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Neurofibromatosis type I is a rare neurocutaneous syndrome resulting from loss-of-
function mutations of NF1. The present study sought to determine a correlation between
mutation regions on NF1 and the risk of developing optic pathway glioma (OPG) in
patients with neurofibromatosis type I. A total of 215 patients with neurofibromatosis
type I, from our clinic or previously reported literature, were included in the study after
applying strict inclusion and exclusion criteria. Of these, 100 patients with OPG were
classified into the OPG group and 115 patients without OPG (aged ≥ 10 years) were
assigned to the Non-OPG group. Correlation between different mutation regions and
risk of OPG was analyzed. The mutation clustering in the 5′ tertile of NF1 was not
significantly different between OPG and Non-OPG groups (P = 0.131). Interestingly,
patients with mutations in the cysteine/serine-rich domain of NF1 had a higher risk of
developing OPG than patients with mutations in other regions [P = 0.019, adjusted
odds ratio (OR) = 2.587, 95% confidence interval (CI) = 1.167–5.736], whereas those
in the HEAT-like repeat region had a lower risk (P = 0.036, adjusted OR = 0.396, 95%
CI = 0.166–0.942). This study confirms a new correlation between NF1 genotype and
OPG phenotype in patients with neurofibromatosis type I, and provides novel insights
into molecular functions of neurofibromin.

Keywords: neurofibromatosis type I, NF1, genotype, mutation, optic pathway glioma, phenotype

INTRODUCTION

Neurofibromatosis type I (MIM entry: 162200) is a rare disease with autosomal dominant
inheritance that belongs to a neurocutaneous syndrome characterized by café-au-lait spots, skin
freckling, neurofibroma, Lisch nodules, and optic pathway glioma (OPG) (Jett and Friedman,
2010). Its incidence and prevalence are 1/2500 and 1/4000, respectively (Pasmant et al., 2012).
Neurofibromatosis type I results from loss-of-function mutations of the tumor suppressor NF1
gene encoding neurofibromin (Trovó-Marqui and Tajara, 2006). Neurofibromin has several
domains and special structures; its main role is to act as a negative regulator in the Ras pathway
(Ratner and Miller, 2015). Although the NF1 sequence has been known for nearly 30 years,
the correlation between genotype and phenotype in neurofibromatosis type I remains poorly
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understood. This is largely due to low incidence, the considerable
length of NF1, diffused distribution of mutations, and the age-
dependent variability of manifestations (Wallace et al., 1990).
So far, the few published genotype–phenotype correlations
have indicated a severe phenotype in patients with whole-gene
deletion and the absence of cutaneous neurofibroma in patients
with a 3-bp inframe deletion (c.2970–2972 delAAT) or missense
mutation (p.Arg1809Cys) (Cnossen et al., 1997; Upadhyaya et al.,
2007; Mautner et al., 2010; Pinna et al., 2014).

Recently, two studies suggested that patients with mutations in
the 5′ tertile (exon 1–21) of NF1 had a higher risk of developing
OPG (Sharif et al., 2011; Bolcekova et al., 2013). OPG is a type
of pilocytic astrocytoma located in the cerebral optic pathway,
which can impair patients’ vision and visual field (Listernick et al.,
2007). However, approximately 50–75% of patients present no
symptoms at the time OPG is diagnosed (Sylvester et al., 2006),
making it important to evaluate the risk of OPG in asymptomatic
patients. Notably, a subsequent study based on stricter inclusion
criteria, revealed that mutation clustering in the 5′ tertile was
common to both the OPG and control groups (Hutter et al.,
2016). These conflicting results show that further studies are
required to establish a firm correlation between NF1 genotype
and OPG.

Previous studies were limited by either small samples or poor
inclusion criteria, both of which could lead to biased results.
In the present effort, we used strict inclusion criteria, which
we applied also to patients from previous studies, to obtain a
sufficiently large cohort. Furthermore, the region comprising the
5′ tertile is fairly vast, which might have affected the accuracy of
previous results. Instead, here we applied an established practice
common to the study of hereditary diseases (Hateboer et al.,
2000; Tartaglia et al., 2002; Aartsma-Rus et al., 2006; Mori-
Yoshimura et al., 2012), and focused specifically on correlations
between mutations in regions encoding protein domains or other
regions of the NF1 gene and the OPG phenotype in patients with
neurofibromatosis type I.

MATERIALS AND METHODS

Literature Search
A thorough search of English-language literature for relevant
papers which focused on the genotype–phenotype correlation
or described clinical manifestations and gene mutations in
patients with neurofibromatosis type I was performed. Databases
such as PubMed and Google Scholar, as well as university
library resources were searched. Search terms included “(OPG
OR optic pathway glioma OR optic glioma) AND (nf1 OR
neurofibromatosis) AND (genotype OR mutation),” “(glioma
OR optic nerve tumor OR optic nerve glioma) AND (nf1 OR
neurofibromatosis) AND (genotype OR mutation),” “(nf1 OR
neurofibromatosis) AND (OPG OR optic pathway glioma OR
optic glioma),” and “(nf1 OR neurofibromatosis) AND (glioma
OR optic nerve tumor OR optic nerve glioma).” All related
papers were read through to evaluate whether the reported
patients were compatible with the present study’s inclusion
criteria.

Study Subjects
Strict inclusion criteria included: (1) conformity to NIH
diagnostic criteria for neurofibromatosis type I (Conference,
1988); (2) brain radiology (computed tomography or magnetic
resonance imaging) to diagnose or exclude OPG; (3) NF1 gene
test to determine pathogenic germline mutations; (4) age of
patients without OPG of 10 years or more (rare patients with
neurofibromatosis type I could develop OPG after that point)
(Nicolin et al., 2009; Hutter et al., 2016).

Exclusion criteria included: (1) inconclusive radiological
diagnosis of OPG; (2) wrong assessment of gene mutations,
due to cDNA changes not conforming to predicted amino acid
alterations or the original cDNA base in the reported position
not conforming to the corresponding base in the reference
sequence; (3) existence of two variants of NF1 in a patient for
which the pathogenic one could not be determined according
to present evidence; (4) patients in a study which only focused
on a certain point mutation, because these patients were selected
artificially.

After selection following the above inclusion and exclusion
criteria, five patients from our clinic and 210 patients described
in the literature were included in this study. Of these, 100
patients were classified in the OPG group and 115 in the
Non-OPG group. The five patients from our clinic were
scanned to obtain brain magnetic resonance imaging and
2 mL of blood was collected for NF1 gene testing using
next-generation sequencing (NGS) in an Illumina HiSeq 2000
system (Illumina Corporation, San Diego, CA, United States),
and small mutations were verified using Sanger sequencing
among probands’ family members. Multiplex ligation-dependent
probe amplification (MLPA) was used to detect the large
rearrangement.

In summary, small mutations and large rearrangements of
NF1were detected in 208 and 7 patients, respectively. Among the
208 patients with small mutations, the most common methods
for ascertaining mutations were Sanger sequencing (114, 54.81%)
and NGS (55, 26.44%), whereas the sequencing methods of
the remaining 39 patients (18.75%) were not reported in the
literatures. Among the seven patients with large rearrangements,
the most common methods for detecting mutations were MLPA
(6, 85.71%), followed by single nucleotide polymorphism array
(1, 14.29%).

Mutation Analysis
Each NF1 gene mutation was verified and analyzed in Mutalyzer1

and all mutation information (c.DNA position and base
changes) was transformed to novel nomenclature using
transcript number NG_009018.1 (NF1_v002; Anastasaki et al.,
2017). Furthermore, mutations were also analyzed using
MutationTaster2, which predicted amino acid alterations. Exons
were divided into 5′ tertile (exon 1–21), middle tertile (exon 22–
38), and 3′ tertile (exon 39–57) for mutation clustering analysis
(Sharif et al., 2011). The splice site mutation was classified
to the consensus exon for statistical analysis. Additionally,

1https://mutalyzer.nl/
2http://www.mutationtaster.org/
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to detect a correlation between NF1 genotype and OPG
phenotype, several gene regions were analyzed. These included
the cysteine/serine-rich domain (CSRD, residues 543–909),
tubulin-binding domain (TBD, residues 1095–1197), GTPase-
activating protein-related domain (GRD, residues 1198–1530),
Sec14-like domain (Sec14, residues 1560–1705), pleckstrin
homology-like domain (PH, residues 1716–1816), HEAT-
like repeat regions (HLR, residues 1825–2428), C-terminal
domain (CTD, residues 2260–2817), nuclear localization signal
region (NLS, residues 2534–2550), and syndecan-binding
region (SBR, residues 2619–2719) (Vandenbroucke et al.,
2004; Bonneau et al., 2009; Luo et al., 2014). The bipartite
module with phospholipid binding activity consisted of
Sec14 and PH; therefore, the area of Sec14-PH combined
the regions of Sec14 and PH (D’Angelo et al., 2006).
Patients with whole-gene deletions were not included in
the analysis of mutation clustering in different tertiles or all gene
regions.

Statistical Analysis
This study was designed as a case control study. Data were
analyzed using SPSS version 24.0 (IBM Corporation, Chicago,
IL, United States) and GraphPad PRISM version 7.01 (GraphPad
Software, San Diego, CA, United States). Constituent ratio and
sector diagram were used to describe the distribution of mutation
types. The number of patients in each group is presented
in bar graphs. Contingency tables and Chi-square test were
used for categorical variables. When any expected value on
contingency tables was below five, results were corrected for
continuity. When any expected value on contingency tables
was below one or the total sample number was less than 40,
Fisher’s exact test was used. Logistic regression was used to
evaluate the risk of developing OPG due to mutations in each
region, and crude odds ratios (ORs) were reported with 95%
confidence intervals (CIs). Mutations in regions with significantly
high or low risk of developing OPG were analyzed using
multiple logistic regression, and adjusted ORs were also reported
with 95% CI. P-values < 0.05 were considered statistically
significant.

RESULTS

Distribution of Mutation Types and
Mutation-Containing Regions in Patients
The number of patients with frameshift mutation, nonsense
mutation, splice site mutation, missense mutation, inframe
mutation, large deletion, whole-gene deletion, and atypical
splicing mutation was 33 (33%), 31 (31%), 17 (17%), 13 (13%),
2 (2%), 3 (3%), 1 (1%), and 0, respectively, in the OPG
group and 38 (33.04%), 34 (29.57%), 23 (20%), 14 (12.17%), 2
(1.74%), 0, 3 (2.61%), and 1 (0.87%), respectively, in the Non-
OPG group. The distribution of mutation types did not differ
significantly between the two groups (P = 0.696, Figure 1A). The
distribution of mutation-containing regions for the two groups is
shown in Figure 1B, and details are presented in Supplementary
Table S1.

Mutation Clustering in the 5′ Tertile
Occurs in Both OPG and Non-OPG
Groups
Having assembled a large sample using strict inclusion criteria,
we verified whether mutation clustering conformed to that in
previous studies by comparing the number of patients from
both groups, whose mutations were located in different tertiles
(Sharif et al., 2011; Bolcekova et al., 2013; Hutter et al., 2016).
Mutation clustering in the 5′ tertile was observed in both the
OPG group and Non-OPG group, but the difference between
them was not statistically significant (P = 0.131, Figure 2A). The
total number of patients from both groups, presenting mutations
located in the 5′ tertile, middle tertile, or 3′ tertile was 101
(47.87%, 95% CI = 41.07–54.66%), 73 (34.60%, 95% CI = 28.13–
41.67%), and 37 (17.53%, 95% CI = 12.36–22.71%), respectively
(Figure 2B). Thus, mutation clustering in the 5′ tertile was
characteristic of all patients and not only of those in the OPG
group.

Patients With Mutations in the CSRD Are
at Higher Risk of Developing OPG, Those
in the HLR Are at Lower Risk
A protein domain is defined as the functional region of a protein;
accordingly, mutations affecting protein domain regions can
directly disrupt the function of a protein (Welti et al., 2011).
We analyzed all common domain regions of NF1 to evaluate
the OPG risk of mutations in these regions (Table 1). Patients
with mutations in the CSRD correlated with a higher risk of
developing OPG than patients with mutations in other regions
(P = 0.019, adjusted OR = 2.587, 95% CI = 1.167–5.736). Patients
with mutations in Sec14-PH displayed a tendency toward a
higher risk of developing OPG than patients with mutations in
other regions; however, this trend was not statistically significant
(P = 0.057, adjusted OR = 3.712, 95% CI = 0.961–14.332).
Instead, patients with mutations in the HLR had a lower risk of
developing OPG than patients with mutations in other regions
(P = 0.036, adjusted OR = 0.396, 95% CI = 0.166–0.942). The
remaining gene regions did not reveal any significantly different
mutation distributions between the two groups. Thus, the risk
of developing OPG in patients with neurofibromatosis type I
correlated with mutations in the CSRD and HLR.

Distribution of Mutation Types in the
CSRD and HLR
As different mutation types exert a different effect on protein
structure and function (Richards et al., 2015), we analyzed the
distribution of mutation types in gene regions where disruptions
would lead to high or low risk of developing OPG (Table 2). In
spite of the higher frequency of nonsense mutations within the
CSRD in the OPG group and higher frequency of splicing site
mutations within the HLR in the Non-OPG group, no significant
differences were detected (P > 0.05). Thus, there was not enough
evidence to suggest that a certain mutation type contributed in a
predominant way to the high or low risks of developing OPG in
these two gene regions.
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FIGURE 1 | Distribution of mutation types and mutation-containing regions on the NF1 gene in patients. (A) Percentage of different mutation types in the OPG and
Non-OPG groups. (B) Bar graph showing the number of patients whose mutations were located within different exons in the OPG and Non-OPG groups. Splice site
mutation was included in the consensus exon. Whole-gene deletion is not shown in this figure. Horizontal bar with∗ indicates one OPG patient with a large deletion
of exons 30–34. Horizontal bar with∗∗ indicates one OPG patient with a large deletion of exons 31–35. A schematic diagram showing the number of exons
contained in different regions or tertiles is presented. CSRD, cysteine/serine-rich domain; TBD, tubulin-binding domain; GRD, GTPase-activating protein-related
domain; Sec14, Sec14-like domain; PH, pleckstrin homology-like domain; Sec14-PH, module combining Sec14 and PH; HLR, HEAT-like repeat regions; CTD,
C-terminal domain; NLS, nuclear localization signal region; SBR, syndecan-binding region.

FIGURE 2 | Bar graph depicting the number of patients with mutations located in different tertiles of NF1. The number of patients with mutations located in different
tertiles of NF1 in the OPG group versus Non-OPG group (A) and total patients (B). The number above each bar represents the percentage in the relevant group.

DISCUSSION

The impact of a specific gene mutation on the corresponding
protein has been shown to vary with the location of the mutation
(Hateboer et al., 2000; Tartaglia et al., 2002; Aartsma-Rus et al.,
2006; Mori-Yoshimura et al., 2012). In this study, a large cohort

of patients assembled using strict inclusion and exclusion criteria
was analyzed to evaluate the correlation between mutation-
containing regions and the risk of developing OPG. Results
indicated mutation clustering in the 5′ tertile of NF1 existed in
both the OPG group and Non-OPG group; however, our study
newly reported that patients with mutations in the CSRD and
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TABLE 1 | Mutations in different NF1 gene regions and their risk of developing OPG.

Regions OPG n (%) N = 99 Non-OPG, n (%) N = 112 #P-value ##Crude OR (95% CI) ##P-value ###Adjusted OR (95% CI) ###P-value

CSRD 23 (23.23) 11 (9.82) 0.008 2.779 (1.277–6.048) 0.010 2.587 (1.167–5.736) 0.019

TBD 3 (3.03) 8 (7.14) 0.180 0.406 (0.105–1.576) 0.193

GRD 15 (15.15) 22 (19.64) 0.392 0.731 (0.355–1.502) 0.393

Sec14-PH 9 (9.09) 3 (2.68) 0.045 3.633 (0.955–13.822) 0.058 3.712 (0.961–14.332) 0.057

HLR 8 (8.08) 25 (22.32) 0.004 0.306 (0.131–0.715) 0.006 0.396 (0.166–0.942) 0.036

CTD 8 (8.08) 9 (8.04) 0.990 1.006 (0.373–2.716) 0.990

NLS 0 0 – – –

SBR 1 (1.01) 2 (1.79) >0.999∗ 0.561 (0.05–6.285) 0.639

Others 37 (37.37) 40 (35.71) 0.803 0.931 (0.531–1.632) 0.803

Differences between the frequencies of mutation in different gene regions of NF1 in the OPG and Non-OPG groups. Patients with a whole-gene deletion were not
included. Some mutations’ location may overlap different regions as indicated in Figure 1B. ∗P-value used continuity correction, #P used chi-square test, ##P used binary
logistic regression, ###P used multinomial logistic regression. OPG, optic pathway glioma; OR, odds ratio; CI, confidence interval; CSRD, cysteine/serine-rich domain;
TBS, tubulin-binding domain; GRD, GTPase-activating protein-related domain; Sec14, Sec14-like domain; PH, pleckstrin homology-like domain; Sec14-PH, Sec14-PH
module; HLR, HEAT-like repeat region; CTD, C-terminal domain; NLS, nuclear localization signal domain; SBR, syndecan-binding region.

TABLE 2 | Distribution of mutation types in the CSRD and HLR between the OPG and Non-OPG groups.

Mutation type CSRD HLR

OPG, n (%) N = 23 Non-OPG, n (%) N = 11 OPG, n (%) N = 8 Non-OPG, n (%) N = 25

Frameshift mutation 10 (43.48) 6 (54.55) 2 (25.00) 7 (28.00)

Nonsense mutation 5 (21.74) 1 (9.09) 4 (50.00) 10 (40.00)

Splice site mutation 3 (13.04) 2 (18.18) 1 (12.50) 7 (28.00)

Missense mutation 4 (17.39) 2 (18.18) 0 1 (4.00)

Large deletion 1 (4.35) 0 0 0

Inframe mutation 0 0 1 (12.50) 0

Atypical splicing mutation 0 0 0 0

P value∗ 0.934 0.517

∗P-values used Fisher exact test. CSRD, cysteine/serine-rich domain; HLR, HEAT-like repeat region; OPG, optic pathway glioma.

HLR of NF1 exhibited a higher and lower risk, respectively, of
developing OPG than patients with mutations in other regions,
irrespective of mutation type.

Optic pathway glioma is the most common central nervous
system tumor in patients with neurofibromatosis type I. Several
studies have attempted to reveal a correlation between genotype
and phenotype in neurofibromatosis patients with OPG (Sharif
et al., 2011; Bolcekova et al., 2013; Hutter et al., 2016); however,
results have been mostly inconclusive, probably due to the
small number of participants and varying inclusion criteria.
Furthermore, inclusion criteria may have not been sufficiently
rigorous in these studies, and included lack of a radiology-based
diagnosis of OPG or the presence of Non-OPG patients younger
than 10 years. These, may have resulted in wrong classification
of patients in the OPG or Non-OPG groups, thus causing
bias in the results (Sharif et al., 2011; Bolcekova et al., 2013).
Here, we included a larger sample size using strict inclusion
and exclusion criteria. Our results demonstrated no correlation
between mutations clustering in the 5′ tertile of NF1 and the risk
of OPG, thus confirming the study by Hutter et al. (2016).

The region comprising the 5′ tertile is fairly vast and may
affect the accuracy of the results. To obtain more precise results,
we analyzed correlations between mutations either in regions
encoding protein domains or other regions of NF1 and the

OPG phenotype. CSRD is a unique domain located at the
N-terminus of neurofibromin and its function is not entirely
clear. CSRD, with its three cysteine pairs (residues 622/632,
673/680, and 714/721), could be phosphorylated by cAMP-
dependent protein kinase A (PKA) and protein kinase C (PKC)
(Marchuk et al., 1991; Fahsold et al., 2000; Mangoura et al., 2006).
PKC-dependent phosphorylation of the CSRD could enhance
the biological effect of neurofibromin through interactions with
the actin cytoskeleton and the allosteric effect on its Ras-GAP
domain (GRD), which could reduce Ras activity and suppress
tumorigenesis (Mangoura et al., 2006). Mutations affecting the
CSRD might limit the biological effect of neurofibromin, possibly
explaining why mutations in the CSRD were associated with a
higher risk of developing OPG. Phosphorylation of the CSRD
regulates GRD activity, but mutations in the latter did not
increase the risk of developing OPG to the same extent as did
mutations in the former. This observation is hard to reconcile at
present, but suggests that heterozygous mutations in the CSRD
might be more harmful than heterozygous mutations in the
GRD in the tumorigenesis of OPG, which should be investigated
further.

Sec14-PH was reported as a bipartite module of
neurofibromin responsible for binding to cellular phospholipids
and possibly the membrane localization of neurofibromin
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(Welti et al., 2007, 2008). Our results showed a tendency toward
a higher risk of developing OPG in patients with mutations in
the Sec14-PH; however, this trend was not statistically significant
and might require verification in a larger cohort. Besides regions
whose disruption conferred a higher risk of OPG, mutations in
the HLR appeared to associate with a lower risk of developing
OPG compared with mutations in other regions. HLR is a
newly discovered structure, responsible for interactions between
proteins and different molecules in a variety of proteins (Kajava
et al., 2004; Jeong et al., 2013; Hadpech et al., 2017). The structure
of the HLR is highly similar to that of HEAT repeats with
repetitive arrays of short amphiphilic α-helices, and it exists in
a wide variety of eukaryotic proteins, allowing them to adapt
to both hydrophilic and hydrophobic environments (Yoshimura
and Hirano, 2016). Until now, little has been known about the
molecular function of the HLR in neurofibromin. Our results
indicate that, contrary to the CSRD, mutations in this region
were associated with a lower risk of OPG than mutations in other
regions. This finding suggests that the HLR might perform a
negative feedback function on neurofibromin in astrocytes. We
believe that this hypothesis warrants further consideration in
future experiments. It should be noted that the risk associated
with mutations in the CSRD and HLR of NF1 can also be
observed in participants examined in previous studies focusing
on correlation between mutations in the 5′ tertile and OPG
phenotype (Supplementary Table S2) (Bolcekova et al., 2013;
Hutter et al., 2016).

Although different mutation types exert different effects on
protein structure and function (Richards et al., 2015), we failed
to observe any significant correlation between mutation type
and OPG phenotype in mutations located in the CSRD or
HLR. However, any tendency toward a correlation observed for
some mutation types, requires verification with a larger sample,
because subdivision per mutation type created groups of too
small a size.

In the present study, we successfully decreased the bias
resulting from diagnosis by tightening the inclusion and
exclusion criteria. Nevertheless, some level of bias resulted from
the different procedures and techniques used to quantify the
pathogenic mutation. Even though more than half the patients
were examined using Sanger sequencing, often regarded as gold
standard for molecular diagnostics (Rehm, 2013), possible bias
resulting from the different methods and procedures should be
kept in mind. The other limitations of this study include: (1)
no consideration of racial difference as a possible variable for
broadening sample size; (2) lack of a clear correlation between
the risk of developing OPG and other mutations not located in
the CSRD or HLR, but which also affected the function of these
regions.

CONCLUSION

The present study newly revealed that neurofibromatosis type I
patients with mutations located in the CSRD and HLR of the NF1
gene had a higher and lower risk than patients with mutations
in other regions, respectively, of developing OPG. Thus in clinic,
we should pay more attention to patients with mutations in
CSRD to evaluate the development of OPG. This study suggests
that a precise strategy is important in the analysis of genotype–
phenotype correlations of NF1 and provides novel insights into
the molecular functions of neurofibromin.
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