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Abstract
Background: Quantifying the amount of standing genetic variation in fitness represents an
empirical challenge. Unfortunately, the shortage of detailed studies of the genetic architecture of
fitness has hampered progress in several domains of evolutionary biology. One such area is the
study of sexual selection. In particular, the evolution of adaptive female choice by indirect genetic
benefits relies on the presence of genetic variation for fitness. Female choice by genetic benefits fall
broadly into good genes (additive) models and compatibility (non-additive) models where the
strength of selection is dictated by the genetic architecture of fitness. To characterize the genetic
architecture of fitness, we employed a quantitative genetic design (the diallel cross) in a population
of the seed beetle Callosobruchus maculatus, which is known to exhibit post-copulatory female
choice. From reciprocal crosses of inbred lines, we assayed egg production, egg-to-adult survival,
and lifetime offspring production of the outbred F1 daughters (F1 productivity).

Results: We used the bio model to estimate six components of genetic and environmental
variance in fitness. We found sizeable additive and non-additive genetic variance in F1 productivity,
but lower genetic variance in egg-to-adult survival, which was strongly influenced by maternal and
paternal effects.

Conclusion: Our results show that, in order to gain a relevant understanding of the genetic
architecture of fitness, measures of offspring fitness should be inclusive and should include
quantifications of offspring reproductive success. We note that our estimate of additive genetic
variance in F1 productivity (CVA = 14%) is sufficient to generate indirect selection on female choice.
However, our results also show that the major determinant of offspring fitness is the genetic
interaction between parental genomes, as indicated by large amounts of non-additive genetic
variance (dominance and/or epistasis) for F1 productivity. We discuss the processes that may
maintain additive and non-additive genetic variance for fitness and how these relate to indirect
selection for female choice.
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Background
Female choice is defined as when a trait in females
(behavioral, morphologic, physiological) biases repro-
ductive success among males towards certain male pheno-
types over others [1]. The evolution of adaptive female
mate choice relies on variation in the quality of potential
mates, and the ability of females to select sires of the high-
est quality [2]. While direct benefits of mate choice pro-
vide females with immediate benefits in the form of
resources, indirect benefits of mate choice are acquired
through enhanced genetic quality of offspring [3-7].
Female choice for high quality males may result from
either pre-copulatory mating biases [2] or post-copulatory
processes in the female reproductive tract that lead to dif-
ferential use of male gametes for fertilization [8]. Models
for the evolution of female choice based on indirect
genetic benefits are usually grouped into good genes mod-
els, where alleles with additive effects confer fitness bene-
fits, and compatibility models, where the combining
ability of specific alleles (i.e., epistasis) of the male and
female genomes determines fitness [2,9,10]. These mod-
els, thus, rely on different types of genetic variation for fit-
ness.

Female choice may result from indirect selection, by a
process known as the "good genes" process [11]. This
results from an association, by linkage disequilibrium,
between alleles that determine female preference at one
locus and those that affect viability at other loci. Theoret-
ical models have shown that such associations develop
largely as a result of additive effects of viability loci [12].
Epistasis contributes little if anything to this process, sim-
ply because recombination tends to disassociate co-
adapted alleles across viability loci [12]. Similarly, good
genes models that have considered dominance variation,
in the form of recessive deleterious mutations, show that
dominance have little if any effect on the good genes proc-
ess [13,14].

Genetic compatibility scenarios are based on females
deriving indirect genetic benefits from pairing with genet-
ically compatible males [6,9,10,15]. Here, compatibility
refers to cases where the fitness effects of an allele depend
on either its homologue (dominance and over-domi-
nance) or on a specific allele at another locus (epistasis)
and these models rely on non-additive genetic variation
across the genome [15-17]. Female choice for genetically
compatible mates, thus, do not and can not involve indi-
rect selection (see above), but would result from direct
selection among females for indirect genetic benefits. We
note that such processes are not expected to lead to the
"run-away" selection that has been suggested to result in
evolutionary exaggeration or elaboration of male traits.
Further, although good genes and compatibility models
for the evolution of female choice are distinct in theory,
they may not be mutually exclusive in the sense that addi-

tive and non-additive genetic effects are not statistically
independent [16].

For an association between female preference genes and
viability/fitness genes to develop, sufficient levels of addi-
tive genetic variation for fitness must be present in the
population. The classical interpretation of Fisher's funda-
mental theorem [18] holds that additive genetic variation
for fitness is effectively depleted by directional selection
[16,19]: alleles conferring fitness advantages should
become fixed in the population while those that reduce
fitness should gradually be lost [20,21]. The evolvability
of fitness should therefore be very low in a stable environ-
ment. This general scenario has been supported by
numerous studies of heritability, collectively suggesting
that the heritability of traits closely related to fitness (e.g.
survival and fecundity) tends to be lower than that of
morphological and behavioral traits, which generally are
less closely associated with fitness [16,22-24]. However,
the narrow sense heritability (h2) of a trait represents the
ratio of additive genetic variance (VA) to the total pheno-
typic variance (VP) and the heritability of traits largely
affected by non-additive effects or environmental factors
will thus by definition be low [25-28]. Heritability esti-
mates may therefore often be inappropriate for quantify-
ing the long-term evolutionary potential of a trait (see
discussion in [21]) and they are entirely inadequate for
detecting epistatic interactions. Instead, Houle (1992)
argued that the coefficient of additive genetic variance
(CVA), where additive genetic variance is scaled by the
trait mean, is a more appropriate measure when compar-
ing the evolutionary potential of quantitative traits. When
comparing h2 and CVA across traits in Drosophila, Houle
(1992) found that CVA for fitness-related traits were actu-
ally higher than those for morphological traits (see also
[29] for a similar finding). One obvious explanation for
this is the fact that traits closely related to fitness should
be more polygenic and should thus capture genetic varia-
tion across many loci [30]. Fitness related traits also show
a high mutational input to genetic variance [31], again
presumably reflecting their polygenic nature [32]. The
same scaling can be applied to other components of
genetic variance (e.g. non-additive components [D.
Houle, pers. comm.]).

Non-additive genetic effects caused by interactions among
alleles within and between loci (i.e., dominance and
epistasis) may be important determinants of fitness
[28,33-35]. Given that quantitative fitness traits are poly-
genic, we would expect that fitness related traits would
harbor fairly high absolute levels of non-additive genetic
variation [21,26,36,37].

The general importance of indirect genetic benefits for the
evolution of female choice is still debated [11-13,38]. Fur-
ther, the relative roles of the good genes process and
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genetic compatibility scenarios remain largely unexplored
[6,11,15,17]. One way to address these questions is to
partition and quantify additive and non-additive genetic
variance for fitness, since the nature of the potential indi-
rect genetic benefits of mate choice depends critically on
the genetic architecture of fitness. While additive genetic
variance of fitness has been studied in a few populations
of birds and mammals [22,26,39,40] data on the genetic
architecture of fitness or fitness related traits are scarce
[41-44].

The purpose of this study was to investigate the genetic
architecture of fitness, with the specific goal of estimating
additive and non-additive (composite of dominance and
epistasis) genetic variance components. This was achieved
by employing a quantitative genetic design, the diallel
cross [34,35,45], that allows additive and non-additive
genetic variance components to be estimated using the
bio model [41,45-49]. As a model system, we used the
seed beetle Callosobruchus maculatus (Coleoptera, Bruchi-
dae). This species is moderately polyandrous and is
known to exhibit post-copulatory female choice [50-54].
The species is also well suited for establishing the
homozygous discrete genotypes necessary for conducting
the reciprocal cross [34]. We first created inbred lines,
with an estimated inbreeding coefficient of 0.89, from a
large and outbred population. In reciprocal crosses of
these genotypes, we then assayed egg production, egg-to-
adult survival and lifetime offspring production of the F1
daughters. Hence, we obtained integrative measures of
offspring quality that reflect the net effect of the parental
genetic contribution to offspring fitness. Such data are
scarce but vital for understanding the potential fitness
consequences of mate choice [7,55].

Methods
Our study animal was a laboratory population of C. mac-
ulatus (F.) (Coleoptera: Bruchidae), obtained from C.W.
Fox, University of Kentucky, Lexington. This population
originated from infested mung beans (Vigna radiata) col-
lected in Tirunelveli, India in 1979 [56], and has been
maintained in the laboratory for more than 100 genera-
tions at population sizes > 1500 individuals. Hence, this
population is unlikely to have gone through a bottleneck
that would have depleted the genetic variation [56,57]
(see also [58]). In addition, this C. maculatus population
was well suited because females eliminate competition
among progeny within host beans by laying only one egg
on each bean [56,57,59].

Young C. maculatus larva bores into the bean where it
completes development, emerging as an adult after 24–26
days at a temperature of 25°C. We kept beetles on organ-
ically grown Mung beans in incubators at 25°C and a rel-
ative humidity of approx. 60%. Virgin beetles for our

experiments were obtained by isolating individual beans
containing single larvae/pupae prior to eclosure. Inbred
lines were founded in December 2004, in the following
manner. Virgin females (N = 215) were mated with one
male each and then placed individually in vials (30 ml)
containing more than 100 Mung beans for oviposition.
Prior to eclosure, beans containing single larvae were iso-
lated and a single virgin female was mated once to a full
sib brother and then confined individually in a container
(30 ml) with an excess of Mung beans for oviposition.
This procedure was repeated for 10 generations. The esti-
mated inbreeding coefficient after 10 generations of full
sib matings is F = 0.89.

Within each line and each generation, the above proce-
dure was performed in parallel using two females each
mated to one full sib brother to reduce the risk of stochas-
tic reproductive failure and hence reduce the rate of line
loss. Nonetheless, approximately 60% of the lines were
lost during the inbreeding process. This line loss repre-
sents a source of selection that could potentially bias the
estimates of genetic variation. The likely effect would be to
deflate genetic variance estimates, which would render
our variance estimates conservative. To increase the vari-
ance estimates, the selection process would have had to
cause selective extinction of lines with intermediate breed-
ing values, leaving lines with high and low values, which
seems unlikely.

The diallel reciprocal cross
From a set of 19 lines we employed a full diallel design
with reciprocal crosses [34,45]. From each line, we iso-
lated virgin males and females and then paired females
from each line with males from each of the 19 lines. Each
focal pair was placed in a vial with excess beans as
described above. Preliminary observations suggested that
virgin females accepted the first mating regardless of male
genotype, hence, we assume here that all pairs would
mate. In total, we performed 361 line crosses (342
between-line crosses and 19 within-line crosses).
Between-line crosses were each replicated three (in some
cases four) times (N = 3(4) focal pairs per cross) and
within-line crosses were replicated four times (N = 4 focal
pairs per cross). From each focal pair, we recorded the fol-
lowing four variables: (1) the total number of eggs pro-
duced (lifetime egg production); (2) the total number of
adult offspring produced (lifetime offspring production);
and (3) the egg-to-adult survival of offspring, i.e. juvenile
fitness (number of offspring produced divided by the
number of eggs laid). Total offspring production was
obtained by isolating all beans with eggs until offspring
eclosed. We then randomly selected 4–6 daughters from
each focal pair and paired each virgin daughter with a ran-
domly selected outbred male following the procedure
described above. These males came from crosses between
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inbred lines (overall from 82 inbred lines, see procedure
above), and males never originated from overlapping
parental lines as the females. With this procedure, we
yielded a measure of (4) the lifetime offspring production
of F1 daughters of each focal pair (F1 productivity). With
this design, we did not expect male genotype to contribute
significantly to genetic variance in F1 productivity. This
assumption was confirmed by statistical analyses showing
that the genotype of the F1 males explained only a very
small proportion of the variance (< 2%) in F1 productiv-
ity. Hence, male genotypic effects were therefore subse-
quently disregarded.

Unmated C. maculatus females produce some unfertilized
eggs when a suitable substrate is available, but some
females in our experiment nevertheless failed to produce
eggs. For all analyses reported below, we ran parallel mod-
els using both the full data set and a data set excluding
females with no egg/offspring production. Both types of
data yielded very similar variance component estimates.
However, because the restricted data set better conformed
to the assumption of our inferential models, we present
these results below (Table 1). Here, pairs that did not pro-
duce any eggs were coded as missing values. Egg-to-adult
survival was transformed prior to analyses using the arc-
sine square root transformation.

Variance component estimates
We estimated variance components using the bio model
of Cockerham & Weir (1977) and Lynch & Walsh (1998).
For the first three traits (excluding F1 productivity), the
model equation was

Zijk = μ + Ni + Nj+ Tij + Mj + Pi + Kij + Rk(ij). (1)

Here, Zijk = the trait value from the k'th replicate cross
between line i males and line j females, and μ = mean phe-
notypic value of the population. The other terms are
assumed to be mutually independent, normally distrib-

uted variables with mean zero, representing the following
random effects:

Ni and Nj = haploid nuclear contributions from parental
lines i and j (independent of sex).

Tij = interaction between haploid nuclear contributions.

Mj = maternal genetic and environmental effects of line j
when used as dams.

Pi = paternal genetic and environmental effects of line i
when used as sires.

Kij = interaction between maternal and paternal effects.

Rk(ij) = effect of k'th replicate cross within dam line × sire
line combination.

For F1 productivity, the model equation was:

Zijkl = μ + Ni + Nj + Tij + Mj + Pi + Kij + Rk(ij) + Wl(k(ij)).
(2)

Here, Zijkl is the productivity of the l'th female from the
k'th replicate cross, and Wl(k(ij)) is the residual (within rep-
licate cross) effect of individual l.

Estimates of the variances of the terms in equation [1] and
[2] (σ2

n, etc.; see below for interpretations) were obtained
by restricted maximum likelihood (REML) using the
MIXED procedure in SAS v. 9.1.3. (SAS Institute, 2004),
by expressing the covariance between families as linear
functions of the variances (see [46], for details). The anal-
ysis was performed on a matrix of 342 between-line
crosses, excluding all within-line crosses, as required by
the bio model [34,46]. We tested the one-sided hypothe-
ses that parameter estimates are larger than 0 with likeli-
hood ratio tests, by comparing models where a given

Table 1: Observational variance component estimates (SE) and likelihood ratio tests of the null hypothesis H0: σ2 = 0 against HA: σ2 > 
0.

Lifetime egg production Lifetime offspring production Egg-to-adult survival (arcsine sqrt) F1 productivity

Variance component Estimate (SE) P Estimate (SE) P Estimate (SE) P Estimate (SE) P

σ2
n 0 - 0 - 0.0012 (0.002) 0.12 9 (3.7) < 0.001

σ2
t 8.5 (4.6) 0.015 5.1 (4.3) 0.055 0.0046 (0.003) 0.035 6.7 (3.7) 0.015

σ2
m 12.7 (5.3) < 0.001 10.8 (4.6) < 0.001 0.003 (0.003) 0.035 4.3 (2.7) 0.004

σ2
p 12.6 (5.3) < 0.001 11.5 (4.9) < 0.001 0.0043 (0.003) 0.01 0 -

σ2
k 0.2 (6.2) 0.5 0.5 (6) 0.18 0 - 8.5 (4.7) 0.008

σ2
rep 125.7 (7.5) < 0.001 121.9 (7.2) < 0.001 0.118 (0.006) < 0.001 24.1 (4.1) < 0.001

σ2
w 116.1 (3.7) < 0.001

σ2
rep: variance among replicate crosses

σ2
w: variance among F1 females from the same replicate cross
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parameter was set to 0 with a model where all parameters
were allowed to assume non-negative values [46]. For the
analysis of F1 productivity, we included a term to separate
the variance among females within replicate crosses from
the variance among replicate crosses. This was done by
adding the statement "RANDOM REPCROSS
(SIRE*DAM);" to the PROC MIXED commands, where
"SIRE" and "DAM" refer to the line of the sire and dam,
and "REPCROSS" is a class variable. For the other traits
there was only one measurement per replicate cross,
hence the replicate cross variation is not distinguishable
from the residual variation.

The "observational" variance components (denoted by
sigma's) have the following interpretations in terms of
"causal" components (denoted by V's):

1) σ2
n: nuclear additive variance. Assuming that our lines

represent a random sample from the base population, and
that we have estimated F correctly (F from pedigrees does
not always reflect the actual F, due to selection for hetero-
zygosity that can occur during the inbreeding process), σ2

n
= 1/2 FVA + 1/4 F2VAA, where VA and VAA are the additive
genetic and additive by additive epistatic variances,
respectively, in the base population, and higher order
epistasis is ignored for simplicity ([16], equation 15.8). If
VAA is assumed to be small, then VA can be estimated as
2σ2

n/F.

2) σ2
t: nuclear interaction variance. Under the same

assumptions as above, σ2
t = 1/2 F2VAA + F2VD + F3VAD +

F4VDD, where VAD and VDD are the additive by dominance
and dominance by dominance epistatic variances, respec-
tively. Assuming the epistatic terms are small, the domi-
nance variance VD can be estimated as σ2

t/F2.

3) σ2
m: maternal effect variance Vm, including both mater-

nal genotype and common-environment effects, as well as
possible interactions or co-variances between maternal
nuclear and maternal extra-nuclear effects.

4) σ2
p: paternal effect variance Vp, including both paternal

genotype and common-environment effects, as well as
possible interactions or co-variances between paternal
nuclear and paternal extra-nuclear effects.

5) σ2
k: interaction variance of paternal and maternal

effects, and of nuclear and extra-nuclear effects (e.g. cyto-
nuclear), Vk.

6) σ2
rep : variance among replicate crosses within line com-

binations.

7) σ2
w: (for F1 productivity only) variance among females

within replicate crosses.

Note that neither σ2
rep or σ2

w (or their sum) can be
equated with the environmental variance VE, because
unless the parental lines are fully inbred (F = 1), both σ2

rep
and σ2

w will have genetic as well as environmental contri-
butions. To estimate VE, we subtracted the other causal
components of variance from the total phenotypic vari-
ance (Vtot):VE = Vtot - VA - VD - VM - VP - VK. Vtot was estimated
as the sum of all the observational components of vari-
ance, taking σ2

n twice (because N appears twice in the
model equation).

Coefficients of genetic variation (CV) for each parameter
estimate were calculated using the additive genetic coeffi-

cient of variation, [21] where  is the

phenotypic trait mean. Coefficients of genetic variation
allow comparisons of the sources of phenotypic variation
across different traits.

Results
The partitioning of phenotypic variance into observa-
tional genetic variance estimates is given in Table 1. In the
initial diallel cross, variance in lifetime egg production
came from highly significant contributions of σ2

m and σ2
p,

representing line-specific maternal and paternal effects,
respectively. The strong maternal effect is not surprising,
because this term includes the effect of the female's own
(inbred) genotype on her egg production. The maternal
effect term could also include a contribution of common
environment effects shared by different females from the
same line. The highly significant paternal effect on egg
production, which is of the same magnitude as the mater-
nal effect, is more surprising. This indicates that the geno-
type of the inbred line males, or the environment shared
by different males from the same line, strongly affected
egg production by their mates. In contrast, there was no
evidence for nuclear additive effects (σ2

n) on egg produc-
tion, and nuclear non-additive effects (σ2

t), while signifi-
cant, were smaller than the paternal and maternal effects.
These results are not surprising, because we would not
expect that the genotype of a female's eggs would have
much if any direct influence on the number of eggs she
produces. Finally, there was no evidence for non-recipro-
cal interaction effects (σ2

k) on egg production. Variance
components and significance levels for lifetime offspring
production were similar to those for lifetime egg produc-
tion (Table 1), reflecting the overall high survival in these
crosses (about 80%).

The proportion surviving in the initial crosses showed no
evidence for nuclear additive or non-reciprocal interac-
tion effects, marginally significant nuclear dominance and
maternal effects, and a significant paternal effect (Table
1). The latter result indicates that some property of male
line influenced egg survival, independently of the males'

CV VA A= 100 / X X
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genetic contribution to the eggs (the latter would be
reflected in σ2

n and/or σ2
t).

Up to six F1 females from each initial cross were mated to
randomly selected outbred males, and their productivity
measured. We treat productivity of these females as a trait
of the females themselves, rather than of the cross, as this
allows us to investigate the co-expression of female dam
and sire genotypes. This approach is justified by the fact
that male genotype explained only a small fraction of the
productivity variation (see Methods). We found highly
significant nuclear additive variance (σ2

n) for F1 produc-
tivity, and marginally significant nuclear non-additive
variance (σ2

t). While σ2
m also contributed significantly to

F1 productivity (possibly reflecting cytoplasmic effects),
σ2

p did not. In contrast to the results from the first cross,
the non-reciprocal compatibility variance σ2

k also contrib-
uted significantly to the variance in F1 productivity.
Finally, there was a highly significant effect of initial rep-
licate cross (σ2

rep), meaning that full-sibs resembled each
other in productivity more than non-full sibs from the
same cross combination (line i female × line j male). This
likely largely reflects common environment effects,
although because the lines were not completely inbred,
some genetic divergence between replicate full-sibships
may have contributed as well.

Estimates for causal variance components and coefficients
of genetic variation are listed in Table 2. The estimates are
given mainly for heuristic purposes. They assume that epi-
static variance is absent; if present, epistasis would con-
tribute mostly to the estimate for dominance variance,
and slightly to the additive variance. The sources of
genetic variance in fitness were strikingly different when
estimated in different life-history stages. Overall, variance
in parental productivity and egg-to-adult survival was
dominated by maternal and paternal effects. In contrast,
variance in F1 productivity was affected by sizeable com-
ponents of both additive and non-additive genetic varia-
tion as well as by sex-specific interactions between the
maternal and paternal genomes. The generally strong
interaction effects are illustrated in Figure 1.

As expected, we did not detect any differences in lifetime
egg production when comparing within- and between-
line crosses. In contrast, we found strong evidence for het-
erosis (Table 3) for variables where the maternal and
paternal genomes were co-expressed. Heterosis clearly
affected juvenile performance, as reflected in both egg-to-
adult survival as well as F1 productivity. We note that the
latter effect, where full co-expression is expected, was
stronger than the former (Table 3).

Discussion
Our analyses revealed sizeable additive and non-additive
components of genetic variation for our most comprehen-
sive fitness variable (F1 productivity) in C. maculatus, illus-
trating that the diallel cross offers a useful empirical route
to provide insights into rather complex aspects of the
genetic architecture of fitness. In addition, we found large
paternal and maternal effects indicative of direct effects on
egg production. We also document striking differences in
the genetic architecture of fitness traits measured in differ-
ent life history stages: while egg-to adult survival was sig-
nificantly affected by paternal effects, we found
considerable additive and non-additive genetic variation
for F1 productivity. This stresses the importance of obtain-
ing comprehensive measures of fitness when assessing the
potential for indirect genetic benefits. Below we discuss
these findings in more detail, and use our results to dis-
cuss potential processes that may contribute to genetic
variance in fitness. Finally, we ask what the implications
are of our results in terms of the evolution of female
choice by indirect selection.

In general, we found fairly high levels of both additive and
non-additive genetic variance in F1 productivity. Our esti-
mate of additive genetic variance for F1 productivity was
14% expressed as the coefficient of additive genetic varia-
tion CVA, which lies within the range of CVA of lifetime fit-
ness reported from natural populations of other species
(6–44% for females) [40,60,61]. This amount of genetic
variation should in theory be sufficient to derive additive
genetic benefits of mate choice [62] (see below). One
potential concern is that our estimates may be affected by
selection when creating distinct genotypes through

Table 2: Estimates of raw and scaled variances and coefficients of genetic variation (CV %; see Houle 1992).

Lifetime egg production Lifetime offspring production Egg-to-adult survival (arcsine sqrt) F1 productivity

Variance Esti-mate % CV Esti-mate % CV Esti-mate % CV Esti-mate % CV

VA 0 0 0 0 0 0 0.0028 2.12 4.60 20.32 11.44 14.16
VD 10.67 6.69 14.17 6.50 4.33 12.81 0.0058 4.37 6.60 8.45 4.75 9.13
VM 12.73 7.98 15.48 10.80 7.20 16.51 0.0030 2.24 4.72 4.26 2.40 6.48
VP 12.59 7.89 15.39 11.54 7.70 17.07 0.0043 3.26 5.70 0 0 0
VK 0.17 0.10 1.77 0.51 0.34 3.58 0 0 0 8.48 4.77 9.15
VE 123.45 77.35 48.20 120.58 80.42 55.17 0.1167 88.01 29.62 136.16 76.64 36.66
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Mean (a) lifetime offspring production and (b) mean F1 daughter lifetime offspring production for all combinations of female (abscissa) and male (solid lines) genotypes (within-line crosses excluded)Figure 1
Mean (a) lifetime offspring production and (b) mean F1 daughter lifetime offspring production for all combina-
tions of female (abscissa) and male (solid lines) genotypes (within-line crosses excluded). Note the extensive 
amount of interactions between genotypes.

Female genotype

A B C D E F G H I J K L M N O P Q R S

M
ea

n 
lif

et
im

e 
of

fs
pr

in
g 

pr
od

uc
tio

n

0

10

20

30

40

50

(a)

Female genotype

A B C D E F G H I J K L M N O P Q R S

M
ea

n 
F

1 
lif

et
im

e 
of

fs
pr

in
g 

pr
od

uc
tio

n

0

10

20

30

40

50

(b)



BMC Evolutionary Biology 2008, 8:295 http://www.biomedcentral.com/1471-2148/8/295
inbreeding, possibly due to the purging of genes with
non-additive effects (e.g., recessive lethals). Unless the
removal of alleles with non-additive effects caused selec-
tive extinction of genotypes with intermediate breeding
values, which seems unlikely, this process would tend to
decrease estimates of additive genetic variation [63]. Thus,
selection during the inbreeding process is unlikely to
alone explain the sizeable amount of additive genetic var-
iation for fitness found here (see Methods). Because the
continual input from mutations seems unlikely to
account for the presence of levels of additive genetic vari-
ation for fitness as high as those documented here [31],
our study suggests that sources other than mutation con-
tribute to additive genetic variation.

Previous studies employing reciprocal crosses/the bio
model have dealt with life history traits of the parental
lines (e.g. fecundity) or of the offspring, typically in the
juvenile stage [41-44,64,65]. Most of these studies report
low or moderate levels of additive genetic variation for
traits related to parental fitness, but these results are not
directly comparable to those reported here. This is
because, as shown here, the genetic architecture of fitness
may vary across life history traits, and it is imperative to
include offspring reproductive success in any inclusive
measure of fitness [66-68].

We found significant non-additive variance, σ2
t suggesting

that reciprocal epistatic interactions between nuclear
genes and/or dominance significantly affect fitness in our
population. There was also a sizeable effect of more com-
plex and sexually non-reciprocal genetic interactions (σ2

k)
in F1 productivity. Sexually non-reciprocal epistasis may
reflect cyto-nuclear genetic interactions, which has been
shown to affect fitness related traits in both C. maculatus
[69,70] and other insects [71,72]. Sexually non-reciprocal
interaction could also arise as a result of Wolbachia infec-
tions [73,74], but we note that Wolbachia infections has
been sought for but never found in C. maculatus [75].

Parental effects
Both variance in parental environmental effects and
nuclear genetic variation among parents will contribute to
parental effects. In our case, however, we suggest that

parental effects are largely due to genetic variation,
because rearing conditions were highly standardized and
thus uniform across lines. Parental effects were large for
lifetime egg and offspring production but lower for egg-
to-adult survival and F1 productivity (Table 1). The
former measure primarily reflects variance in fertility
across lines, while the latter measure will be affected by
the co-expression of the two parental haploid genomes.
We note here that sire families that gave rise to high egg
production by their mates also gave rise to higher survival
of the offspring (unpublished data), suggesting that some
property of the male ejaculate (see below) influenced
both egg production and survival of the eggs. These facts
underscore the point that studies of the genetic architec-
ture of fitness should focus on comprehensive measures
of offspring adult performance.

Sizeable maternal effects, both genetic and environmen-
tal, are well documented in C. maculatus [76-78]. Further-
more, paternal effects are also pronounced in this taxa,
mediated by seminal fluids in the large ejaculate (approx-
imately 8% of male body weight) [79], and our results
reflect this fact. Nutrients in the male ejaculate have been
shown to be incorporated into reproductive and somatic
tissue in female Bruchid beetles [80] and females that
receive larger ejaculates show elevated egg production
[79,81,82]. There is growing evidence that ejaculate vol-
ume shows additive genetic variation and it is often posi-
tively correlated with body size or male condition in
insects [51,79,83,84]. For example, nutrient investment
and spermatophore size in the butterfly Pieris napi is her-
itable, and male genotype influence female fecundity and
longevity [85]. This suggests that females, by mating with
males with large ejaculates, will derive direct fecundity
and survival benefits as well as indirect genetic benefits.
Such indirect benefits may, however, be negated by sexu-
ally antagonistic genes (discussed below).

Implications for indirect sexual selection
The presence of additive genetic variance provides the raw
material for indirect selection by the good genes process
[2,3,14,17]. The amount of standing additive genetic var-
iation for fitness present in our population should in prin-
ciple be sufficient to generate indirect selection on female

Table 3: Comparisons of fitness components in within- and between-line crosses (excluding crosses where no eggs where produced).

Trait Within-line Between-line F – tests of equality of means

Lifetime egg production 23.73 (1.53) 23.05 (0.4) F1,946 = 0.17, P = 0.67
Lifetime offspring production 16.07 (1.48) 19.9 (0.4) F1,950 = 5.93, P = 0.015
Egg-to-adult survival (%) 62.01 (0.03) 79.75 (0.01) F1,946 = 30.97, P < 0.001

F1 productivity 16.97 (0.82) 31.82 (0.25) F1,2903 = 209, P < 0.001

Given are mean (SE) and F – tests of equality of means.
Page 8 of 11
(page number not for citation purposes)



BMC Evolutionary Biology 2008, 8:295 http://www.biomedcentral.com/1471-2148/8/295
choice [12]. Further, genetic variation for fitness in our
population was also influenced by genes with non-addi-
tive effects, and the raw material for females deriving indi-
rect benefits by mate compatibility is thus also present.
However, while non-additive genetic effects may be ubiq-
uitous [28,86], the role of these effects in driving the evo-
lution of mating biases is both debated [5,15,41,87] and
somewhat misconstrued. Models of the evolution of
female choice have shown that genes with non-additive
effects do not contribute to indirect selection on female
choice (see Introduction), so any selection on female
choice for genetic compatibility benefits must be direct. It
is also worth noting that in order for females to gain indi-
rect benefits by choosing compatible mates, females need
to assess their own genome, assess the male genome, and
predict the genetic compatibility effects on offspring fit-
ness. The latter also requires taking into account recombi-
nation, asymmetric inheritance patterns and sex-specific
effects [88]. Although this may seem highly unlikely,
female choice for compatible males may nevertheless
occur for specific loci or more restricted regions of the
genome, such as the major histocompatibility complex
(MHC) in vertebrates [89].

In general, the presence of genetic variation for fitness has
been interpreted as supporting a role for indirect genetic
benefits in the evolution of female choice [62]. However,
three points call this interpretation into question. First,
when indirect selection does occur, the efficacy of indirect
selection may nevertheless be low in the face of direct
selection [12,14]. Direct selection on female preference is
probably generally underestimated in empirical research
[90,91]. In our model system, direct selection on female
choice is likely to be strong [92,93] and thus may override
indirect selection. However, Fricke and Arnqvist (2007)
showed that sexual selection accelerated adaptation to a
novel environment in C. maculatus, suggesting a role for
indirect selection under at least some conditions. Second,
indirect selection on female choice arises as a result of
linkage disequilibrium between female choice/preference
genes and genes with additive effects that confer high fit-
ness in offspring [12]. In order for such linkage disequilib-
rium to build up, even in the presence of additive genetic
variation for fitness, females with high level of preference
must consistently choose males with a high breeding
value for fitness. Very few empirical studies have looked
for the consistency of such associations [67]. This prob-
lem is aggravated when considering direct selection for
indirect benefits in the form of mate compatibility. Here,
demonstrations of epistatic fitness variation in conjunc-
tion with male × female interactions in female choice are
insufficient: females must also be able to consistently bias
fertilization success among males towards males that carry
genes that are compatible with her own genes. Empirical

evidence for such associations are restricted to the study of
MHC in vertebrates [89] and some studies of the deleteri-
ous effects of inbreeding [94,95].

Third, perhaps the most fundamental problem in assess-
ing the potential for indirect genetic benefits in sexual
selection lies in estimating net selection on female choice
[90]. In order to measure paternal genetic contribution to
fitness it is vital to obtain proper estimates of offspring
genetic quality, preferably the total number of grandchil-
dren produced [7,60,96]. Fitness correlates such as fecun-
dity and lifetime offspring production are often reported
and assumed to correlate positively with net fitness, but
life-history theory and empirical evidence provide little
basis for expecting strong positive correlations between
individual fitness components and overall genetic quality
(i.e., breeding value for fitness) [66-68]. Further, recent
empirical research has revealed a negative, or a non-exist-
ing, genetic correlation between male and female fitness,
suggesting that potential indirect benefits might be nulli-
fied through sexually antagonistic genes [60,61,66,97,98].
This points to the necessity of measuring the breeding
value for fitness in offspring of both sexes, when assessing
the potential role of indirect benefits for the evolution of
mating biases. Such investigations are currently in
progress in C. maculatus.

Conclusion
In conclusion, we found significant standing genetic vari-
ance for fitness related traits in our study population of C.
maculatus, in sufficient amounts for females to potentially
derive indirect genetic benefits of mate choice. The genetic
architecture of fitness traits varied dramatically with the
life history stage in which fitness traits were measured.
Parental effects, in particular paternal effects, were signifi-
cant in the juvenile stage, while sizeable additive and non-
additive effects were seen in the lifetime reproductive suc-
cess of F1 daughters. Our results support the notion that
comprehensive fitness measures should include offspring
breeding value. Although our results show that there is a
potential for females to derive indirect genetic benefits
from mate choice, we note that several facts may neverthe-
less make selection for indirect genetic benefits ineffec-
tual. These include direct selection, lack of accuracy in
female choice and sexually antagonistic genetic variation.
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