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Ewing sarcoma (EwS) is a highly malignant bone and soft tissue tumor primarily affecting

children and young adults. While most patients initially respond well to conventional

front-line therapy, frequent metastasis results in poor 5-year overall survival rates for this

disease. Accordingly, there is a critical need to develop better models to understand

EwS metastasis. We and others previously used the ex vivo pulmonary metastasis

assay (PuMA) to study lung metastasis in solid tumors including osteosarcoma (OS),

but this technique has to date not been achievable for EwS. PuMA involves tail vein

injection of fluorescent tumor cells into NOD-SCID mice, followed by their visualization

in long-term cultures of tumor-bearing lung explants. Here we demonstrate successful

implementation of PuMA for EwS cells using NOD-SCID-IL2 receptor gamma null (NSG)

immunocompromised mice, which demonstrated high engraftment of EwS cell lines

compared to NOD-SCID mice. This may be linked to immune permissiveness required

by EwS cells, as increased basal cytotoxicity of EwS cells was observed in NOD-SCID

compared to NSG lung sections, possibly due to the absence of natural killer (NK) cell

activity in the latter. Together, our data demonstrate the utility of NSG mice for PuMA

modeling of EwS lung metastasis.
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INTRODUCTION

EwS is characterized in the majority of cases by the expression of EWSR1-FLI1 or EWSR1-ERG
fusion proteins (1, 2). These oncoproteins function as chimeric transcription factors to regulate a
broad range of candidate genes, leading to characteristic signatures of expression for these tumors
(3–5). EwS tumors are highly metastatic, with dissemination occurring most commonly to lungs,
bones, or bone marrow, with 20% of patients presenting with circulating EwS tumor cells at
diagnosis (6). The 5-year overall survival of patients with metastasis at diagnosis or with recurrent
disease remains dismal (7), highlighting the pressing need for extensive study into the mechanisms
regulating EwS metastasis toward potential development of preventative therapeutic treatments.
To facilitate the rapid progression of research into EwSmetastasis, the development of cutting-edge
methods that enable robust examination of in vivo tumorigenic behavior is essential.
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The PuMA system has been used over the past 10 years to
study tumor cell lung colonization, particularly OS (8–10). In
PuMA experiments, green fluorescent protein (GFP), or other
fluorescently-labeled tumor cells are injected via the tail vein into
NOD-SCIDmice. Growth of tumor cells is then monitored using
fluorescence microscopy of lung sections that are cultured as ex
vivo explants for several weeks. As such, PuMA recapitulates the
arrest of tumor cells in the lung, and furthermore, allows for
the direct quantification of metastatic cell growth in living lung
tissues. Another major advantage over conventional metastasis
models is that these studies can be performed without the
need for whole animal studies, allowing for short-term temporal
comparison of anti-metastatic effects of given interventions (e.g.,
candidate gene knockdown or specific drug treatments) in a 3D
microenvironment (11–13).

The PuMA system has conventionally used the NOD-SCID
immunocompromised mouse as the basis for ex vivo lung
colonization studies (8–10). The NOD-scid IL2rγnull (NSG)
mouse is a variant of NOD-SCID mice and was generated by
introducing an X-linked IL2 receptor common gamma chain
mutation to the NOD/Lt strain background carrying the SCID
mutation (14). The interleukin 2 receptor gamma (IL2RG) gene
produces the common gamma chain subunit, which serves as
the signaling subunit for multiple cytokines (15). NOD-SCID
and NSG mouse models share T and B cell depletion, loss of
C5 complement, and impaired innate immunity (16). However,
due to the absence of functional receptors for IL-2 and other
cytokines, NSG mice are also deficient in NK cells (14). The NSG
model has successfully been used to studymetastasis of numerous
different cancer types (16–18).

Despite the demonstrated utility of this experimental
approach to the study of metastatic disease in OS, EwS cell
lines have historically failed to grow in PuMA. In the present
study, we set out to determine if alternative culture methods
and a different mouse strain, namely NSG, would provide a lung
microenvironment that is permissive for studying EwSmetastatic
growth in an adapted PuMA model. Our results demonstrate
that PneumaCultTM-ALI (PCmedium) supports EwS cell survival
and the maintenance of proper lung architecture in ex vivo
cultures, in contrast to the B medium formulation used for
conventional PuMA studies. In addition, we observe that in
contrast to standard NOD-SCID mice, NSG mice are necessary
for propagating EwS cells in the PuMA system. From these results
we observe that enhanced immune permissiveness in NSG mice
lacking NK cell activity may facilitate growth of EwS cells in the
PuMAmodel compared to NOD-SCIDmice, which have residual
NK cells. Together, the results of this work demonstrate the
novel adaptation of PuMA toward facilitating the critical study
of metastatic disease in EwS.

MATERIALS AND METHODS

Cell Lines and Reagents
The NK92 cell line was kindly provided by Dr. DixieMager. A673
and TC32 cells were purchased from ATCC and the plasmid for
tdTomato stable expression was provided by Dr. John Ronald
(Western University, Canada). eGFP-expressing MG63.3 cells

were established by Ren et al. (9) and provided by Dr. Rosandra
Kaplan (Pediatric Oncology Branch, National Cancer Institute).
All cell lines were tested for mycoplasma on a regular basis using
the LookOut Mycoplasma Detection Kit (Sigma).

PuMA
Studies were conducted under the UBC animal care certificate
#A19-0143. PuMA assays were performed as described
previously (8), with several modifications. Specifically, 1 ×

106 viable A673 or TC32 (tdTomato+) cells were injected via
tail-veins into either NOD-SCID or NSG 5–8 week-old female
mice. Within 15–20min of injection, mice were euthanized
according to institutional animal care guidelines. A 1.2% agarose
solution diluted 1:1 (v/v) in PneumaCultTM-ALI (PC) basal
media (STEMCELL technologies #05002) with 10x supplement
(#05003) culture medium at 37◦C was used to insufflate the lung
via cannulation of the trachea with a Surflo Teflon IV Catheter
20G × 1.25” (Terumo Medical Canada Inc.). Lungs were then
removed and placed in an ice-cold solution of PBS containing
100 U/mL penicillin and 100µg/mL streptomycin and incubated
at 4◦C for 20-min. Transverse sections (1–2mm in thickness)
were made from each lobe and placed on a single 1.5 × 0.7-cm
sterile Gelfoam (Pfizer) section pre-incubated overnight in a
6-well-plate with PC medium. For continuous culture, lung
sections were incubated at 37◦C in a humidified environment
with 5% CO2. Every 48 h, culture medium was replaced with
fresh PC.

Renal Subcapsular Implantation Model
Studies were conducted under the UBC animal care certificate
#A19-0143. In brief, as described byMendoza-Naranjo et al. (19),
xenograft cell blocks for implantation were prepared using 1 ×

106 viable TC32 EwS cells (tdTomato+) and implanted under
the renal capsules of 6–8 week-old NSG immunocompromised
male mice from the Animal Resource Center in the BC Cancer
Research Center (n = 4). Animals were maintained according
to UBC Animal Care Committee (ACC) regulations. Five weeks
post-inoculation, mice were euthanized and lungs were collected
for analysis.

Histology/Immunohistochemistry
Paraffin-embedded lung sections were sectioned and processed
for standard H&E’s or immunohistochemistry (IHC)
using antibodies to CD99 (Abcam #ab27271) followed by
ImmunoHistoMount (ImmunoBioscience #AR-6503-01)
staining. Immunofluorescence was performed using primary
mouse anti-CD99 antibody [HO36-1.1] (Abcam #ab212605)
and anti-Granzyme B antibody [EPR22645-206] (Abcam
#ab255598). Secondary anti-mouse Alexa 594 (Thermo Scientific
#A11005) and anti-rabbit Alexa 488 (Thermo Scientific #A11008)
antibodies were used for detection. Images were acquired using
Zeiss LSM 800 Airyscan system controlled with Zen Blue
software (version 2.6).

Fluorescent Imaging
Fluorescent images were acquired using a Colibri Observer Z1
microscope equipped with an Axiocam MRm and controlled
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FIGURE 1 | PneumaCultTM-ALI [PC] medium maintains lung architecture during ex vivo growth. (A) Percentage of viable EwS cells cultured in B- and PC-medium

relative to standard culture conditions for 96 h. Values reported represent the mean ± standard deviation (SD) of at least three independent experiments. Statistical

analysis of differences between pairs was performed using a two-way ANOVA with a Tukey’s post-hoc test (*p < 0.01). (B) H&E sections of NOD-SCID and NSG

mouse lungs showing integrity of lung structures after 7 and 14 days. (C) Immunohistochemistry showing CD99 immunoreactive A673 and (D) TC32 cells in

NOD-SCID and NSG mice lung slices at 0, 7, and 14 days post-injection. Three animals were included per group (n = 3) and a minimum of 10 lung tissue sections

were analyzed per animal. Scale bars = 100µm.

using Zen Blue Software (version 3.1). Areas of fluorescence as
a measure of metastatic burden were calculated using ImageJ and
expressed as means of the fluorescent area in % area of each
lung section across 10 individual sections. Fluorescent areas were
normalized to day 0 and expressed as fold-changes. The Zeiss
LSM 800 Airyscan system was used for confocal imaging using
Zen Blue software (version 2.6).

In vitro NK Cytotoxicity Assay
NK92 cell viability was determined by Trypan blue (Sigma-
Aldrich) and maintained at 91–93% across experiments. NK92
effector cells were added 24 h after A673, TC32, or MG63.3
target cell seeding at the indicated effector to target (E:T) ratios.
After 24 h in co-culture, target cells were fixed and stained with
crystal violet. Absorbance was quantified using SpectraMax i3
plate reader (Molecular Devices).

RESULTS

While current in vivo xenograft models of EwS are effective
for analyzing primary tumor growth, they often fail to allow
assessment of metastatic disease before experimental endpoints
are reached. The PuMA method facilitates the quantification
and characterization of metastatic lesions in lung tissues over 14

days or more in a pathophysiologic setting, where interactions
with lung epithelial cells and stromal elements are retained (8–
10). PuMA has historically used NOD-SCID mice and so-called
B medium for culturing lung explants, but we have observed
these conditions to be incompatible with EwS cell growth in
the PuMA model. We wondered whether this might be due to
toxicity of EwS cells when cultured in B media, or the use of
NOD-SCID mouse that have residual NK cell activity. We first
compared EwS cell viability in B medium vs. a commercially
available formulation called PneumaCultTM-ALI (PC) medium
designed for human airway epithelial cells cultured at the air-
liquid interface (20). Using crystal violet staining, we observed
that in contrast to B medium, EwS cells survived in PC medium
(Figure 1A). Culture in PC medium was also observed to
maintain pulmonary microarchitecture of both NOD-SCID and
NSG mice over 14 days of PuMA ex vivo cultivation (Figure 1B).

We next assessed the potential impact of residual NK activity
in NOD-SCID mice on EwS cell survival in PuMA. To this end,
tdTomato-labeled A673 and TC32 EwS cells were tested in PuMA
experiments that used NOD-SCID or NSGmice, both carried out
using PCmedium for subsequent lung explant cultures. To assess
lung colonization, the cell surface marker CD99 was used to
detect EwS cells by IHC (21). CD99 positive A673 and TC32 cells
were confirmed on Day 0 (Figures 1C,D), demonstrating that
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FIGURE 2 | Ex vivo growth of EwS cells is maintained in NSG mice. Fluorescence images for A673 (A) TC32 (B) and MG63.3 (C) tdTomato+ EwS cells at day 0, 7,

and 14 post-injection. Scale bars = 1mm. Fold change in the percent metastatic tumor burden of A673 (D), TC32 (E), and (F) MG63.3 cells. Three animals were

included per group (n = 3) and a minimum of 10 lung tissue sections were analyzed per animal. Results are shown as mean ± SD. Statistical assessment of

differences was determined using two-way ANOVA tests with a Tukey’s post-hoc test (*p < 0.01). (G) CD99 immunoreactive TC32 EwS cells in NSG mouse lung

slices at 5 weeks after renal subcapsular implantation of EwS cells. Three animals were included per group (n = 3) and a minimum of 10 lung tissue sections were

analyzed per animal. Scale bars = 100µm.

EwS tumor cells initially arrive in lungs in both strains (average
area in µm2 = 8 and 18 for NSG and NOD/SCID, respectively).
However, by 7 days of ex vivo lung culture, CD99 positive cells
were only observed in NSG mice (Figures 1C,D). To quantify
these findings, tdTomato fluorescence in A673 and TC32 PuMA
lung sections were imaged over the same time period. As with
CD99 staining, tdTomato-positive cells were observed in both
strains at day 0, but only in NSGmice at day 7 and 14 time points
of ex vivo growth (Figures 2A,B,D,E). Comparatively, MG63.3
OS cells were detected after 14 days in both mouse strains
(Figures 2C,F). Lung lesions and microarchitecture observed for
EwS cells in PuMA from NSG mice were comparable to in vivo
results using renal subcapsular injection (Figures 1C,D, 2G).
Together, this indicates that EwS cell lung colonization can be
assessed using the PuMA model, but that this requires the use of
PC medium and NSG mice.

To examine whether the ability of EwS cells to grow in
lung explants of NSG but not NOD-SCID mice was potentially
linked to selective NK cytotoxicity in the latter strain, we
compared expression of the cytotoxic effector, Granzyme B in

lung sections. Granzyme B is a serine protease secreted by
cytotoxic T-lymphocytes and NK cells upon binding to target
cells, leading to apoptosis of the latter (22). Immunofluorescence
of PuMA lung sections fromA673 EwS cells revealed the presence
of Granzyme B in proximity to CD99-positive cells in NOD-
SCID mice, but not NSG mice, at day 3 following tumor cell
injection (Figure 3A). To validate that residual NK cells in NOD-
SCID lungs might be sufficient to eliminate EwS but not OS cells,
the human NK cell line NK92 (effector, E) was co-cultured with
EwS or OS cells (tumor, T) at 1:1, 5:1, and 10:1 E:T ratios. After
24 h, the cytotoxic effects of the lowest E:T ratio of 1:1 in both EwS
cell lines were significantly enhanced compared to cytotoxicity of
MG63.3 cells (p= 0.01 and 0.03, respectively), although at higher
E:T ratios, OS cells were also killed (Figure 3B).

DISCUSSION

PuMA has proven to be a very useful ex vivo model to study
mechanisms of tumor cell lung colonization, particularly in OS
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FIGURE 3 | Effects of NK cells on ex vivo and in vitro EwS cell growth. (A) Granzyme B and CD99 co-staining in NOD-SCID and NSG mice at 3-days post-injection of

EwS cells. Three animals were included per group (n = 3) and a minimum of 10 lung tissue sections were analyzed per animal. (B) NK92 cytotoxic effects on EwS

compared to OS cells. Ratio-dependent cytotoxicity of NK92 cells was determined for A673, TC32, and MG63.3 cells. Bar graphs represent the mean ± SD of a

minimum of three independent experiments. Statistical analysis of differences was calculated using a Student’s t-test (*p < 0.01).

(8–10). In a recent study, Morrow et al. document changes in
enhancer usage in OS metastatic vs. primary tumor cells driven
by the lung microenvironment (12). However, for unknown

reasons the PuMA technique has to date not been applicable
for EwS cells. In this study we set out to explore possible
reasons, including whether the culture conditions and the mouse
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strains used for conventional PuMAmodeling might hinder EwS
cell survival. Our results demonstrate the successful adaptation
of the PuMA system for studying EwS lung colonization, by
substituting B medium for PC medium, and utilizing NSG mice
rather than NOD-SCID mice as the host strain.

While NOD-SCID and NSG mouse models both are
characterized by T and B cell depletion, loss of C5 complement,
and impaired innate immunity, NSG mice are also deficient
in NK cells due to the absence of functional receptors for IL-
2 and other cytokines (16). Indeed, the beneficial effects of an
anti-NK cell antibody before transplantation of human cells in
NOD-SCID mice originally led to the development of the NSG
model (23), which is associated with improved engraftment of
a number of malignant cell types (16–18). Additionally, analysis
of immune cell subsets and patient survival revealed that tumor-
infiltrating activated NK cells confer prolonged overall survival
for EwS patients (24). Previous studies also demonstrated that
EwS cells are exquisitely sensitive to NK cell-mediated killing
compared with OS and other tumor types (25–27). Our results
show Granzyme B secretion in proximity to CD99 positive cells
in NOD-SCID mice and significantly enhanced cytotoxic effects
of the lowest NK92 E:T ratio of 1:1 in EwS cells compared to
OS cells. Adoptive therapy using NK cells overexpressing the
activating receptor NKG2D decreased the number of pulmonary
metastatic nodules in an EwS NSG xenograft model (28), while
in contrast, pharmacological upregulation of NKG2D led to
functional NK cells that failed to infiltrate and reduce lung
nodules in a nude mouse OS lung metastasis model (29).
Together, these data point to NKG2D interactions with its ligands
as at least partially explaining enhanced NK cell cytotoxicity
in EwS. Accordingly, blocking NKG2D receptor considerably
reduced NK cytotoxicity to EwS cells in previous studies (25, 27).

Our results therefore suggest that the immune permissiveness
required by EwS cells may result from the lack of active
NK cells in NSG mice and additional immune features

that should be explored further. Adapting PuMA to NSG
mice therefore provides a robust model to study EwS lung
metastasis, facilitating the search for novel therapeutically
approaches to reduce the burden of metastatic disease
in EwS.
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