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Abstract: Despite recent progress in the research of people’s emotional response to the environ-
ment, the built—rather than natural—environment’s emotional effects have not yet been thoroughly
examined. In response to this knowledge gap, we recruited 26 participants and scrutinized their
emotional response to various urban street scenes through an immersive exposure experiment using
virtual reality. We utilized new physiological monitoring technologies that enable synchronized
observation of the participants’ electroencephalography, electrodermal activity, and heart rate, as
well as their subjective indicators. With the newly introduced measurement for the global visual
patterns of the built environment, we built statistical models to examine people’s emotional re-
sponse to the physical element configuration and color composition of street scenes. We found
that more diverse and less fragmented scenes inspired positive emotional feelings. We also found
(in)consistency among the physiological and subjective indicators, indicating a potentially interesting
neural−physiological interpretation for the classic form−function dichotomy in architecture. Besides
the practical implications on promoting physical environment design, this study combined objective
physiology-monitoring technology and questionnaire-based research techniques to demonstrate a
better approach to quantify environment−emotion relationships.

Keywords: urban street; visual pattern; environmental perception; virtual reality; physiological
monitoring; subjective evaluation

1. Introduction

The inquiry on the relationship between people and the built environment reflects a
long-established intellectual tradition [1–4]. Indeed, more than 55% of people now live in
cities [5], with others visiting the city occasionally. Ever since the early-mid 20th century,
classic research has revealed that the sociological and symbolic meaning of space, as well
as people’s experience of it, would strengthen their perceptions of places [1,3]. Therefore, a
high-quality design of physical settings should conform to human sensory characteristics so
as to promote positive psychological responses [6]. Specifically, as one of the most common
forms of the built environment, urban streets gather a large number of human activities,
and their functional diversity, façade forms, and scale characteristics have impacts on
the environmental perception and behavior of the space users [7,8]. Meanwhile, with the
progress of cognitive science, scholars have increasingly realized that the human−built
environment relationship has deep psychological roots [9]. As a result, deriving from the
classic, phenomenological paradigm, which is mainly based on subjective experiences and
feelings from a macroscopic perspective, a new research paradigm has emerged in the
last decade. It focuses on places, spaces, and the individual feelings amid them, and uses
quantitative methods to explore the impact of physical settings on human perception in a
logical positivist manner. This paradigm has become the basis for the emerging school of
evidence-based design [10,11].
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In empirical environmental psychology research, scholars generally conceptualize human-
environmental perception and behavior processes with an exposure−cognition−behavior
response framework [12]. This framework enumerates three major phases, namely (1)
environmental exposure on human, such as visual stimulus or noises; (2) human cognition
of the exposure, which is mainly affected by individual differences in age, gender, social,
adaptation ability, etc.; and (3) human behavior responses, including emotional arousal,
stress relief, or appraisal to the current situation. The conceptualization stresses the im-
portance of accurate measurements of the exposure and behavior in empirical research.
Visual exposure, as the most direct sensory approach [13], has drawn particular research
attention. It has been revealed that people’s visual exposure to the built environment
affects their subjective perceptions and emotions, such as comfort, safety, vitality, and
depression [14–18]. Specifically, regarding the source of visual exposure, natural elements
have become a prominent research subject. A large number of studies in the field of
environmental psychology and landscape architecture have proven that exposure to the
natural environment can help reduce stress and promote well-being [10,19–23]. How-
ever, compared with the intensive attention on natural elements, the research progress
of environmental perception on artificially built elements appears not commensurate to
date. A few recent works revealed that some artificial elements of streetscapes, such as
the proportion of windows on the street, the proportion of active street frontage, and the
number of pieces of street furniture, have significant effects on pedestrian activity [24].
Moreover, they found that both entropy (aggregate architectural variation) and building
height of the urban streetscape could affect restoration likelihood for citizens [25]. Al-
though the natural−artificial dichotomy is a convenient technical treatment, both types
of elements usually present simultaneously in the real world and make cognitive impacts
interdependently. Thus, an integrated perspective is necessary.

Furthermore, although the research on the impacts of specific artificial environment
elements on human emotions has become essential, the “comprehensiveness” principle
of Gestalt Psychology suggests that the effects of specific elements do not replace that
from the whole environment [26]. Indeed, many long-established environmental design
principles, such as symmetry, rhythm, balance, and coordination, all concentrate on the
holistic impression of the environment. The subtleness in them cannot be reduced to
partial, element-wise measurements such as the count, area, and ratio of certain elements.
Although research on the latter, as reviewed above, has progressed to some extent, the
impact of the comprehensive visual form of the environment on human perception has not
been fully examined yet.

Under the exposure−cognition−behavior response framework, we believe the reasons
for the existence of the aforementioned research gaps lie in both exposure and behavior
response (perception evaluation) procedures. First, in the exposure procedure, on the one
hand, the traditional way of exposure assessment in lab-based experiments usually involves
photo-showing to the participants [27]. With the limited angle of view of those photos,
the exposure approach has an intrinsic limitation in terms of representing the holistic
environment. On the other hand, field-based experiments face challenges in controlling
physical environmental confounders. Meanwhile, for the auditing of the environmental
exposure, the problem is that the “comprehensive” measurements of the environment are
not as straightforward as the element-wise measurements. For example, concepts such as
“rhythm” or “balance” are difficult to measure objectively because different individuals may
understand them in quite different ways. Therefore, although accurate “comprehensive”
measurements of the environment are necessary, progress so far is still limited. Next, in
the procedure of perception evaluation, interviews and questionnaires are the traditional
methods for data collection [1,28,29]. Psychological scaling methods are commonly used for
evaluating perception [30,31]. These methods, representing the stated preference approach,
inevitably introduce respondents’ subjective interference when answering questions, and
hence have negative impacts on accurately measuring their true feelings [32].
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The recent development of new technologies has shed light on these limitations, but
also brings about new challenges. First, the introduction of virtual reality (VR) technology,
together with the panoramic images, would allow for a more realistic representation of the
environment and thus enable immersive exposure in lab-based experiments. VR-based
research has been increasingly applied to environmental perception experiments [16,18,31].
Research has revealed that compared with photos, VR exposure is closer to the physical
environment in terms of psychological and physical responses [33], and awakens partici-
pants’ emotions better [34]. However, a technical issue is that most panoramic photo-based
research has hardly considered the distortion of spherical panoramic images in the process
of environmental auditing, resulting in a bias in some vital measurements such as area sizes
and angles. Some studies used projection transformation to obtain more accurate image
auditing results, such as generating fisheye images towards the sky through projection
transformation [35]. However, there is about 50% of information loss as the part of the
image under the horizontal plane of the viewpoint is ignored. Therefore, appropriate pho-
togrammetric processing should be performed to reduce these auditing errors. Next, with
the recent development of portable physiological sensors, some human cognitive states and
feelings can be captured non-intrusively. These measurements include electroencephalog-
raphy (EEG), electrodermal activity (EDA), and heart rate (HR) [36,37]. They have been
proven to be relevant and accurate indicators for people’s emotions, and are convenient to
obtain in VR environments [38,39]. To some extent, they constitute a means to observe the
revealed preference (RP) of the respondents. Moreover, they can avoid the measurement
bias caused by differential individual behavioral patterns and have been widely used in
relevant research accordingly [30,31,37]. However, the relationship between some of these
“new” perception evaluation measurements and the “old”, self-report measurements re-
mains unclear [40]. In addition, the consistency among those “new” measurements and the
fact that existing research commonly observes only one type of the “new” measurements
have hindered the cross-validation and comparative analysis of the effects of different
types of “new” measurements, rendering the above questions yet to be answered.

In sum, despite the recent considerable progress in the field of environmental per-
ception, the mechanism of how built environment design affects our emotions has not
yet been thoroughly revealed [41]. Research gaps still exist, particularly in addressing
the following questions: (1) What are the auditing methods and techniques for the com-
prehensive examination of the built environment? (2) What is the relationship between
the “new”, non-intrusive perception evaluation measurements and the “old”, interview-
or questionnaire-based ones? (3) Is there consistency among different types of the “new”
measurements? To address these questions, this study investigates the effects of the com-
prehensive visual pattern of urban streets on human emotions. By utilizing panoramic
image-based VR techniques, we conducted lab-based cognitive experiments, where partici-
pants were exposed under controlled conditions and had an immersive experience in the
test environments. In the experiment, we simultaneously used the “traditional” interview-
and questionnaire-based method and the “new”, non-intrusive methods to obtain the
participants’ subjective and physiological responses to the exposure, respectively. We con-
ducted the “comprehensive” audition of the environment by introducing global landscape
metrics representing the spatial configuration and color composition of the scenes, as well
as an equal-area projection process that ensures the auditing results are accurately in line
with the real proportion in visual perception. We then built statistical models to analyze
the impact of the comprehensive environment features on the participants’ emotional
responses. Finally, we examined the differences among response measurements to evaluate
their consistency and discussed the possible explanation and implication from a cognitive
science perspective.
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2. Methods
2.1. Study Design

We conducted a VR-based experiment in which participants were exposed to urban
street scenes, which were collected on-site in Beijing using a dual fisheye panoramic camera
(RICOH THETA V, Ricoh Company Ltd., Tokyo, Japan) on a clear day. These scenes reflect
a variety of spatial scales (Figure 1; all scenes are available upon request). The spatial scales
of the streets can be divided into three categories: small (two lanes or less), medium (four to
six lanes), and large (six lanes or more). There were 39 selected urban street scenes in total,
which were randomly assigned to four groups, with 12 scenes in each group and some of
them repeated in different groups. All participants were randomly assigned to explore one
of the four groups during the experiment. The physiological indicators of the participants,
including EEG (Emotiv EPOC+, EMOTIV Inc., San Francisco, CA, USA), EDA, and HR (E4
wristband, Empatica Inc., Cambridge, MA, USA), were obtained by bio-monitoring sensors
in real-time, and the subjective evaluations were conducted through a question-and-answer
interview.

Figure 1. Examples of the street scene panoramic images: (a) small street scale; (b) medium street scale; (c) large street scale.

We used the convenient sampling method to enroll as many participants as possible
from May to June in 2019. By posting the brief information of this experiment online, we
recruited 30 healthy adults to participate in the experiment. Due to the malfunctioning
of the devices or poor data quality, the data of four participants were ruled out. The data
of 26 participants were accepted into the analysis phases. All qualified participants were
students from Peking University and had voluntarily signed up for the experiment. The
study complies with the Declaration of Helsinki and the ethics rules of Peking University.

2.2. Visual Patterns of the Urban Street Scenes
2.2.1. Semantic Segmentation of the Images

Auditing the environmental elements is a key step in quantifying environmental
exposure. Image analysis algorithms based on machine learning, including semantic
segmentation, emotional evaluation, scene perception, scale measurement, etc., have
been increasingly used in image-based visual auditing [15,42,43]. Among them, semantic
segmentation technology using the graph convolution algorithm can produce accurate
results on different types of images with consistent standards, and has become a frequently
used method in urban environmental research to evaluate the visual quality of urban
space [44,45]. We applied the ResNet semantic segmentation package to process the
collected images of the street scenes and used the MIT ADE20K scene parsing dataset
as the basic training set [46]. Released by the MIT Computer Vision team, the set is the
largest open-source dataset for semantic segmentation and scene parsing. The constituent
elements of the scenes are divided into 150 classes, such as plants, sky, and roads [46]
(Figure 2).
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Figure 2. Examples of the street scene semantic segmentation and color classification results: (a) original images; (b) semantic
segmentation results; (c) color classification results.

2.2.2. Color Classification of the Images

As an important element of visual perception, color is usually quantitatively measured
and evaluated using color models [47]. To simplify the complex color characteristics of
the scenes, we grouped the colors in the street scenes into easily identifiable categories for
further analysis. The color classification in this study is based on the HSV color model,
which is close to the way the human visual system perceives and describes colors, and is
widely used in image processing and expression related to human color perception [47].
The color parameters in this model are hue (H), saturation (S), and value (V). Based on the
specific H, S, and V threshold rules (see Appendix A), we categorized the color of each
pixel in the street scene images into six classes: red, green, blue, gray, white, and black. The
results of the color classification show that the shapes of the objects in the original image
are well retained, and important constituent elements such as the sky, roads, buildings,
and vegetation, are clearly distinguished (Figure 2). Therefore, the subsequent analysis
based on this will reflect the color composition in the real scene well.

2.2.3. Projection Transformation of Panoramic Images

As the original panoramic images were spherical and were by default output using
the Equirectangular Projection in which the image resolution ratio was 2:1, they looked
“distorted”, in that the area of high-latitude elements were too large and the directions were
distorted. To retrieve the accurate area of visual elements, we used the Hammer Projection,
one of the commonly used equal-area projection methods in cartography, to conduct
projection transformation on the panoramic images in the auditing process (Figure 3).

Figure 3. Examples of the Hammer Projection transformation results: (a) panoramic images; (b) projection transforma-
tion results.
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2.2.4. Visual Pattern Indicators of the Street Scenes

To define the proper indicators for the global visual pattern of the street scenes, we
borrowed from the concepts of the landscape pattern metrics in landscape ecology [48].
By analogizing the elements (in semantically segmented or color-classified images) in a
street scene to land patches in a landscape, element categories such as land patch classes
and the scene as the entire landscape, the visual pattern of a street scene can be measured
by using the same techniques to measure landscape patterns. Per the analogies above, the
visual pattern metrics here included patch (element-wise), class (element category-wise),
and landscape (scene-wise) metrics, in which the class and landscape metrics quantified
the overall or “global” composition and configuration of a scene with highly condensed
information [48]. Technically, we chose three metrics to measure the multi-dimensional
visual structure characteristics: percentage of landscape (PLAND) at the element category
level, and landscape division index (DIVISION) and Shannon’s diversity index (SHDI)
at the entire street scene level (Table 1). Specifically, PLAND measures the proportion of
each element category in the street scene; DIVISION measures the degree of fragmentation
of the scene, i.e., the percentage occupied by relatively small, or “fragmented” visual
elements in the scene, with a higher DIVISION value indicating increased fragmentation;
and SHDI measures the degree of diversity of the scene, i.e., the richness of different visual
element types presented in the scene, with a higher SHDI value indicating a more equitable
areal distribution of the visual element types [49]. We used FRAGSTATS (a spatial pattern
analysis program for categorical maps) to compute the metrics [50].

Table 1. Basic information of landscape pattern metrics in this study. Source: [49].

Level Name Calculation Formula Range

Class (Street scene
element group) metrics

Percentage of
Landscape

PLAND = Pi =
∑n

j=1 aij

A (100) Pi =
proportion of the landscape

occupied by class i.
aij = area

(
m2) of patch ij.

A = total landscape area (m2).

(0,100]

Landscape (Entire
street scene) metrics

Landscape Division
Index

DIVISION =

1 −
m
∑

i=1

n
∑

j=1

(
aij
A

)2 [0,1)

Shannon’s Diversity
Index

SHDI =
−

m
∑

i=1
(Pi × lnPi)

[0,+∞)

2.3. Measurements of the Participants’ Environmental Perception

We measured the participants’ emotional response through two approaches: objec-
tive indicators and subjective indicators [51]. For the former, electroencephalography
(EEG) measures human brain function and activity. EMOTIV EPOC+ can further generate
emotional indicators in real-time based on brain signals, which are used to explore the
emotional changes as a response to different environmental settings, such as urban and
natural environments [30,51–53]. In our experiment, EEG data were obtained from the
EMOTIV EPOC+, a mobile EEG headset that has 14 channels to capture brain wavebands.
The metrics calculated by the EMOTIV performance metrics algorithms for cognitive states
were used in this study. They were output at 0.1 Hz and included the following six metrics:
engagement (En), excitement (Ex), stress (St), relaxation (Re), interest (In), and focus (Fo).
According to the official user’s manual, the definitions of the metrics are as follows [54]:

• Engagement measures “the level of immersion in the moment and is a mixture of
attention and concentration and contrasts with boredom”;

• Excitement is “an awareness or feeling of physiological arousal with a positive value”;
• Stress is “a measure of comfort with the current challenge”, with “a low to moderate

level improving productivity”, and “a high level tending to be destructive”;
• Relaxation is “a measure of an ability to switch off and recover from intense concentration”;
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• Interest measures “the degree of attraction or aversion of current stimuli”, with high
scores “indicate a strong affinity”, and low scores “indicate a strong aversion to
the task”;

• Focus is “a measure of fixed attention to one specific task”.

We used a scaled value ranging from 0 to 1 for these six EEG performance met-
rics according to the official equation (based on directives on https://emotiv.gitbook.io/
emotivpro-v2-0/csv-files#performance-metrics-data, accessed on 6 September 2021) to
make it more comparable among samples.

Other objective physiological indicators that concern people’s emotional and cognitive
states include EDA, HR, etc., and are often used to measure some specific emotional
states, such as stress level [31,55] and engagement [56]. The Empatica E4 wristband was
used in our experiment, which is a wearable device that captured wearers’ EDA at 4 Hz
and HR derived from the blood volume pulse at 64 Hz. EDA reflects the autonomic
sympathetic arousal integrated with emotional and cognitive states [57,58], whose signals
can be characterized by a slowly varying tonic activity (i.e., skin conductance level (SCL))
and a fast varying phasic activity (i.e., skin conductance responses (SCRs)) [59]. As SCRs are
sudden rises in the skin conductivity in response to an increase in sympathetic activity, they
are often used to measure event-related phasic changes linked to emotional stimuli [60], in
which SCR shows a steep incline to the peak and a slow decline to the baseline [60]. After
correction for the motion artifact [61], we used the Ledalab tool in MATLAB to decompose
the EDA data streams into SCL and SCRs [59,62]. As the immersion time of each scene in
our experiment was relatively short, we used two indicators—the number of SCRs (SCR.n)
and the sum of SCR amplitude (SCR.Amp)—in each scene to measure the participants’
emotional arousal. HR reflects a combination of sympathetic and parasympathetic activity
and is also an indirect measurement of emotional states [40]. We used the average value
of HR (HR.Avg) directly generated by E4 to measure the difference in the average level
between the scenes.

For the subjective indicators, to better reflect the participants’ environmental feelings
for different scenes affected by the visual quality, we used three indicators to measure
the participants’ subjective evaluation of the scenes, interestingness, comfort, and vitality,
which refer to the indicators measuring experiential qualities of urban public spaces in
previous research [63,64]. Interestingness focuses on the likeability and imageability, which
could induce positive feeling and a connection to the place; comfort comes from walkability,
seating provision, and greenery, and is thus an evaluation of the basic physical service-
provision function of the place; and vitality describes whether the place is vibrant, playful,
animate, and, especially in the Chinese context, has a sense of livelihood. Each indicator
contains three words that represent negative, neutral, and positive feelings, respectively,
where “impassive” means that the participants do not have the obvious tendency or related
feelings on this indicator (Table 2). During the experiment, the participants were provided
with three options for each question (e.g., “What do you think of this scene, insipid,
interesting, or impassive?”) and were asked to choose the one closest to their feelings.
The choices were based on the overall emotional evaluation of the scene, which had been
explained to the participants before the experiment. Then, the options were transformed
into ordinal scores from one to three, with higher scores indicating more positive feelings
(Table 2).

Table 2. Categories of subjective evaluation indicators and the respective scores.

Indicator Categories

Interestingness Insipid Impassive Interesting
Comfort Depressive Impassive Relaxed
Vitality Dull Impassive Vibrant

Score 1 2 3

https://emotiv.gitbook.io/emotivpro-v2-0/csv-files#performance-metrics-data
https://emotiv.gitbook.io/emotivpro-v2-0/csv-files#performance-metrics-data
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2.4. Experiment Procedure

All of the experiments were conducted in a laboratory at the College of Architecture
and Landscape Architecture, Peking University. The experiment included three stages:
preparation, exposure, and review (Figure 4). In the preparation stage, the participants were
informed of the procedure and precautions of the experiment. Then, they wet their hair
with conductive liquid and wore the Emotiv EPOC+ headset, the Empatica E4 wristband,
and the HTC Vive VR headset with the researchers’ help. After the experimental equipment
was calibrated, the participants were given a 3-min break with their eyes closed.

Figure 4. Experiment procedure.

In the exposure stage, the participants were randomly assigned to experience one of
the four groups of scenes. They were told to open their eyes when the first scene started to
screen in VR, and to look around and observe the scene for 30 s. Then, they were asked
three questions about their subjective evaluation of the scene (i.e., interestingness, comfort,
and vitality). After answering the questions, they were told to close their eyes and rest
for 30 s to restore to a stable level of physiological states, and then entered the next scene.
Time nodes of each step were marked on the bio-monitoring sensors.

After all the scenes had been experienced, all devices were removed from the par-
ticipants. Then, a brief interview was conducted with the participants as a review. The
participants were asked about their most impressive scenes and the reason and then spoke
freely about anything they felt of the scenes. Then they completed an online survey
about their demographic information (e.g., age, gender, and academic degree). The whole
experiment lasted around 35 min.

2.5. Statistical Analysis

We analyzed the effects of urban streets’ visual patterns on human emotions from
two dimensions: the constituent element patterns and the color patterns. However, there
was a high correlation between PLAND of some types of constituent elements and the
same for some types of colors. To avoid multicollinearity, only the indicators that had
a lower correlation and a strong impact on the visual pattern were kept in the models.
The final independent variables for the constituent element pattern included PLAND of
plant, PLAND of the sky, PLAND of road, DIVISION of constituent elements (DIVISION of
CE), and SHDI of constituent-elements (SHDI of CE); those for the color pattern included
PLAND of green-class, PLAND of blue-class, PLAND of red-class, DIVISION of colors
(DIVISION of CO), and SHDI of colors (SHDI of CO). All visual pattern indicators were
continuous variables.

We also added the street scale variable and gender of the participants to the models
as control variables. Each type of street scale was defined as a dummy variable, with the
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medium street scale as the reference, as it is most common in cities. The gender of the
participants was also defined as a dummy variable, where male equals 1 and female equals
0. Lastly, to avoid any potential overfitting issue caused by too many variables entering
the model, we fit the models for the constituent elements and the colors separately—
this also helped avoid multicollinearity as the variables in the two groups tended to
correlate with each other. Thus, for the physiological indicators, we built two groups of
multiple linear regression models to test the effects of the visual pattern variables on them.
Formulas (1) and (2) describe model groups 1 and 2, respectively. All models were fit using
the IBM SPSS Statistics 26 statistical package.

This is example 1 of an equation:

Y = β0 + β1PLAND o f plant + β2PLAND o f sky + β3PLAND o f road
+ β4DIVISION o f CE + β5SHDI o f CE
+ β6large street scale + β7small street scale + β8gender
+ ei

(1)

Y = β0 + β1PLAND o f green − class + β2PLAND o f blue − class
+ β3PLAND o f red − class + β4DIVISION o f CO
+ β5SHDI o f CO + β6large street scale
+ β7small street scale + β8gender + ei

(2)

where Y = EEG, SCR, and HR indicators.
For the subjective evaluation indicators, we built two groups of multiple logistic

regression models to test the effects of the visual pattern variables on them. Formulas (3)
and (4) describe model groups 3 and 4, respectively.

LogitPn = β0 + β1 PLAND o f plant + β2PLAND o f sky + β3PLAND o f road
+ β4DIVISION o f CE + β5SHDI o f CE
+ β6large street scale + β7small street scale + β8gender
+ ei

(3)
LogitPn = β0 + β1 PLAND o f green − class + β2PLAND o f blue − class

+ β3PLAND o f red − class + β4DIVISION o f CO
+ β5SHDI o f CO + β6large street scale
+ β7small street scale + β8gender + ei

(4)

where LogitPn = log[P(n)/P(1)]; n = 2 or 3 taking 1 as reference.
Furthermore, we conducted correlation analyses to test the relationships between

different indicators. Among them, the Pearson correlation coefficient was used between
the continuous variable indicators, that is, the physiological indicators. The Spearman
correlation coefficient was used between the subjective evaluation indicators themselves
and between the subjective evaluation indicators and the continuous variables, as subjective
evaluation indicators were ordinal (Figure 5).
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Figure 5. The analytical flowchart. Notes: EEG: electroencephalography; SCR: skin conductance
responses; HR: heart rate; PLAND: percentage of landscape; DIVISION: landscape division index;
SHDI: Shannon’s diversity index.

3. Results
3.1. Descriptive Statistics of the Participants, Scenes, and Perception Measurements

The descriptive statistical characteristics of the participants, scenes for exposure, and
outcome measurements are presented in Table 3. The gender ratio of the 26 participants
was balanced. Among the constituent element characteristics of the 39 selected scenes, the
average proportions of plants, sky, and road were 16.62% (±10.05%), 18.75% (±7.16%), and
40.09% (±3.58%), respectively, generally reflecting the visual perception of urban streets.
The proportion of roads accounted for nearly half of the view and had small fluctuations.
The proportion of the two natural elements (i.e., plants and sky) accounted for less than
20% on average and had large fluctuations. Among the color characteristics, the average
proportions of green-class, blue-class, and red-class colors were 5.30% (±4.74%), 15.37%
(±9.67%), and 5.75% (±3.75%), respectively. Their proportions were relatively low and
fluctuate greatly, indicating that most of the people’s sight in urban streets is still occupied
by low-saturation colors like black, white, and gray.

There were four types of outcomes produced by the experiment: EEG, SCR, HR, and
subjective evaluation. The total sample size of the experiment is the sum of the product of
the number of participants and the number of scenes each participant experienced. Some
invalid data were generated due to the malfunction of devices during the experiment. After
data cleaning, the numbers of valid EEG, SCR, HR, and subjective evaluation were 208,
213, 310, and 310, respectively.
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Table 3. Characteristics of the study population, scenes, and outcome measurements.

Category Variable Name Mean ± SD or n (%)

Characteristics of the 26 participants
Gender

Male Gender (=1) 12 (46)
Female Gender (=0) 14 (54)

Age
18–22 Age (=1) 14 (54)
23–25 Age (=2) 11 (42)
Older than 25 Age (=3) 1 (4)

Education Background
Bachelor Student Education (=1) 12 (46)
Master Student Education (=2) 11 (42)
Doctoral Student Education (=3) 3 (12)

Characteristics of the 39 scenes
Constituent-element characteristics

Percentage of Landscape of plant (%) PLAND of plant 16.62 ± 10.05
Percentage of Landscape of sky (%) PLAND of sky 18.75 ± 7.16
Percentage of Landscape of road (%) PLAND of road 40.09 ± 3.58
Landscape Division Index of constituent elements DIVISION of CE 0.80 ± 0.04
Shannon’s Diversity Index of constituent elements SHDI of CE 1.64 ± 0.11

Color characteristics
Percentage of Landscape of green-class colors (%) PLAND of green-class 5.30 ± 4.74
Percentage of Landscape of blue-class colors (%) PLAND of blue-class 15.37 ± 9.67
Percentage of Landscape of red-class colors (%) PLAND of red-class 5.75 ± 3.75
Landscape Division Index of colors DIVISION of CO 0.79 ± 0.07
Shannon’s Diversity Index of colors SHDI of CO 1.40 ± 0.10

Street scale
Large street scale (six lanes or more) Large street scale (=0 or 1) 9 (23)
Medium street scale (four to six lanes) Medium street scale (=0 or 1) 13 (33)
Small street scale (two lanes or less) Small street scale (=0 or 1) 17 (44)

Characteristics of outcome measurements
Electroencephalography (EEG) (N = 208)

Engagement EEG.En 0.69 ± 0.09
Excitement EEG.Ex 0.51 ± 0.13
Stress EEG.St 0.67 ± 0.18
Relaxation EEG.Re 0.61 ± 0.15
Interest EEG.In 0.67 ± 0.12
Focus EEG.Fo 0.57 ± 0.16

Skin conductance responses (SCR) (N = 213)
Number of SCRs SCR.n 8.12 ± 4.10
Sum of SCR amplitude (mµS) SCR.Amp 1.87 ± 1.82

Heart rate (HR) (N = 310)
Average of heart rate (1/min) HR.Avg 76.58 ± 10.88

Subjective evaluation (N = 310)
Interestingness EVA.In (=1, 2, or 3) 1.6 ± 0.8
Comfort EVA.Co (=1, 2, or 3) 2.0 ± 0.8
Vitality EVA.Vi (=1, 2, or 3) 1.8 ± 0.7

Notes: EEG: electroencephalography; SCR: skin conductance responses; HR: heart rate; PLAND: percentage of landscape; DIVISION:
landscape division index; SHDI: Shannon’s diversity index.

3.2. Results of the Statistical Models for the Physiological Indicators

The effects of the street visual pattern characteristics, street scale, and gender of the
participants on the physiological indicators, including EEG, SCR, and HR measurements,
are shown in Tables 4 and 5. For the EEG models, first of all, only the models for “excite-
ment” (EEG.Ex) and “interest” (EEG.In) were held at a statistically (marginally) significant
level, while the four models did not. Next, most visual pattern independent variables were
not statistically significant, except the PLAND of blue-class for the EEG.Ex model, which
was only marginally significant (at p = 0.108). On the contrary, as a control variable, gender
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had a significant impact on all of the four models for EEG.Ex and EEG.In, and suggests
that the female participants’ interest is higher while excitement is lower compared with the
male participants overall.

Table 4. Results of the linear regressions of the constituent-element characteristics on the physiological indicators.

Indicators
N = 208 N = 213 N = 310

EEG.En EEG.Ex EEG.St EEG.Re EEG.In EEG.Fo SCR.n SCR.Amp HR.Avg

PLAND of plant β 0.019 −0.139 0.145 −0.133 −0.021 −0.013 −0.045 0.008 −0.013
PLAND of sky β 0.115 0.109 0.170 −0.229 −0.183 0.000 −0.054 −0.047 −0.034
PLAND of road β 0.003 0.009 0.094 −0.034 −0.023 0.072 −0.063 0.194 ** −0.016

DIVISION of CE β 0.166 −0.046 0.138 −0.296 ** −0.092 −0.067 −0.001 0.140 −0.055
SHDI of CE β −0.010 −0.063 −0.126 0.184 0.140 0.113 0.023 0.002 0.068

Large street scale β −0.066 −0.131 −0.092 0.113 0.115 −0.062 0.115 0.118 0.010
Small street scale β −0.109 −0.093 −0.048 −0.020 −0.053 0.057 0.008 0.048 −0.008

Gender β 0.019 0.153 ** 0.071 0.128 * −0.248 *** −0.100 0.224 *** 0.242 *** −0.165***
Model Sig. 0.675 0.092 * 0.754 0.203 0.025 ** 0.856 0.090 * 0.014 ** 0.388

Notes: β: standardized coefficients; significance level * < 0.1, ** < 0.05, *** < 0.01.

Table 5. Results of the linear regressions of the color composition characteristics on the physiological indicators.

Indicators
N = 208 N = 213 N = 310

EEG.En EEG.Ex EEG.St EEG.Re EEG.In EEG.Fo SCR.n SCR.Amp HR.Avg

PLAND of green-class β −0.090 −0.054 −0.064 −0.031 0.061 −0.080 −0.021 0.028 0.054
PLAND of blue-class β −0.065 0.187 * −0.064 −0.063 −0.058 −0.030 0.063 −0.027 0.037
PLAND of red-class β 0.023 0.006 −0.059 −0.062 0.040 −0.040 −0.067 0.070 0.004

DIVISION of CO β 0.050 0.004 0.042 −0.018 0.119 0.089 0.150 −0.054 −0.042
SHDI of CO β −0.080 −0.082 0.023 −0.037 −0.211 −0.111 −0.127 0.015 0.047

Large street scale β −0.056 −0.115 −0.023 0.044 0.037 −0.075 0.021 0.141 0.004
Small street scale β −0.167 −0.025 −0.079 −0.084 −0.125 −0.027 0.047 0.029 0.011

Gender β 0.021 0.152 ** 0.063 0.146 ** −0.237 *** −0.090 0.235 *** 0.219 *** −0.162 ***
Model Sig. 0.942 0.108 0.967 0.432 0.041 ** 0.805 0.049 ** 0.095 * 0.382

Notes: β: standardized coefficients; significance level * < 0.1, ** < 0.05, *** < 0.01.

For the SCR models, both the number of SCRs (SCR.n) and the sum of SCR amplitude
(SCR.Amp) could be explained at a statistically significant level. The participants’ gender
once again had a significant impact, and males had an overall higher level of those indica-
tors than females. In addition, the proportion of roads had significant positive effects on
the sum of the SCR amplitude.

The models for HR were not held at a statistically significant level.

3.3. Results of the Statistical Models for the Subjective Evaluation Indicators

The effects of street visual pattern characteristics, street scale, and gender of the
participants on subjective evaluation indicators are shown in Tables 6 and 7. Overall, among
the three indicators, comfort and vitality could be explained at a statistically significant
level, while the interestingness model was not statistically significant.

Through the comparison of the two groups of influencing factors, we found that the
natural elements in the street view and the proportion of blue-class and green-class colors
had significant impacts on people’s subjective feelings. An increase in the proportion of
plants significantly improved the comfort rating and made people feel relaxed. In addition,
the proportion of green-class colors had positive effects on both comfort and vitality ratings
at various degrees. Regarding vitality, the proportion of sky for “dull” scenes had higher
evaluation scores than that for “impassive” scenes, while “vibrant” scenes had a higher
proportion of blue colors, as well as a higher proportion of roads than “dull” scenes.



Int. J. Environ. Res. Public Health 2021, 18, 9677 13 of 20

Table 6. Results of the multiple logistic regressions of the constituent-element characteristics on the subjective evaluation indicators.

Indicators
N = 310

EVA.In = 2 EVA.In = 3 EVA.Co = 2 EVA.Co = 3 EVA.Vi = 2 EVA.Vi = 3

PLAND of plant β −0.004 −0.012 0.031 0.056 ** 0.007 0.003
PLAND of sky β −0.003 0.022 −0.013 0.026 −0.071 * −0.012
PLAND of road β 0.055 0.071 0.013 0.034 −0.017 0.179 **

DIVISION of CE β −4.860 −2.503 −14.607 * −10.210 −21.769 *** −10.131
SHDI of CE β 2.710 2.523 5.558 ** 3.895 7.179 *** 8.325 **

Large street scale β −0.564 0.380 0.615 0.924 * 0.837 * 1.026 *
Small street scale β −0.100 0.369 −0.101 −0.282 −0.201 0.546

Gender β −0.062 0.338 −0.016 −0.100 −0.026 0.174
Model Sig. 0.559 0.000 *** 0.000 ***

Notes: β: standardized coefficients; significance level * < 0.1, ** < 0.05, *** < 0.01.The reference category of the dependent variable is 1.

Table 7. Results of the multiple logistic regressions of the color composition characteristics on the subjective evaluation indicators.

Indicators
N = 310

EVA.In = 2 EVA.In = 3 EVA.Co = 2 EVA.Co = 3 EVA.Vi = 2 EVA.Vi = 3

PLAND of green-class β −0.015 −0.007 0.110 ** 0.108 ** 0.125 *** 0.086
PLAND of blue-class β 0.010 0.054 * 0.029 0.011 0.020 0.080 ***
PLAND of red-class β 0.014 0.000 −0.020 −0.044 −0.001 0.017

DIVISION of CO β 1.677 −1.952 −10.311 ** −8.567 1.692 −6.609
SHDI of CO β 0.049 3.541 7.796 ** 6.369 −1.926 4.560

Large street scale β −0.492 0.425 0.622 1.215 ** 0.506 0.836 *
Small street scale β −0.234 0.694 −0.069 −0.439 −0.345 0.726

Gender β −0.034 0.344 0.056 −0.053 0.083 0.171
Model Sig. 0.477 0.000 *** 0.000 ***

Notes: β: standardized coefficients; significance level * < 0.1, ** < 0.05, *** < 0.01.The reference category of the dependent variable is 1.

The overall visual pattern and the street scale also had significant impacts on people’s
subjective feelings. For comfort rating, “depressive” scenes had a higher fragmentation
level and a lower diversity level of the constituent elements and colors. In addition,
“relaxed” was more likely to be chosen in scenes with a large street scale. For vitality
ratings, “dull” scenes also had a higher fragmentation level and a lower diversity level
of the constituent elements, while the visual pattern of colors had no significant impact,
which means people’s feelings about vitality are more sensitive to the constituent elements
than colors. In addition, vitality was scored higher on the large street scale, which is similar
to the comfort rating. Besides, unlike the physiological indicators, participants’ gender had
no significant effect on the subjective evaluations.

3.4. Correlation of Different Types of Perception Results

Most of the correlations between the 12 perception indicators obtained from the four
different measurement approaches in the experiment were not statistically significant. Only
four pairs of measurements were closely related (with a correlation coefficient greater than
0.4), which are: (1) EEG.In and EEG.Fo (0.400 ***); (2) SCR.n and SCR.Amp (0.411 ***);
(3) EVA.In and EVA.Vi (0.436 ***); and (4) EVA.Co and EVA.Vi (0.561 ***). It is noteworthy
that all pairs were obtained using the same sensing approach.

If we lower the standard for a “close” relationship to include all statistically significant
correlations, then a couple of new pairs joined, in which three pairs were obtained using
different sensing approaches: EEG.Ex was positively correlated with SCR.n (0.161 **), and
negatively correlated with EVA.Co and EVA.Vi (−0.198 ***, −0.179 ***). There was no
significant correlation between the subjective evaluation measurements and the SCL and
HR measurements (Table 8).
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Table 8. The correlation coefficient of the multi-dimensional perception indicators.

Indica-
tors EEG.En EEG.Ex EEG.St EEG.Re EEG.In EEG.Fo SCR.n SCR. Amp HR.Avg EVA.In EVA.Co EVA.Vi

EEG.En 1
EEG.Ex 0.079 1
EEG.St 0.220 *** 0.160 ** 1
EEG.Re 0.097 0.076 0.258 *** 1
EEG.In 0.227 *** −00.075 0.308 *** 0.194 *** 1
EEG.Fo 0.175 ** 0.247 *** 0.257 *** −0.008 0.400 *** 1
SCR.n 0.031 0.161 ** 0.120 0.039 0.023 0.192 ** 1

SCR.Amp 0.095 −0.014 0.085 −0.118 −0.046 0.090 0.411 *** 1
HR.Avg 0.156 ** 0.086 0.080 0.082 0.026 0.052 −0.181 *** 0.141 ** 1
EVA.In 0.038 −0.058 0.022 0.032 −0.034 0.014 −0.073 0.028 0.037 1
EVA.Co −0.057 −0.198 *** −0.018 0.088 −0.062 −0.067 −0.112 −0.061 −0.010 0.273 *** 1
EVA.Vi −0.058 −0.179 *** −0.037 0.082 −0.049 −0.040 −0.059 −0.025 0.043 0.436 *** 0.561 *** 1

Notes: significance level * < 0.1, ** < 0.05, *** < 0.01.

4. Discussion
4.1. Effects of Visual Patterns on People’s Emotions

The findings show that the proportion of vegetation/greenish colors in urban street
scenes would significantly and positively affect various human emotions, including the
comfort and vitality feelings, which is consistent with the findings in previous research on
the stress-reduction and restorations effects of vegetation [20,23]. Moreover, our findings
further show that the global visual pattern, including the spatial configuration of street
elements and color composition of the scenes, would also affect human emotions, which
was not fully discussed in previous research. Specifically, more diverse and less fragmented
street scenes are found to be associated with positive emotions. Methodologically, our
findings suggest that the global visual pattern auditing of street scenes is necessary because
it empowers the capturing of the overall structural information of the environment in a
more comprehensive way than traditional, element-wise auditing methods, and thus is
recommended in future environmental perception research.

Meanwhile, our findings also have obvious urban planning and design implications:
planners and designers should avoid too uniform physical elements and color structures
in urban street design. They should also try to reduce the fragmentation of street scenes
to bring about more positive feelings for users of the streets. In some sense, we may view
these implications as a psychological testimony of the traditional design know-hows, as
they are generally consistent with the latter’s emphasis on the importance of symmetry,
rhythm, balance, and coordination in architecture and city design [65,66]. Beyond that, our
findings even go further and uncover more subtle relationships between design methods
and human emotions. For example, we show that people are more sensitive to the element
configuration than color composition in street scenes. Overall, the new findings would
thus help planners and designers to “control” their plans in a more accurate way for better
emotional effects.

4.2. Improvement on Image Auditing Methods

Technically, our research shows the importance of proper image processing in the
auditing of the environment. Generally speaking, for the inevitable optical and geometrical
distortion in the process of imaging, the environmental perception research that utilizes im-
ages of all kinds, especially those whose results rely on the accurate auditing of the images,
should perform optical and photogrammetrical corrections and projective transformation
of the images whenever it is appropriate for the research goals [67]. For example, as this
research deeply relies on the accurate auditing of area sizes of the elements in the image,
an equal-area projection transformation is necessary. However, for research that focuses
more on the relative directions of the elements in the images, an equal-angle projection
within a certain field of view would be more appropriate.
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4.3. Consistency of Different Types of Environmental Perception Indicators, and Some
Methodological and Theoretical Reflections

Lastly, and most importantly, one innovation in our research is the realization of
synchronized measurements of the four types of physiological and subjective emotional
indicators within the VR-based experiment framework. We hypothesized that there would
be a significant level of consistency of results among the different types of indicators as
they are responses to the same exposure. However, the results, in general, do not support
our hypothesis. In particular, the physiological results measured by the EEG, SCR, and HR
are largely uncorrelated with each other, and they both show limited correlation with the
results from subjective evaluations. Although inconsistency may be partly attributed to
technical reasons, such as measurement errors caused by poor electrode contact, or noise
signals caused by the discomfort from wearing the devices or from winding wires, we can
still make some interesting conjectures from the perspective of the neural mechanism of
human emotions.

Although the EEG-based emotional indicators have been proven effective in detecting
variations in human emotions in various types of the environment [51,53,68], we only
found statistically significant results on two measurements: excitement and interest. It is
noteworthy, however, that among the six “emotional” indicators provided by the device,
only these two have a straightforward neural mechanism, while those for the other four
are relatively complicated. Specifically, excitement is associated with physiological arousal
and is an autonomous conditioning reflex activity. It is caused by the activation of the
sympathetic system and is usually accompanied by physiological responses including
sweating and heart rate increasing [54]. In our experiment, excitement (EEG.Ex) does have
a positive, but weak correlation with sweating (SCR.n). As the correlation is no surprise,
its weakness may be caused by the fact that there lacks significant variation among the
street scenes, such that the effects are not as prominent as those found between more
drastically different settings, such as nature vs. artificial environments. On the other
hand, our results show a negative correlation between EEG.Ex and the two subjective
evaluation results. This is proof that even with the “modern”, direct measurement methods
for people’s physiological status, the “traditional”, interview- or questionnaire-based
subjective evaluation methods are still necessary at least for the autonomous conditioning
reflex activities, as they give the direction of the arousal, which is somewhat hard to obtain
with the “modern” sensors at their current technological state.

On the contrary, interest reflects the valence of emotions [54]. Being an indicator for
people’s attraction or aversion to current stimulus [54], interest is an evaluative condition-
ing reflex activity [69]. Different from autonomous conditioning such as excitement which
is usually considered to be associated with “basic”, physiological activities, evaluative
conditioning is more related to people’s “advanced”, psychological activities such as aes-
theticizing. Such dichotomy naturally reminds us of another dichotomy in architecture,
the one between function and form of the physical environment. For example, in Vitru-
vius’ famous three principles for architecture, firmitatis (stability) and utilitatis (utility)
concern the functional dimension, while venustatis (beauty) concerns the form−aesthetical
dimension [70]. One cannot help asking that whether there are resonations between the
two dichotomies. This is of course a complicated question, and particularly, even if we
can relate the “basic” physiological-rooted emotions such as excitement with the func-
tional dimension of architecture, we still have very limited knowledge in that between the
“advanced” psychological valence and the form dimension of architecture. Although our
experiment cannot give a direct answer to the above question, it does imply our inability
to answer it with the currently available research techniques. More advanced physiolog-
ical monitoring equipment, such as fMRI [71], may help answer the question. However,
under its current state of technology, it is impossible to integrate fMRI monitoring with
various other monitoring devices to realize a multi-dimensional synchronized observation
of human emotions as we did in our experiment. We thus hope that future technological
progress may equip us with more portable and accurate devices.
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Methodologically, the above discussion indicates both merits and limitations in intro-
ducing the direct physiological monitoring technology in the research of the environment—
emotion relationship, and the need for incorporating qualitative analysis alongside the
quantitative calculations. The new technology does help reveal different pictures of peo-
ple’s emotional response to the environment, but the inconsistency among different mea-
surement approaches, as well as our limited mechanistic understanding regarding the
inconsistency, reminds us of the potential risk if we rely too much on the new technology.
In contrast, the “traditional”, interview- or questionnaire-based approaches, although they
do not directly touch upon the physiological roots of emotions, are proven valid, effective,
and robust [72]. On balance, currently, a combination of the two approaches in the research
of the environment−emotion relationship could be a reasonable approach to uncover the
hidden relationship among dimensions of physical environment design, human emotions,
and their physiological basis.

Moreover, the discussion also triggers interesting theoretical reflections on the essence
of the human−(built) environment relationship. Notwithstanding possible technical errors,
questions remain as to why most of the “common” EEG data measurements do not correlate
to the respondents’ expressed emotions. Following Eco’s argument [4], does this mean that
there are unknown emotional modes people have to decipher the semiotics of architecture?
Or, following Merleau−Ponty’s viewpoint [73], does this mean that there are unknown
mechanisms people follow to experience the built environment and construct the meaning
of places? The modes and mechanisms, if uncovered, may help us establish a more direct
relationship between human emotions and their neural−physiological roots. They would
be also beneficial for deepening our understandings on the human−(built) environment
relationship from both logical positivist and phenomenological paradigms.

5. Conclusions

In this paper, we scrutinize people’s emotional responses to various urban street
scenes with a VR-based, immersive exposure experiment with 26 participants. We applied
a refined method for more accurate visual pattern auditing for urban street scenes. We also
conducted a synchronized observation of the participants’ EEG, EDA, and HR indicators,
as well as their subjective evaluation results. We found that the two global visual pattern
measurements, the physical element configuration and color composition of street scenes,
significantly affect people’s environmental perception in that more diverse and less frag-
mented scenes would introduce positive emotional feelings. This finding may be of help
to planners and designers for a deeper understanding of the psychological impacts of the
physical urban street environment, and thus promote better designs. Besides, an analysis
on the consistency among the physiological and subjective indicators shows subtleness
in such relationships and implies the possible neural−physiological basis for the tradi-
tional form-function dichotomy in architecture. This finding suggests that the combination
of the new, direct physiology-monitoring technology and the “traditional”, interview-
or questionnaire-based research techniques in the research of environmental perception
would help better unveil the mechanisms of the environment-emotion relationships.

Our study has a few limitations. First, participants were young, healthy students
from Peking University. In that case, the generalizability of the results is limited. We plan
to recruit a larger and more diverse population in our future experiments. Second, by
using VR and panoramic images, we provided our participants’ immersive experience
of exposing to virtual urban street scenes. However, this method could only provide a
visual connection with the environment and ignored other sensory approaches such as
auditory and olfactory. With the fast development of VR and related technologies, we
plan to initiate some VR-based environmental perception research looking at audio−visual
interactions. In addition, although the built environments that we have investigated do
include some “natural” elements (e.g., trees), whether our findings can be generalized to
all-nature or quasi-nature (e.g., a designed garden) environments remains a question to
be tested in future research. Finally, we focused on quantitative approaches to measure
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participants’ emotional responses to the urban streets by using visual pattern indicators and
bio-monitoring sensors. Qualitative methods such as in-depth interviews could be applied
in our future studies as another effective approach to better understand participant’s direct
feelings and possible reasons.
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Appendix A

The color space of the HSV color model is described in three dimensions: hue (H),
saturation (S), and value (V). Hue is measured by an angle ranging from 0◦ to 360◦. It starts
from red, and counts in a counterclockwise direction on the chromatic circle, where red is
defined as 0◦, green as 120◦, and blue as 240◦. Saturation represents the degree of closeness
to spectral colors ranging from 0~100%. It can be regarded as the result of a certain spectral
color mixed with white, in which the value is higher when the color is brighter. Value
represents the degree of lightness and ranges from 0 (black) to 100% (white).

By the conventions of color classification, to classify the observed colors into certain
categories, the colors are firstly divided into the black, grey, white, and other “colorful”
color classes according to saturation (S) and value (V). In consideration of the representa-
tiveness of the colors to the street visual characteristics, the last category is further divided
into red, green, and blue classes according to the hue (H) with equal angle divisions.
Therefore, we finally classified the colors into six categories following the specific color
classification rules (Table A1). We used the cvtColor function in OpenCV to obtain the H, S,
and V values of each pixel, where the H, S, and V ranges are (0,180), (0,255), and (0,255),
respectively.

Table A1. Threshold value of H, S, and V in color classification.

HSV Black-Class Gray-Class White-Class Red-Class Green-Class Blue-Class

Hmin 0 0 91 0 0 151 31 91
Hmax 180 180 150 180 30 180 90 150
Smin 0 0 43 0 43 43 43
Smax 255 42 255 42 255 255 255
Vmin 0 46 221 46 46 101
Vmax 45 220 100 255 255 255 255
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