/

assumption (e.g., aggregate data acquired prior to 2000 at the national-level).

All quality rankings were independently assessed by at least two team members and dis-

crepancies were resolved through discussion and consensus among team members. Finally,

missing city-level parameter values were assigned using a standardized algorithm to prioritize

best-available data in surveillance and peer-reviewed literature at the (i) state, (ii) regional, or

(iii) national level.

Data verification

Where the available data was less than ideal in at least two ways (e.g., potentially outdated

according to the parameter category, geographically non-specific, or lacking stratification by

gender, risk group or race/ethnicity), we posed explicit questions to our scientific advisory

committee, a collection of city-specific experts, to confirm use of the best-available data or

gain access to data otherwise unavailable publicly (e.g., current studies underway, disaggre-

gated data from surveillance and other regularly produced reports). We prepared a web-based

survey specific to each of the six cities. For each parameter in question, we provided the spe-

cific definition of the parameter and the best publicly available data to populate it. Scientific

advisory committee members were asked to (i) identify additional sources that we had over-

looked or that were not in the public domain but could be made available to the study team,

(ii) rate their confidence in proposed triangulation methods to estimate parameter values, (iii)

explain their rated responses, and (iv) where possible, share the survey with other knowledge-

able public health experts in their professional networks (S1 Supplement).

Results

We identified 1,667 parameters needed to populate our dynamic, compartmental HIV trans-

mission model (Table 1). Of these, 1,517 (91%) were unique to each city and the other 150

(9%) were common for all cities. The proportion of model parameters that composed each of

the six model parameter categories varied extensively (Fig 2).

To inform each parameter’s point estimate and range, we synthesized evidence from 59

peer-reviewed publications and 24 public health and surveillance reports (Table 2) and exe-

cuted primary analyses using 11 data sets (Table 3). Parameters ranked as best- to moderate-

quality evidence comprised 39% of the 150 common parameters (Table 1) and 13% were

directly estimated in the literature (Table 4). City-specific parameters that were ranked as best-

to moderate-quality evidence ranged from 56% of the parameters for Baltimore to 60% for

New York City (Table 1).

Results of data verification

The city-specific surveys that were sent to our scientific advisory committee contained ques-

tions about four of the six model parameter categories, including questions regarding popula-

tion size estimates for HIV risk groups, parameters used to calculate the probability of HIV

transmission, ART dropout rates and HIV prevention programs (S1 Supplement). Each city

had at least one scientific advisory committee representative respond, and two cities had multi-

ple respondents participate. Responses helped guide triangulation methods, and updated

parameter estimates were re-sent to scientific advisory committee members for final review so
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Table 1. Summary of model parameters and evidence quality ranking.

Model

parameter

category

Description of parameters Number of

common

parameters

Best- or

moderate-

quality (%)

Number of city-

specific

parameters

Best- or moderate-quality (%) Total by

category

ATL BAL LA MIA NYC SEA

1. Initial population estimates and population
dynamics
1.1 Risk-stratified

population

estimates

Total population 0 - - 18 100% 83% 100% 100% 100% 100% 18

1.2 Number of

PLHIV

PLHIV population infected/

unaware, diagnosed, and on-ART

84 0% 558 71% 74% 74% 71% 74% 74% 642

1.3 Population

dynamics

Population entry/maturation rates,

mortality rates and migration rates

0 - - 372 26% 26% 26% 26% 26% 26% 372

1.4 HIV-negative

population

HIV-negative population with

proportion who were screened

1 - - 42 14% 14% 14% 14% 43% 14% 43

2. Parameters used to calculate the probability of HIV
transmission
2.1 Sexual risk

behaviors

Proportion of high/low sexual risk,

number of same and opposite sex

sexual partners, reduction in sexual

partners due to diagnosis

1 100% 156 19% 8% 19% 19% 19% 19% 157

2.2 Injection risk

behaviors

Number of injections, proportion of

shared injections

1 100% 10 90% 0% 90% 90% 90% 90% 11

2.3 Sexual mixing

patterns

Assortativity for heterosexual, MSM,

and injection

0 - - 12 0% 0% 0% 0% 0% 0% 12

2.4 Probability of

transmission

Probability of tranmission through

sexual contact and injection, reduced

transmission due to ART, and

condom effectiveness

21 100% 0 - - - - - - - - - - - - 21

3. Screening, diagnosis, treatment and HIV disease
progression
3.1 HIV testing Rates of HIV testing, increased

testing for high-risk, and symptom-

based case finding rate

2 0% 42 14% 14% 14% 14% 43% 14% 44

3.2 ART

initiation

ART initiation proportion at

diagnosis and ART initiation rate for

PLHIV who do not immediately

initiate ART

0 - - 84 100% 100% 100% 100% 100% 100% 84

3.3 ART

retention and re-

initiation

Rates of ART retention and ART re-

initiation post-dropout

0 - - 72 100% 100% 100% 100% 100% 100% 72

3.4 HIV disease

progression on

ART

Disease progression for diagnosed

(on ART)

0 - - 108 100% 100% 100% 100% 100% 100% 108

3.5 HIV disease

progression off

ART

Disease progression for diagnosed

(off ART), infected/unaware, and

acute to chronic HIV for infected

and diagnosed

4 100% 0 - - - - - - - - - - - - 4

4. HIV
prevention
programs
4.1 Syringe

service programs

coverage

Total syringe distribution volume 0 - - 1 0% 100% 100% 0% 100% 100% 1

(Continued)
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that they could see where their responses were incorporated and how parameter values were

used in calibration and/or sensitivity analysis.

Evidence synthesis for model parameter categories

Key results of our evidence synthesis are highlighted by model parameter category in this sec-

tion. A detailed description of the derivation of each individual parameter is provided in the

supplementary material (S1 Supplement), and descriptions of all datasets used in primary anal-

ysis can be found in Table 3 and in the supplementary material (S1 Supplement).

Initial population estimates and population dynamics. A majority of the model’s

parameters (1,075; 64%) were for population estimates and population dynamics. We derived

the necessary evidence from 13 public health and surveillance reports [85–98] and 9 peer-

reviewed publications [40, 99–106] and from primary analyses of 5 datasets [42, 107–110]

(Table 2). More than two-thirds of the city-specific evidence used for the 558 parameters (38%

of all parameters) that established the size of PLHIV populations in the model were of best- or

moderate-quality (Table 1). However, the limited evidence available to determine the propor-

tion of HIV-infected individuals in the acute stage of HIV disease progression was of low-qual-

ity (Table 4), and these parameters (n = 84) represented half of all parameters common across

cities (Table 1). Approximately one-quarter of the city-specific parameters that determined the

probabilities of mortality (n = 372) from each health state were of best- or moderate-quality,

Table 1. (Continued)

Model

parameter

category

Description of parameters Number of

common

parameters

Best- or

moderate-

quality (%)

Number of city-

specific

parameters

Best- or moderate-quality (%) Total by

category

4.2 Opioid

agonist treatment

(OAT)

Number of PWID/MWID receiving

OAT, OAT entry/dropout rates,

OAT effectiveness on ART

adherence and reduction of shared

injections

3 100% 9 0% 100% 100% 100% 100% 100% 12

4.3 Pre-exposure

prophylaxis

(PrEP)

PrEP uptake; PrEP effect on testing

and risk of infection

3 33% 7 100% 0% 100% 100% 100% 100% 10

5. Costs of
medical care
5.1 HIV-infected Costs of medical care among PLHIV 0 - - 24 0% 100% 100% 0% 100% 100% 24

5.2 HIV-negative Costs of medical care for HIV-

negative individuals; multiplier for

PWID

0 - - 2 0% 100% 100% 100% 100% 100% 2

6. Health utility
weights
6.1 HIV-infected Health utility weights for infected,

diagnosed, on-ART by HIV disease

severity; multipliers for PWID and

OAT

27 100% 0 - - - - - - - - - - - - 27

6.2 HIV-negative Reference health state for HIV-

infected; multipliers for PWID and

OAT

3 0% 0 - - - - - - - - - - - - 3

Total 150 39% 1517 56% 56% 58% 57% 60% 58% 1667

ATL: Atlanta, Georgia; BAL: Baltimore, Maryland; LA: Los Angeles, California; MIA: Miami, Florida; NYC: New York City, New York; SEA: Seattle, Washington;

PLHIV: People living with HIV; ART: Antiretroviral therapy; MSM: Men who have sex with men; PWID: People who inject drugs; MWID: MSM PWID.

https://doi.org/10.1371/journal.pone.0217559.t001

Developing a dynamic HIV transmission model for 6 U.S. cities: An evidence synthesis

PLOS ONE | https://doi.org/10.1371/journal.pone.0217559 May 30, 2019 8 / 26

https://doi.org/10.1371/journal.pone.0217559.t001
https://doi.org/10.1371/journal.pone.0217559


including primary analyses of data from The HIV Research Network (HIVRN) that were used

to derive mortality rates for PLHIV receiving ART [107, 111].

Parameters used to calculate the probability of HIV transmission. We synthesized evi-

dence from 29 peer-reviewed publications [41, 43, 45–60, 65–69, 112–117] (Table 2) and con-

ducted primary analyses of 6 datasets [42, 108, 110, 118–120] (Table 3) to derive the

parameters that determined the probability of HIV transmission (n = 224; 13% of total param-

eters). The probabilities for HIV transmission per shared injection or sexual act and the effec-

tiveness of HIV-related interventions (i.e., condom use, OAT, SSP and ART)–all common

across cities–were derived from the peer-reviewed literature. All common parameters (n = 41)

were of best- or moderate-quality (Table 1), and approximately a third (n = 7, 30%) were

directly estimated (Table 4). In contrast, best- or moderate-quality evidence that informed

city-specific sexual risk behavior parameters (n = 157) ranged from 8% to 19%, and evidence

for sexual mixing pattern parameters (n = 12) was of low-quality across all cities (Table 1). Esti-

mates of sexual risk behavior were obtained from National HIV Behavioral Surveillance

(NHBS) data for MSM and PWID [42, 110] and we used region-specific population-based

data from the National Survey of Family Growth (NSFG) for heterosexuals [108]. To deter-

mine ranges used in sensitivity analyses and calibration, we supplemented this evidence with

primary analyses of data from the AIDS Linked to IntraVenous Experience (ALIVE) PWID

cohort study [120] and from Project AWARE [119]. Lastly, we estimated injection risk behav-

ior using NHBS data [42].

Fig 2. Model parameter category proportions. The boxes are proportionally scaled to the corresponding model parameter category sizes. Model parameter

category labels: Population estimates – 1. Initial HIV-negative and HIV-infected population estimates; HIV transmission – 2. Parameters used to calculate the

probability of HIV transmission; Treatment and HIV disease progression – 3. Screening, diagnosis, treatment and HIV disease progression; Prevention – 4.

HIV prevention programs, including syringe service programs (SSP), OAT, and PrEP; Costs – 5. The costs of medical care for HIV-negative and HIV-infected

individuals; and QALYs – 6. Health utility weights for each stage of HIV disease progression. ART: Antiretroviral treatment; All Pop.: Census population

estimates; QALYs: Quality-adjusted life-years; Mixing: Sexual mixing patterns.

https://doi.org/10.1371/journal.pone.0217559.g002
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Table 2. Data sources used for each risk group, by model parameter category.

ALL� MSM PWID MWID HET ALL� MSM PWID MWID HET

1. Initial population estimates and
population dynamics

3. Screening, diagnosis, treatment and HIV disease progression (continued)

1.1 Risk-stratified population estimates 3.2 ART initiation
United States Census Bureau X Medical Monitoring Project (MMP) X X X X

Peer-reviewed literature X X X HIV Research Network (HIVRN) X X X X

National HIV Behavioral Surveillance

(NHBS) system

X X Local surveillance reports X X X X

1.2 PLHIV (diagnosed and undiagnosed) State surveillance reports X X X X

Local surveillance reports X X X X 3.3 ART retention and re-initiation
State surveillance reports X X X X HIV Research Network (HIVRN) X X X X

Centers for Disease Control and

Prevention (CDC)

X 3.4 HIV disease progression on ART

HIV Research Network (HIVRN) X X X X HIV Research Network (HIVRN) X X X X

1.3 Population dynamics 3.5 HIV disease progression off ART
Public health surveillance reports X Peer-reviewed literature X X X X

HIV Research Network (HIVRN) X X X X 4. HIV prevention programs
Peer-reviewed literature X X 4.1 Syringe service programs coverage
United States Census Bureau X Local surveillance reports X X

1.4 HIV-negative population State surveillance reports X X

United States Census Bureau X National surveillance reports X X

National HIV Behavioral Surveillance

(NHBS) system

X X X Centre for Disease Control and Prevention

(CDC)

X X

2. Parameters used to calculate the probability of HIV transmission Local data X X

2.1 Sexual risk behaviors 4.2 Opioid agonist treatment (OAT)
National HIV Behavioral Surveillance

(NHBS) system

X X X X SAMHSA Treatment Episode Data Sets

(TEDS)

X X

National Survey of Family Growth

(NSFG)

X National Survey of Substance Abuse

Treatment Services (N-SSATS)

X X

Peer-reviewed literature X

The AIDS linked to IntraVenous

Experience (ALIVE) cohort

X Peer-reviewed literature X X

Project AWARE X X X X 4.3 Pre-exposure prophylaxis (PrEP)
2.2 Injection risk behaviors Peer-reviewed literature X X

National HIV Behavioral Surveillance

(NHBS) system

X X Centers for Disease Control and Prevention

(CDC)

X X

2.3 Sexual mixing patterns AIDSVu X X

National HIV Behavioral Surveillance

(NHBS) system

X X X 5. Costs of medical care

National Survey of Family Growth

(NSFG)

X 5.1 HIV-infected

Peer-reviewed literature X X X HIV Research Network (HIVRN) X X X X

2.4 Probability of transmission Centers for Medicare and Medicaid

Services

X

Peer-reviewed literature X X X X Healthcare Cost and Utilization Project

(HCUP)

X

World Health Organization (WHO) X VA FSS Price Schedule X

3. Screening, diagnosis, treatment and HIV disease
progression

Peer-reviewed literature X

3.1 HIV testing 5.2 HIV-negative
National HIV Behavioral Surveillance

(NHBS) system

X X X Medical Expenditure Panel Survey (MEPS) X

(Continued)
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Screening, diagnosis, treatment and HIV disease progression. Screening, diagnosis,

treatment and HIV disease progression parameters represented 18% (n = 312) of all model

parameters and were derived from 5 peer-reviewed publications [71, 72, 111, 121–123] and 6

public health and surveillance reports [86, 88, 90, 96–98] (Table 2) and from primary analyses

using 6 data sets [42, 107, 109, 110, 124, 125] (Table 3). HIV testing rates (n = 42) were derived

from primary analyses of sample data from NHBS [42, 110], the US Centers for Disease Con-

trol and Prevention’s (CDC) Behavioral Risk Factor Surveillance System [109], and the New

York City Community Health Survey [125]. Notably, best- or moderate-quality evidence for

stratified population-level testing rates was sparse (Table 1). In the absence of city-specific

ART data, we used corresponding regional HIVRN data to obtain rates of ART initiation

(n = 84) and re-initiation (n = 18) [107]. We also used HIVRN data with continuous-time

multi-state Markov models to populate parameters specific to HIV disease progression rates

while PLHIV are on ART (n = 108) and in relation to ART dropout rates (n = 54). The rates of

HIV testing and ART dropout varied extensively across cities and across risk groups and

races/ethnicities within cities (Fig 3). Rates of ART initiation were supplemented using analy-

ses of Medical Monitoring Project (MMP) data [124], and disease progression off-ART was

estimated using peer-reviewed literature [71] (Table 4).

HIV prevention programs. Parameters for HIV prevention programs (n = 23) were

derived by combining evidence from 10 local, state and national sources [77, 126–134], 7 peer-

reviewed articles [73, 74, 135–139], 2 publicly accessible data sources [126, 127] (Table 2).

Availability of local data sources to populate syringe distribution parameters varied greatly,

and we found extensive variation across cities in relation to the availability of syringes per

1,000 PWID (Fig 4). We used state-level data from the Substance Abuse and Mental Health

Services Administration combined with evidence from the peer-reviewed literature to derive

the number of PWID and MWID receiving OAT with either methadone or buprenorphine

[126, 127, 135, 137]. Common parameters for the protective effects of HIV prevention pro-

grams were of good quality and often directly estimated in the peer-reviewed literature

(Table 4). Lastly, we used AIDSvu data to determine pre-exposure prophylaxis (PrEP) uptake

[134].

Costs of medical care. To quantify health resource use cost parameters for infected

(n = 24) and HIV-negative (n = 2) individuals, we included evidence from 4 public health and

surveillance reports [140–143] and 4 peer-reviewed publications [28, 144–146] and conducted

primary analysis of 1 dataset[147] (Table 2). For each city, we used corresponding regional

HIVRN patient level utilization data and corresponding unit costs to estimate quarterly health

care costs for HIV-infected individuals (Table 3). For HIV-negative individuals, we stratified

cost estimates for MSM and HET risk groups from regional Medical Expenditure Panel Survey

(MEPS) data [140] and used a multiplier to estimate costs for PWID [28].

Table 2. (Continued)

ALL� MSM PWID MWID HET ALL� MSM PWID MWID HET

Behavioral Risk Factor Surveillance

System (BRFSS)

X X Peer-reviewed literature X X

New York City Community Health

Survey (NYC-CHS)

X 6. Health utility weights

Peer-reviewed literature X Peer-reviewed literature X X X

� All signifies that evidence source used was not stratified by HIV risk group. AWARE: HIV Rapid Testing & Counseling in Sexually Transmitted Disease Clinics;

PLHIV: People living with HIV; ART: Antiretroviral therapy; MSM: Men who have sex with men; PWID: People who inject drugs; MWID: MSM PWID.

https://doi.org/10.1371/journal.pone.0217559.t002
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Table 3. Primary analyses data sources and analytic methods†.

Analytic sample Stratification a Model Parameter Categories Data access and analytic methods Year

NHBS-MSM: male (� 18 years) reporting any oral or anal sex with a male partner during lifetime (venue-based sampling)

18–64 years old HIV-unaware males

reporting a male partner in L12M

5 cities d; MSM, MWID 1.1 Risk-stratified population estimates

2.1 Sexual risk behaviors, L12M

3.1 HIV testing, L12M

4.3 Prescribed PrEP, L12M

Indirect b; Summary statistics 2011,

2014

NHBS-PWID: adults (�18 years) reporting any non-prescribed injection drug use in L12M (respondent-driven sampling)

18–64 years old HIV-unaware

participants injecting drugs in L12M

5 cities d; PWID, MWID 1.1 Risk-stratified population estimates

2.1 Sexual risk behaviors, L12M

2.2 Injection risk behaviors, L12M

2.3 Sexual mixing patterns

3.1 HIV testing, L12M

4.3 Prescribed PrEP, L12M

Indirect b; Summary statistics 2012,

2015

NHBS-HET: 18–60 years olds in poverty areas reporting vaginal or anal sex with an opposite sex partner in L12M (respondent-driven sampling)

18–60 years old HIV-unaware

participants who had sex in L12M

5 cities d; HET 2.1 Sexual risk behaviors, L12M

2.3 Sexual mixing patterns

Indirect b; Summary statistics 2013,

2016

MMP: adults (� 18 years) receiving HIV care (not necessarily on-ART) from HIV clinics in select US states

18–64 years old HIV-aware 2 cities (NYC and LA);

3 states (GA, FL, WA)

3.2 ART initiation Indirect b; Summary statistics 2010,

2014

HIVRN: individuals enrolled in a consortium of adult and pediatric HIV clinics in the US (multi-site cohort study)

15–64 years old participants enrolled

between 2007 and 2015

3 regions (Northeast, South,

West)

1.3 Population dynamics

3.2 ART retention

3.4 Disease progression on ART

5.1 Costs of medical care

Direct c; Multivariable continuous-

time multi-state Markov model

2007–

15

AWARE: HIV-/unaware patients (� 18 years) seeking services from STD clinics in nine US cities (randomized controlled trial)

All participants aged between 18–64

years attending STD clinics

3 cities (LA, Miami, Seattle) 2.1 Sexual risk behaviors, L6M Indirect b; Summary statistics 2010

ALIVE: adults (� 18 years) reporting injection drug use within the past 11 years in Baltimore (prospective cohort; community outreach recruited)

18–64 years old HIV-unaware B/AA

participants injecting drugs in L6M

Baltimore; PWID, MWID 2.1 Sexual risk behaviors, L6M Direct c; Summary statistics 2010

NSFG: 15–44 years old men and women from households in the US (stratified multi-stage area probability sampling)

All participants, excluding those

reporting injection drug use in L12M

4 regions (Northeast, South,

West, Midwest); HET, MSM

2.1 Sexual risk behaviors, L12M

2.3 Sexual mixing patterns

Direct c; Weighted summary statistics 2011–

13

BRFSS: adult (� 18 years) telephone respondents from households in the US (disproportionate stratified sampling and random sampling)

18–64 years old HIV-unaware 6 states; HET 3.1 HIV testing, L12M Direct b; Weighted summary statistics 2010

NYC CHS: adults (� 18 years) telephone respondents from households in New York City (stratified random sampling)

18–64 years old HIV-unaware New York City; HET 3.1 HIV testing, L12M Direct b; Weighted summary statistics 2010

TEDS: all individuals admitted to treatment facilities for substance use disorder that receive public funds (national client-level database)

�15 year old reporting OUD 5 cities e; PWID 4.2 Number of individuals receiving

OAT

Direct b; Summary statistics 2010–

14

† Further details are presented in S1 Supplement
a If not specified, applicable to all risk groups of interest and/or cities
b Summary statistics provided by the principal investigators of the databases
c We accessed the data and performed analysis
d NHBS data were not available for Baltimore
e All OAT data were missing for Georgia.

NHBS: National HIV Behavioral Surveillance; MMP: Medical Monitoring Project; AWARE: HIV Rapid Testing & Counseling in Sexually Transmitted Disease Clinics

in the US; ALIVE: AIDS Linked to IntraVenous Experiences study; NSFG: National Survey of Family Growth; HIVRN: HIV Research Network; HET: heterosexual;

MSM: men who have sex with men; PWID: people who inject drugs; MWID: MSM who inject drugs; B/AA: black/African American; PrEP: Pre-exposure prophylaxis;

L12M: last 12 months; L6M: last 6 months; STD: sexually transmitted diseases; OAT: Opioid agonist treatment; OUD: Opioid use disorder; GA: Georgia; FL: Florida;

WA: Washington; LA: Los Angeles; NYC: New York City.

https://doi.org/10.1371/journal.pone.0217559.t003
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Health utility weights. We used common health utility weights across all six cities to cal-

culate quality adjusted life years (QALYs) parameters (n = 30), synthesizing evidence from 4

peer-reviewed articles (Table 4). Estimates were derived from a nationally representative sam-

ple of QALY estimates [82], a meta-analysis [83], and a study that used a sample of Veterans

Table 4. Quality assessment for model parameters common across cities.

Model Parameter Category Available Evidence Best-Quality Evidence Source

1. Initial population estimates and population dynamics
1.2 Proportion of acute state among diagnosed II—B III—A [40]

1.2 Proportion of acute state among infected II—B III—A [40]

2. Parameters used to calculate the probability of HIV transmission
2.1 Percentage decrease in number of sexual partners due to diagnosis IV—A IV—A [41]

2.2 Reduced probability of shared injections due to HIV diagnosis IV—A IV—A [42]

2.4 Probability of transmission per partnership from female to male† IV—B IV—A [43–54]

2.4 Probability of transmission per partnership from male to female† IV—B IV—A

2.4 Probability of transmission per partnership same sex† IV—B IV—A [55–59]

2.4 Condom effectiveness for heterosexual sex IV—A IV—A [60]

2.4 Condom effectiveness for homosexual sex II—A IV—A [61]

2.4 Reduction in probability of transmission by sex due to ART (HET) I—A IV—A [62]

2.4 Reduction in probability of transmission by sex due to ART (MSM) I—A IV—A [63, 64]

2.4 Probability of transmission per shared injection† IV—B IV—A [65–68]

2.4 Percentage reduction in probability of transmission by injection due to ART V—A IV—A [69]

3. Screening, diagnosis, treatment and HIV disease progression
3.1 Symptom-based case finding rate for infected (CD4 200–499�) II—B III—A [70, 71]

3.1 Symptom-based case finding rate for infected (CD4 < 200�) II—B III—A [70, 71]

3.5 Transition rate: acute infected to chronic state infected (CD4� 500�) II—A II—A [72]

3.5 Transition rate: acute diagnosed to chronic state diagnosed (CD4� 500�) II—B II—A [72]

3.5 HIV disease progression rate from CD4� 500� to CD4 200–499� (off ART) II—B II—A [70, 71]

3.5 HIV disease progression rate from CD4 200–499� to CD4 < 200� (off ART) II—B II—A [70, 71]

4. HIV Prevention Programs
4.2 Percentage reduction in shared injections due to OAT IV—B IV—A [73]

4.2 OAT entry/dropout rate IV—A III—A [74]

4.2 Multiplier for ART dropout rate for individuals on OAT II—A IV—A [75]

4.3 Percentage reduction in risk of infection for individuals on PrEP I—A IV—A [76]

4.3 Screening rates for individuals on PrEP VI—B III—A [77]

4.3 Average duration individuals on PrEP remain identified after screening VI—B III—A [77]

6. Health utility weights
6.1 HIV-infected non-PWID II—A IV—A [78–83]

6.1 HIV-infected PWID/OAT II—B IV—A [69, 84]

6.2 HIV-negative non-PWID VI—B IV—A Assumption

6.2 HIV-negative PWID/OAT VI—B IV—A [69, 84]

† for acute and chronic disease states

� cells/μL. ART: Antiretroviral therapy; HET: Heterosexual; MSM: Men who have sex with men; PrEP: Pre-exposure prophylaxis; SSP: Syringe services program; OAT:

Opioid agonist treatment; PWID: People who inject drugs.

Type of evidence: I—Single randomized clinical trial; II—Single non-randomized trial/cohort study; III—Administrative database; IV—Systematic review/meta-analysis

of multiple RCTs or cohort studies; V—Cost-effectiveness analysis; VI—Expert opinion/assumption

Types of evidence adapted from Oxford Centre for Evidence-based Medicine–Levels of Evidence [39].

Derivation method: A—Model parameter values directly available from literature; B—Model parameter values triangulated from multiple sources.

https://doi.org/10.1371/journal.pone.0217559.t004
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Affairs members to estimate the change in health-related quality of life when patients were

diagnosed and became aware of their HIV status [79, 82, 83]. We also incorporated evidence

from the literature to establish a framework for relevant health states in HIV infection and dis-

ease progression [78]. Evidence from two additional studies was used to update the weights

used for individuals receiving treatment in the modern era of highly active ART [80, 81].

Lastly, we used QALY weight multipliers for PWID based on whether or not they were receiv-

ing OAT [69, 84]. While these sources were the best-available evidence for health utility

weights, the majority were published prior to 2007. Notably, health utility weights among

PLHIV may have changed over time as a result of modern advances in treatment and HIV

care.

Calibration and validation targets. We identified 3 sets of calibration targets (17 targets

in total), including stratified indicators of the annual number of new HIV diagnoses per year,

the total number of diagnosed PLHIV and the annual number of all-cause deaths among

PLHIV (S1 Supplement). These were representative of some of the best-quality data available

and were also important to long-term clinical and epidemiological projections of city-level

microepidemics, consistent with guidelines on selecting calibration and validation targets in

cost-effectiveness analysis [19]. Furthermore, point estimates and ranges of HIV prevalence

were used as validation targets to ensure external validity.

Fig 3. Heterogeneity in selected parameter estimates by city, risk group, gender and race/ethnicity. MSM: Men who have sex with men; PWID: People who

inject drugs; HET: Heterosexuals; ART: Antiretroviral treatment; F: Female; M: Male.

https://doi.org/10.1371/journal.pone.0217559.g003
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Discussion

We have provided a comprehensive description of an extensive evidence synthesis process that

is required to populate a dynamic, compartmental HIV transmission model for six US cities.

We identified differences across cities in the quality and representativeness of evidence avail-

able to inform our model. However, we identified consistency in the lack of availability of

best-quality local administrative data that are critical to assess health system performance, par-

ticularly in relation to population-level rates of HIV testing and ART engagement. Nonethe-

less, our findings, which used the best-available evidence, highlight fundamental differences

across settings related to rates of health system engagement and access to HIV prevention pro-

grams. The modeling of targeted, locally-oriented combination implementation strategies is

necessary to determine how scarce resources should be allocated to interventions that can pro-

vide the greatest value for money in a given microepidemic. Our findings emphasize the need

for increased public health efforts to measure and monitor the most informative components

of local HIV prevention and care services, including the delivery, uptake and effect of localized

HIV programs.

Reviews of health economic models in specific disease areas typically focus on differences

in model structures and projected outcomes, with limited discussion of how the differences in

the quality of input data can function as an explanation for variations across outputs [148–

152]. Failure to report the sources and quality of model parameters, or reporting evidence

directly from other modelling exercises without assessing the quality and representativeness of

Fig 4. Coverage of sterile syringes programs for people who inject drugs.

https://doi.org/10.1371/journal.pone.0217559.g004
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the inputs, can limit the interpretability of a model thereby eroding the confidence of its rec-

ommendations [153]. Cooper et al. (2007) discussed three practical issues and methodological

challenges related to the use of evidence in health decision models: (i) defining and identifying

‘relevant’ evidence, (ii) assessing the quality and relevance of different sources of evidence, and

(iii) synthesizing the evidence for use in modeling exercises [24]. Their paper also provided

practical recommendations to address these challenges. Namely, a) describe the search method

and selection process used to identify ‘relevant’ evidence per parameter; b) evaluate the quality

and representativeness of the data retrieved; and c) pool evidence using explicit criteria where

applicable [24]. Decision makers must be able to interpret mathematical models to use them to

develop and evaluate effective HIV responses [154]. We documented our evidence synthesis

process for six different cities as comprehensively as possible for transparency and reproduc-

ibility. We hope this effort promotes the use of modeling recommendations in decision mak-

ing processes that address city-level HIV microepidemics.

The sustainability of an effective and efficient HIV response is critical to the control of local

microepidemics [155–157]. For instance, the benefits of a treatment intervention that increases

ART engagement might only be maximized with a sufficient level of HIV testing. Modeling rec-

ommendations promoting locally-oriented combination implementation strategies depend on

evidence from local health systems. Reliable evidence of interactions between PLHIV and local

health systems provided by surveillance and administrative data would greatly enhance the

validity of modeling recommendations. Furthermore, and despite a paucity of behavioral data

available describing sexual risk behavior and race/ethnicity mixing, recent evidence suggests

that racial assortativity alone cannot adequately explain observed disparities in HIV incidence

[158]. However, a meaningful share of this disparity can be explained by differential ART

engagement by race [158]. This discrepancy further highlights the need for an improved use of

routinely collected surveillance data (e.g., laboratory viral load monitoring can be used as a rea-

sonable proxy of ART engagement) to allow for a better understanding of how to improve HIV

care. Similarly important for locally-oriented modeling recommendation, city-level estimates of

population sizes for PWID and MWID risk groups are either completely lacking or in critical

need of updating [102]. Varying assumptions about risk groups in the modeling of epidemic

dynamics can alter cost-effectiveness conclusions and intervention recommendations despite

good model calibration [159], suggesting the need for a careful assessment of the potential value

of collecting data about subpopulations that can have a disproportionate impact on local micro-

epidemics. These examples of imperfect or missing data underline the importance of the data

collection efforts of the US CDC’s NHBS and MMP, which provide behavioral information

about people at risk of HIV and disease and treatment status of PLHIV [42, 110, 160].

Systematically conducting one-way sensitivity analyses and probabilistic sensitivity analysis

to quantify the uncertainty in model recommendations resulting from parameters derived

from evidence of poorer quality or representativeness is critical for further information gather-

ing [34]. Value of information analysis [161] should guide the identification of influential

parameters requiring additional research to reduce uncertainty in the decision making pro-

cess. This exercise can also help define the collection of city-specific HIV surveillance data

[162]. Data source identification and parameter estimate derivation should therefore be

reported in sufficient detail to allow readers with the necessary expertise to perform a detailed

evaluation of the model and possibly replicate it [19]. Ultimately, the development of formal

guidelines pertaining to the evidence synthesis process and how it informs decision models

should result in increased guidance for those engaged in the reporting process. These guide-

lines would include the creation of a standardized checklist that emulates the Consolidated

Health Economic Evaluation Reporting Standards [163]. Publishers now routinely require this

kind of checklist in cost-effectiveness studies.
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This comprehensive evidence synthesis process had several potential limitations. First, the

search for evidence sources was not systematic; however, we used a systematic structured iden-

tification strategy [24]. Furthermore, we included best-quality evidence sources from a narra-

tive review of high-impact, current and diverse HIV models to further inform our initial

identification process [164] in order to mitigate the potential correlation between sources. Sec-

ond, we have not assessed the impact that the uncertainty in poorer quality parameters could

have on model recommendations since this was beyond the scope of this study but rather

report these findings in work elsewhere [32]. Third, despite a data verification process involv-

ing a scientific advisory committee composed of city-specific experts that helped to resolve

instances where evidence was of poor representativeness, the number of respondents involved

was low. Future evidence syntheses could benefit from a broad inclusion of public health offi-

cials. Lastly, given the relative wealth of surveillance data sources in the United States, the

extent to which this evidence synthesis process could be replicated needs to be assessed on a

case-by-case basis. As the possibilities for exercises of similar scope continue to grow in other

regions and disease areas, our reporting framework can bolster future efforts.

Better integration of modelling in decision making can be achieved by systematically

reporting on the evidence synthesis process that is used to populate models and by explicitly

assessing the quality of data. The effective communication of this process can help prioritize

data collection of the most informative components of local HIV prevention and care services

in order to reduce decision uncertainty and strengthen model conclusions.
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calibration/validation targets for all cities, and (iii) pdf of full survey given to SAC members

for data verification.
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