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Abstract: Wolbachia are intracellular endosymbionts of several invertebrate taxa, including insects
and nematodes. Although Wolbachia DNA has been detected in ticks, its presence is generally
associated with parasitism by insects. To determine whether or not Wolbachia can infect and grow
in tick cells, cell lines from three tick species, Ixodes scapularis, Ixodes ricinus and Rhipicephalus
microplus, were inoculated with Wolbachia strains wStri and wAlbB isolated from mosquito cell lines.
Homogenates prepared from fleas collected from cats in Malaysia were inoculated into an I. scapularis
cell line. Bacterial growth and identity were monitored by microscopy and PCR amplification and
sequencing of fragments of Wolbachia genes. The wStri strain infected Ixodes spp. cells and was
maintained through 29 passages. The wAlbB strain successfully infected Ixodes spp. and R. microplus
cells and was maintained through 2–5 passages. A novel strain of Wolbachia belonging to the
supergroup F, designated wCfeF, was isolated in I. scapularis cells from a pool of Ctenocephalides sp.
cat fleas and maintained in vitro through two passages over nine months. This is the first confirmed
isolation of a Wolbachia strain from a flea and the first isolation of any Wolbachia strain outside the
“pandemic” A and B supergroups. The study demonstrates that tick cells can host multiple Wolbachia
strains, and can be added to panels of insect cell lines to improve success rates in isolation of field
strains of Wolbachia.
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1. Introduction

Wolbachia is a genus of obligate intracellular endosymbiotic gram-negative bacteria of the
family Anaplasmataceae in the order Rickettsiales. Wolbachia infect two phyla in the Ecdysozoa:
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the Arthropoda and the Nematoda, with a much broader range of host species in the former than in
the latter. Although only one species, Wolbachia pipientis, has been formally described [1], the genus
has been separated by multi-locus sequence typing (MLST) into ~18 clades or “supergroups” [2–4].
Core genome alignments for supergroups suggest that they can be considered at least equivalent to
species rank, with some containing sufficient diversity for more than one species [5]. Wolbachia is best
known for its ability to induce five distinct reproductive manipulations in arthropod hosts (cytoplasmic
incompatibility (CI), induction of parthenogenesis, male killing, feminisation and meiotic drive),
all of which favour its spread by reducing resource competition from males (a dead-end host) or
imposing a fitness cost on uninfected females [6–9]. However, these parasitic phenotypes appear to
be largely confined to the “pandemic” supergroups A and B that infect ~50% of terrestrial arthropod
species [10,11]. In other cases, Wolbachia form obligate and putatively beneficial relationships with
their hosts, including strains from supergroups C and D in nematodes and E in springtails [12,13].

Wolbachia is found in most of the major groups of haematophagous arthropods, including biting
Diptera and Hemiptera, fleas, lice and parasitic mites [14–26]. The CI phenotype, in which the
progeny of crosses between infected males and uninfected females (or females carrying an incompatible
Wolbachia strain) die early in development, is common in blood-feeding Diptera [21,25,27]. In contrast,
a supergroup F Wolbachia strain in bedbugs is a nutritional mutualist, providing B vitamins for its host
that are deficient in the blood meal [18,20]. Wolbachia has long been of applied interest for disease
control, as release of Wolbachia-infected male pest insects can suppress natural populations where
the females are uninfected or harbour an incompatible strain [28]. In filarial nematodes that cause
neglected tropical diseases such as onchocerciasis and lymphatic filariasis, elimination of Wolbachia
using antibiotics can safely clear adult worm infections, unlike conventional anthelmintics [29].
Finally, Wolbachia infections can suppress the dissemination and transmission of pathogens in insects,
especially when transinfected into a novel host [30]. This phenomenon is the basis for several control
programmes releasing Wolbachia-infected Aedes aegypti to reduce the transmission of dengue and other
arboviruses [31].

The order Ixodida is the only large group of haematophagous arthropods in which the status
of Wolbachia infections still remains ambiguous. While many studies have reported the presence
of Wolbachia in ticks using molecular methods [32–45], it is unclear whether ticks are themselves
infected with Wolbachia, or if the bacteria are present within cells of species of the parasitic wasp genus
Ixodiphagus [46] or other parasites of ticks such as nematodes [39] or mites. Recent studies have yielded
strong indications that the latter scenario may be the correct one, as Wolbachia-positive Ixodes ricinus
ticks are almost always positive for Ixodiphagus DNA [47,48].

However, the question remains whether or not tick cells are capable of supporting infection
and growth of Wolbachia. To answer this, we first tested the ability of cell lines with known broad
susceptibility to infection with intracellular bacteria, derived from I. ricinus, Ixodes scapularis and
Rhipicephalus microplus, to support the replication of two laboratory strains of Wolbachia derived from
different insect hosts. We then applied an I. scapularis cell line in an attempt to isolate Wolbachia or
other intracellular bacteria from field-collected fleas in Malaysia.

2. Materials and Methods

2.1. Tick Cell Lines

The I. scapularis cell lines ISE6 [49] and ISE18 [50] and the I. ricinus cell line IRE11 [51] were
maintained at 28 ◦C or 32 ◦C in L-15C300 medium supplemented with 10% tryptose phosphate
broth (TPB), 10% foetal bovine serum (FBS) and 0.1% bovine lipoprotein (MP Biomedicals, Solon,
OH, USA) [52]. The I. scapularis cell line IDE8 [50] was maintained in flat-sided culture tubes (Nunc,
Thermo Fisher, Loughborough, UK) at 32 ◦C in L-15B medium [53] supplemented with 10% TPB,
10% FBS, 0.1% bovine lipoprotein, 2 mM L-glutamine and antibiotics (100 units/mL penicillin and
100 µg/mL streptomycin). The R. microplus cell line BME/CTVM23 [54] was maintained in flat-sided
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culture tubes at 28 ◦C in L-15 (Leibovitz) medium supplemented with 10% TPB, 20% FBS, 2 mM
L-glutamine and antibiotics. All cell lines were maintained with weekly medium change and subculture
at 1–3 monthly intervals.

2.2. Wolbachia Strains

For experiments with Ixodes spp. cell lines, the wStri strain, originally isolated from the small
brown planthopper Laodelphax striatellus into the Aedes albopictus cell line NIAS-AeAl-2 [55] and
kindly provided by H. Noda, National Institute of Agrobiological Sciences, Tsukuba, Japan [56],
was propagated in AeAl-2 cells maintained in L-15C300 supplemented as above. The wAlbB strain,
originally isolated from the mosquito Ae. albopictus into the Ae. albopictus cell line Aa23 [57]
and kindly provided by S.L. Dobson, University of Kentucky, was propagated in Aa23 cells also
maintained in supplemented L-15C300 medium. For experiments with the R. microplus cell line
BME/CTVM23, the wAlbB strain, originally provided by Scott O’Neill, Yale University School of
Medicine, was transferred from Aa23 cells to Ae. albopictus C6/36 cells [58] maintained in a 1:1 mixture
of Schneider’s modified Drosophila medium (Merck, Sigma Aldrich, Gillingham, UK) and Mitsuhashi
and Maramorosch medium (Geneflow Custom Media, Geneflow, Lichfield, UK) supplemented with
10% FBS and 2 mM L-glutamine. Infected mosquito cell cultures were maintained at 28 ◦C with weekly
medium change and occasional subculture.

2.3. Preparation of Cell-Free Wolbachia Suspensions and Inoculation of Tick Cell Lines

For experiments with wAlbB and wStri in Ixodes spp. cell lines, cell-free Wolbachia were initially
used to inoculate tick cell cultures. Wolbachia were released from heavily infected Ae. albopictus cells by
forcibly passing infected cell suspensions through a 25 G needle. The resultant suspension was filtered
through a 2 µm syringe filter and inoculated into tick cell cultures. To enhance infection rates, filtered
Wolbachia were transferred to a 2 mL microfuge tube containing tick cells (1–2 × 106 cells/mL in 1.5 mL)
centrifuged at 5000× g for 5 min and allowed to sit at room temperature for 30 min prior to seeding
into culture flasks [59]. Cultures were incubated at 28 ◦C (wAlbB) or 32 ◦C (wStri). Once established in
tick cell lines, Wolbachia were maintained by inoculating uninfected tick cell cultures with a suspension
of infected cells at dilutions of 1:5 for wAlbB and 1:10–1:20 for wStri.

For experiments with wAlbB in R. microplus cells, a 1.2 mL aliquot of resuspended infected C6/36
cells was diluted with a further 0.5 mL Schneider’s modified Drosophila medium, passed ten times
through a bent 26-gauge needle and centrifuged at 1500× g for 5 min. A 0.3 mL aliquot of the supernate
was added to a 2.2 mL culture of BME/CTVM23 cells in a flat-sided culture tube, and to an uninfected
culture of C6/36 cells in L-15 (Leibovitz) medium supplemented as above but with 10% FBS, in a
flat-sided tube. Cultures were incubated at 28 ◦C; once established, Wolbachia were subcultured by
passaging resuspended infected BME/CTVM23 onto fresh cells at a dilution of ~1:10.

2.4. Preparation of Homogenate from Field-Collected Fleas

Ctenocephalides sp. fleas were collected from domestic cats from a village of indigenous people,
also known as the Orang Asli, in Perak, Malaysia (4◦18′53” N, 100◦55′49” E). All field sampling was
conducted with the approval of the University of Malaya Institutional Animal Care and Use Committee
as well as the Department of Orang Asli Development in Malaysia. Live fleas were immobilised at
−80 ◦C for 15 min and identified to genus level using morphological keys [60], followed by surface
decontamination by immersing the fleas into 0.1% benzalkonium chloride solution for 5 min. The fleas
were then rinsed with 70% ethanol followed by sterile water and allowed to dry on a piece of sterile filter
paper. The flea exoskeleton was cut open with a sterile needle to separate the internal organs from the
exoskeleton. Organs from five individual fleas were pooled and transferred into flat-sided culture tubes
previously seeded with IDE8 cells in complete L-15B medium containing antibiotics. The combined cell
and organ cultures were maintained at 28 ◦C with weekly medium change (3/4 volume). Once bacterial
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infection was established, subculture was performed by transferring 0.2 mL of supernate from the
infected culture to a fresh tube of IDE8 cells.

2.5. Examination of Wolbachia-infected Cultures by Microscopy

Live infected tick cell cultures were monitored by weekly inverted microscope examination.
At intervals of 1–7 weeks post inoculation (p.i.) for cultures inoculated with wAlbB and wStri, and at
8 months p.i. for cultures inoculated with flea organs, tick cells were resuspended by pipetting
and cytocentrifuge smears were prepared from small aliquots (~50 µL) of cell suspension, stained
with Giemsa and examined at ×500–1000 magnification. Wolbachia-infected BME/CTVM23 cells were
prepared for transmission electron microscopy as described previously [61].

2.6. Molecular Confirmation of Wolbachia and Host Cell Identity

At intervals, 200–500 µL samples of whole culture suspension were collected and DNA
was extracted using commercial kits (Qiagen, Germantown, MD, USA; Qiagen, Manchester, UK;
Macherey-Nagel, Düren, Germany) following the manufacturers’ instructions. Standard PCR
amplification of fragments of the pan-bacterial 16S rRNA sequence and Wolbachia wsp, coxA, fbpA,
ftsZ, hcpA and gatB genes was carried out according to published protocols [3,33]. All standard PCR
amplifications included a negative control (water) and appropriate positive controls: DNA extracted
from wStri-infected NIAS-AeAl-2 cells, wAlbB-infected Aa23 or C6/36 cells for Wolbachia-specific
PCRs or Rickettsia raoultii-infected BME/CTVM23 cells [62] for the pan-bacterial 16S rRNA PCR.
PCR products were visualised by agarose gel electrophoresis, and positive PCR products were
purified using commercial kits (Qiagen, Germantown, MD, USA; New England Biolabs, Hitchin,
UK; Macherey-Nagel, Düren, Germany) and sequenced from both ends using a Sanger sequencing
service. To confirm the identity of the bacteria in wAlbB-infected BME/CTVM23 cells and the absence of
contaminating mosquito cells, qPCR amplification of fragments of the Wolbachia 16S rRNA and mosquito
18S rRNA genes was carried out as described previously [63]. Wolbachia counts were normalised
against tick cell counts generated by the amplification of fragments of the tick rpl6 gene as described
previously [64]. All qPCR assays were run on a CFX Connect Real-Time PCR Detection System (Bio Rad,
Watford, UK). A dilution series of synthetic oligonucleotides representing the full-length amplicons
were used as standards for quantification by linear regression in CFX Manager software.

2.7. Sequence and Phylogenetic Analyses

Pair-end sequences obtained from PCR amplicons were assembled to produce a corrected consensus
using 4Peaks (Nucleobytes B.V., Aalsmeer, The Netherlands) and Clustal Omega [65]. The sequences
were then compared with published sequences using BLASTN against the non-redundant database at
the National Center for Biotechnology Information (NCBI) GenBank and the Wolbachia MLST database
on PubMLST [66]. The sequences were quality-trimmed manually and aligned with voucher sequences
using Clustal Omega [65]. The phylogenetic relationship of the novel Wolbachia sp. isolated in this
study with other existing Wolbachia sp. was inferred using the Bayesian Markov chain Monte Carlo
in MrBayes 3.2 [67], with codon partitions, two runs of 3 million generations, four chains per run,
sampling every 1000 trees generated and burn-in of 25% trees for each dataset. The best-fit model
of nucleotide substitution was estimated by Akaike information criterion (AIC) as implemented in
jModelTest 2.1.7 [68]. The models selected were GTR+G+I for 16S rRNA, GTR+G for concatenated
genes of the Wolbachia MLST scheme [3], GTR+I for coxA, HKY+G for fbpA and GTR+G for the
remaining genes.



Microorganisms 2020, 8, 988 5 of 19

3. Results

3.1. Propagation of Wolbachia Strains wStri and wAlb1 in Ixodes spp. Cell Lines

Cell-free Wolbachia strain wStri bacteria, harvested from heavily-infected AeAl-2 cells (Figure 1a),
were initially used to infect ISE6, ISE18 and IRE11 cells. Once infection was established (Figure 1b),
wStri grew equally well in all three tick cell lines, and was routinely maintained in ISE6 cells by diluting
infected cells with uninfected cells 1:10 or 1:20 every 10 to 20 days through 29 passages over a 14-month
period. Cell-free Wolbachia harvested from infected ISE6 cells were pleomorphic, including round,
rod- and crescent-shaped bacteria (Figure 1c). There was a pathological effect of wStri on ISE6 cells
(Figure 1d) and it was necessary to subculture infected cells onto fresh cell layers. Infected cells were
hypertrophied and pyknotic.

Cell-free Wolbachia strain wAlbB bacteria, harvested from heavily-infected Aa23 cells, were initially
used to infect ISE6, ISE18 and IRE11 cells. All three cell lines were successfully infected; wAlbB grew
more slowly than wStri, without causing any obvious cytopathic effects, and was routinely maintained
in ISE6 cells by diluting infected cells with uninfected cells 1:5 every 4 weeks through 5 passages over
a 5-month period.

Microorganisms 2020, 8, x FOR PEER REVIEW 5 of 19 

 

Cell-free Wolbachia strain wStri bacteria, harvested from heavily-infected AeAl-2 cells (Figure 
1a), were initially used to infect ISE6, ISE18 and IRE11 cells. Once infection was established (Figure 
1b), wStri grew equally well in all three tick cell lines, and was routinely maintained in ISE6 cells by 
diluting infected cells with uninfected cells 1:10 or 1:20 every 10 to 20 days through 29 passages over 
a 14-month period. Cell-free Wolbachia harvested from infected ISE6 cells were pleomorphic, 
including round, rod- and crescent-shaped bacteria (Figure 1c). There was a pathological effect of 
wStri on ISE6 cells (Figure 1d) and it was necessary to subculture infected cells onto fresh cell layers. 
Infected cells were hypertrophied and pyknotic. 

Cell-free Wolbachia strain wAlbB bacteria, harvested from heavily-infected Aa23 cells, were 
initially used to infect ISE6, ISE18 and IRE11 cells. All three cell lines were successfully infected; 
wAlbB grew more slowly than wStri, without causing any obvious cytopathic effects, and was 
routinely maintained in ISE6 cells by diluting infected cells with uninfected cells 1:5 every 4 weeks 
through 5 passages over a 5-month period. 

 
Figure 1. Wolbachia strain wStri propagated in the Ixodes scapularis cell line ISE6. (a) Inoculum 
comprising cell-free Wolbachia (arrowheads) harvested from AeAl-2 mosquito cells; (b) ISE6 cells 
infected with wStri (arrows) at passage 19; (c) Cell-free Wolbachia (arrows) harvested from infected 
ISE6 cells 2 weeks post infection; (d) Heavily-infected ISE6 cell, 4 weeks after passage of infected cells 
onto uninfected cell layer. Giemsa-stained cytocentrifuge smears. 

3.2. Propagation of Wolbachia Strain wAlbB in a R. microplus Cell Line 

A single BME/CTVM23 culture was inoculated with cell-free wAlbB bacteria harvested from 
C6/36 cells and incubated at 28 °C. A single C6/36 culture was inoculated at the same time as a positive 
control. Weekly inverted microscope examination did not reveal any obvious deleterious effects on 
the tick or mosquito cells. Intracellular bacteria were detected 2 weeks p.i. in both tick and mosquito 
cells; as expected, the C6/36 cells were heavily infected by week 4, while in BME/CTVM23 cells the 
bacteria gradually increased in both infection rate (from <1% to 5% cells infected) and infection level 
(from <10 to >50 bacteria per cell) over the subsequent 4 months. Then, during the following 6 weeks, 
the bacterial growth rate increased rapidly until around 50% of cells were infected with up to >100 
bacteria visible per cell. At this point the first subculture onto fresh BME/CTVM23 cells was carried 
out; four weeks later this passage 1 culture was heavily infected and was passaged onto fresh 
BME/CTVM23 cells after a further 7 weeks. The passage 2 culture displayed a heavy infection 
between 8 and 12 weeks later (Figure 2a,b). 

Figure 1. Wolbachia strain wStri propagated in the Ixodes scapularis cell line ISE6. (a) Inoculum
comprising cell-free Wolbachia (arrowheads) harvested from AeAl-2 mosquito cells; (b) ISE6 cells
infected with wStri (arrows) at passage 19; (c) Cell-free Wolbachia (arrows) harvested from infected ISE6
cells 2 weeks post infection; (d) Heavily-infected ISE6 cell, 4 weeks after passage of infected cells onto
uninfected cell layer. Giemsa-stained cytocentrifuge smears.

3.2. Propagation of Wolbachia Strain wAlbB in a R. microplus Cell Line

A single BME/CTVM23 culture was inoculated with cell-free wAlbB bacteria harvested from C6/36
cells and incubated at 28 ◦C. A single C6/36 culture was inoculated at the same time as a positive
control. Weekly inverted microscope examination did not reveal any obvious deleterious effects on
the tick or mosquito cells. Intracellular bacteria were detected 2 weeks p.i. in both tick and mosquito
cells; as expected, the C6/36 cells were heavily infected by week 4, while in BME/CTVM23 cells the
bacteria gradually increased in both infection rate (from <1% to 5% cells infected) and infection level
(from <10 to >50 bacteria per cell) over the subsequent 4 months. Then, during the following 6 weeks,
the bacterial growth rate increased rapidly until around 50% of cells were infected with up to >100
bacteria visible per cell. At this point the first subculture onto fresh BME/CTVM23 cells was carried out;
four weeks later this passage 1 culture was heavily infected and was passaged onto fresh BME/CTVM23
cells after a further 7 weeks. The passage 2 culture displayed a heavy infection between 8 and 12 weeks
later (Figure 2a,b).
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Figure 2. Rhipicephalus microplus cell line BME/CTVM23 infected with Wolbachia strain wAlbB at
passage 2, 8 months after initial infection. (a,b) Giemsa-stained cytocentrifuge smears, arrows indicate
heavily-infected cells.

Transmission electron microscope examination of wAlbB-infected BME/CTVM23 cells at passage
1, 10 months after initial infection, revealed putative double membrane-bound bacteria resembling
Wolbachia propagated in infected mosquito cell lines [56,69] and observed in the sand flea Tunga
penetrans [14], the filarial nematode Brugia malayi [70] and the fruit fly Drosophila melanogaster [71].
Bacteria were seen either within membrane-bound compartments shared with a variety of structures
including host-cell components (membranous whorls) and possible vesicles of bacterial origin,
as reported previously [70] (Figure 3a–d,f,g), or apparently free in the cytoplasm (Figure 3e,g).
These structures were easily distinguished from host cell mitochondria in which cristae were visible
(Figure 3b,f,g).

Amplification by Wolbachia 16S rRNA qPCR confirmed the identity of the bacteria in the cultures
and revealed a wAlbB infection level in the BME/CTVM23 cells of over 1000 bacteria per haploid host
genome-equivalent. The failure to amplify by qPCR any product from the same sample using mosquito
18S rRNA primers confirmed the absence of contaminating C6/36 cells in the infected tick cell culture.
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Figure 3. Transmission electron micrographs showing putative bacteria in the cytoplasm of cells
of a culture of the Rhipicephalus microplus cell line BME/CTVM23 infected with Wolbachia strain
wAlbB. The cells were processed from a passage 1 culture, 10 months after initial infection;
m = mitochondrion. (a,c) low magnification views of infected cells; (b,d) enlarged areas of cells
shown in a, c respectively, showing bacteria-like structures (arrows); (e,f,g) bacteria-like structures in
BME/CTVM23 cell cytoplasm (arrows).
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3.3. Isolation and Propagation of a Novel Wolbachia Strain from Malaysian Cat Fleas

Seven pools of flea organs were inoculated into separate IDE8 cell cultures; of these, a single
pool of five individual Ctenocephalides sp. female flea organs yielded a Wolbachia 16S rRNA and wsp
PCR-positive culture. A fragment of the Wolbachia wsp gene was amplified from DNA extracted from
the culture at three months p.i. and was still detectable by PCR at the time of writing (nine months p.i.).
The Wolbachia wsp gene was also detectable by PCR in passages 1 and 2 at one month after subculture.
The infected cells did not exhibit any cytopathic effects detectable by weekly inverted microscope
examination. Intracellular bacteria were observed in Giemsa-stained cytocentrifuge smears prepared
from the parent culture at eight months p.i., with approximately 25% of cells infected (Figure 4a,b).
To further characterise the bacterium isolated from the Malaysian cat fleas, fragments of the Wolbachia
coxA, fbpA, ftsZ, hcpA and gatB genes were also amplified from DNA extracted from the parent infected
IDE8 cell culture at 5 months p.i. The resultant sequences from the novel Wolbachia isolate, designated
wCfeF, were deposited in the NCBI GenBank database under accession numbers MT584103 (16S
rRNA), MT577878 (coxA), MT577879 (fbpA), MT577880 (ftsZ), MT577881 (gatB) and MT577882 (hcpA),
and compared with published sequences to determine its relationship with other Wolbachia strains.
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Ctenocephalides sp. cat fleas. (a,b) Parent culture, 8 months after inoculation with flea organs;
Giemsa-stained cytocentrifuge smears, arrows indicate infected cells.

A phylogenetic tree based on partial 16S rRNA sequences (Figure 5) positioned the wCfeF isolate
within the clade consisting of arthropod and filarial Wolbachia strains from the F supergroup (posterior
probability = 100). These include two Wolbachia strains previously identified in Ctenocephalides felis
from Georgia, USA [15]. However, since only a short fragment of the 16S rRNA gene was used for
phylogenetic construction, further investigation using additional gene sequences was necessary to
determine its phylogenetic position. For this we used the concatenated and individual gene sets from
the Wolbachia MLST scheme: fragments of the coxA, fbpA, ftsZ, hcpA and gatB genes [3]. The phylogeny
of the concatenated MLST genes showed the clustering of wCfeF with Wolbachia strains from the
F clade, including those from insects such as Supella longipalpa (Blattodea), Paratrechina longicornis
(Hymenoptera) and Cimex lectularius (Hemiptera) (Figure 6a). Phylogenies based on individual genes
showed similar positioning of wCfeF within the F clade (Figure 6b–f). In these phylogenies, the current
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isolate appeared to be distinct from the other Wolbachia strains from C. felis that fall within other
clades [26]. Altogether, the findings here support the placement of the wCfeF isolate within the
F supergroup.
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of novel Wolbachia strain wCfeF (in bold) isolated from Malaysian cat fleas, and of Wolbachia strains
from the indicated hosts. (a) Concatenated MLST genes (2082 nucleotide positions); (b) coxA; (c) fbpA;
(d) ftsZ; (e) hcpA; (f) gatB. Numbers at nodes represent Bayesian posterior probabilities (%). Sample ID
and accession numbers are given respectively for the sequences from the Wolbachia PubMLST and
NCBI GenBank databases.
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4. Discussion

It is clear from our results that Wolbachia can invade and replicate in tick cells, at least in vitro.
We demonstrated susceptibility of three cell lines derived from I. scapularis and one each from I. ricinus
and R. microplus. Two laboratory-cultured strains and one novel field strain of Wolbachia, originating
from diverse insect groups (mosquitoes, leafhoppers and fleas) and belonging to different supergroups
(B and F), were able to infect and grow in tick cells. Special procedures, such as the shell vial technique
or centrifugation, were not necessary for the initial infection of tick cells with Wolbachia, and infected
cultures were maintained for long periods without the need for special incubation conditions. As seen
in chronically-infected mosquito cell cultures [69,72], tick cell cultures infected with Wolbachia strains
wAlbB and wCfeF did not display any cytopathic effect over prolonged periods in vitro. In contrast,
Ixodes spp. cultures heavily infected with the wStri strain displayed cytopathic effects, manifest as
hypertrophied or pyknotic cells; the same strain in mosquito cells (AeAl-2) caused heavily infected
cells to lose the ability to attach to a surface [56].

Considered together, all the tick cell lines used in the present study have previously been shown to
be permissive for a wide range of intracellular bacteria transmitted and/or harboured by invertebrates.
These include representatives of the genera Anaplasma [73,74], Cardinium [49,75], Ehrlichia [76–78],
Neoehrlichia [79,80], Mycobacterium [81], Rickettsia [51,54,62,82–84] and Spiroplasma [62,85]. A previous
study reported the propagation of a bacterium, then known as Wolbachia persica, in a Dermacentor
albipictus tick cell line [86], but this bacterium was later found to belong to the genus Francisella [87].
Although the majority of these bacteria are tick-transmitted, exceptions include the predominantly
flea-transmitted Rickettsia felis [83] and Mycobacterium leprae, the causative agent of leprosy, transmission
of which may be associated with biting insects and ticks [81,88]. Tick cells similarly support the
replication of a wide range of arboviruses transmitted not only by ticks but also by mosquitoes,
sand flies and midges [89]. Therefore, it is not surprising that tick cell lines should be susceptible
to infection with multiple strains of Wolbachia of insect origin. The ability of the novel Malaysian
flea-derived Wolbachia isolate to infect and grow in a tick cell line confirmed the usefulness of tick cell
lines in cultivating bacterial species of which ticks are not the natural hosts.

The cell lines used in the present study were also chosen because they belong to species in which
Wolbachia has been detected by molecular techniques: I. scapularis [33,44], I. ricinus [34–36,38,43] and
R. microplus [37,41]. Other tick species reported to harbour Wolbachia DNA include the ixodid ticks
Amblyomma americanum [39], Rhipicephalus sanguineus [32], Dermacentor silvarum [45] and Haemaphysalis
hystricis [40] and the argasid tick Ornithodoros rietcorreai [42]. None of these studies included a screen for
insect DNA; concordance between the presence of Wolbachia and nematodes was not demonstrated [39].
To date, only two studies on I. ricinus [47,48] have attempted to make the connection between Wolbachia
and parasitic insects by screening samples for the presence of DNA from both bacteria and the parasitic
wasp Ixodiphagus hookeri.

The intracellular morphology of the Wolbachia strains, as revealed in Giemsa-stained smears,
was quite similar to that of other members of the Rickettsiales propagated in tick cell lines, such as
Anaplasma marginale, Ehrlichia ruminantium, Neoehrlichia mikurensis and Rickettsia raoultii [54,73,77,80].
Purple-staining, pleomorphic bacteria were located singly or in small groups in the cytoplasm;
no bacteria were seen in cell nuclei. The ultrastructural morphology of the wAlbB strain in BME/CTVM23
cells was more difficult to interpret. Readily-identifiable bacteria, such as those seen in R. raoultii-infected
cells of the same line [54], were not obvious. Where bacteria could be identified, they were generally
situated within large, membrane-bound vacuoles also occupied by a variety of structures commonly
seen in electron micrographs of tick cells (lipid membrane whorls and vesicles of varying size and
shape). The origin of the vesicles is unclear; the presence of secretory vesicles in vacuoles occupied by
the wMelPop strain of Wolbachia in D. melanogaster brain cells was reported previously [71], and the
authors speculated that these could have originated from the endoplasmic reticulum. However, in a
detailed ultrastructural study of Wolbachia in B. malayi nematodes, immunogold labelling was used to
show that vesicles found in association with Wolbachia were of bacterial origin [70].
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Although over a dozen Wolbachia strains (including wStri, wAlbB and wMelPop) can be propagated
continuously within insect cell culture systems, they belong exclusively to the more well-characterised
A and B supergroups [69,72,90]. To the best of our knowledge, the new Malaysian Wolbachia strain is
the only F supergroup member to be isolated into a cell line to date, the only flea-derived strain to be
conclusively isolated and propagated over a prolonged period and the only Wolbachia field strain to be
isolated into a tick cell line. A previous study did report the isolation of Wolbachia-like organisms from
C. felis alongside Rickettsia felis in ISE6 cells; however, these putative Wolbachia were only identified
morphologically and molecular confirmation was not presented [91].

The Wolbachia F supergroup is unique as members have been found in both arthropod and
nematode hosts [92,93]. A previous study experimentally demonstrated a nutritional mutualism
relationship between an F supergroup Wolbachia (wCle) and its host, the bedbug Cimex lectularius [20].
To the best of our knowledge, the only phenotypic data pertaining to Wolbachia infection in a flea
was a comparison between laboratory and wild populations of the gerbil flea, Synosternus cleopatrae,
that detected a negative impact of infection on reproductive success in the laboratory colony but not in
the wild population [94]. Interestingly, the recent completion of the C. felis genome from a laboratory
colony in California led to the generation of two complete Wolbachia genomes, neither of which was
placed in supergroup F [26]. One of these genomes, designated wCfeT, contains a complete biotin
synthesis operon and may be involved in providing nutrients to the host cell. The second genome,
wCfeJ, encodes a toxin-antidote system similar to that responsible for CI in dipteran hosts. However,
experimental confirmation of mutualistic or parasitic roles for these Wolbachia in C. felis has not been
published. The availability of a Wolbachia isolate from the F supergroup growing in a cell line will
allow for further genetic and phenotypic characterisation at the cellular level, which could be useful in
elucidating the Wolbachia-host relationship for this particular strain.

Despite the completion of the C. felis genome project and the detection of Wolbachia DNA in
Ctenocephalides spp. fleas in several other studies [15,16,22,24,26], actual Wolbachia bacteria had not been
visualised or isolated from fleas of this genus prior to the present study, although immunohistochemistry
and transmission electron microscopy identified Wolbachia in the sand flea T. penetrans [14]. Sequence and
phylogenetic analyses from separate studies suggest Ctenocephalides sp. fleas may not only host a wide
range of Wolbachia strains from several distinct supergroups, but may also contain strains from a novel,
divergent clade [15,16,22,26,93]. In Malaysia, DNA of Wolbachia from the B and F supergroups was
detected in C. felis [22]; however, the sequences are not available in public databases for comparison
with the novel wCfeF isolate. The phylogenies of 16S rRNA and the MLST scheme genes provided
compelling evidence for the placement of the wCfeF isolate within the F supergroup, similar to the
Wolbachia strains previously reported from North American C. felis [15].

Reports of Wolbachia from Malaysia and the wider Southeast Asian region have primarily concerned
the A and B supergroup Wolbachia from mosquitoes, owing to national research priorities placed on
mosquito-borne diseases [95–97]. A number of studies also investigated the presence of Wolbachia
in other insects, such as the tephritid fruit flies and the butterfly Hypolimnas bolina, as well as filarial
nematodes including Brugia pahangi and Onchocerca borneensis [98–101]. The present study represents
the first isolation and genetic characterisation of a Wolbachia strain from Ctenocephalides sp. fleas in
this region.

The phylogenies from the concatenated genes and a subset of individual MLST genes (coxA,
fbpA and ftsZ) showed that wCfeF appeared to be closely related to Wolbachia strains from the longhorn
crazy ant P. longicornis, and the brown-banded cockroach S. longipalpa [102,103]. Results from a recent
study suggested the occurrence of horizontal transfer of F group Wolbachia between Myrmecophilus
spp. ant crickets and their ant hosts, including P. longicornis [102]. Currently, the infection events
contributing to the occurrence of multiple Wolbachia strains in C. felis are still not fully understood,
although it has been suggested that the predation of fleas by other insect species could be a possible
mode of transmission between distantly-related hosts [20].
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It is important to consider the possibility of there being more than one Wolbachia strain within the
wCfeF culture since the starting inoculum consisted of organs from five individual fleas. Examination
of our sequencing trace files revealed a small number of double peaks at several nucleotide positions
in some amplicon sequences, suggesting the possibility of strain variations. However, the phylogenies
based on the individual genes indicate that, even if more than one strain was present, they must be
closely related as the placement of the novel strain wCfeF within the F clade was consistent across
all tested loci. Further studies, including whole genome sequencing, should be carried out to verify
the phylogenetic relationship between wCfeF and other Wolbachia strains, to establish the host cell
range capable of supporting its in vitro propagation, and to determine its relationship with such
host cells. Moreover, the taxonomy and population genetics of Ctenocephalides spp. in South-East
Asia is complex, with two “tropical clusters” of C. felis as well as C. orientis (previously C. f. orientis)
being found in the region [104]. Due to the emphasis on bacterial isolation from fresh material in the
current study, detailed morphometric or molecular characterisation of the fleas was not attempted,
but it is important to note that C. orientis has a strong host preference for dogs and, to a lesser extent,
small ruminants [104,105]. Therefore, further studies are needed to determine the possible range of flea
species and subspecific clades harbouring wCfeF in Malaysia and the wider South-East Asian region.

5. Conclusions

Tick cell lines can now be added to panels of insect, predominantly mosquito, cell lines to enhance
the capability to isolate field strains of Wolbachia from naturally-infected arthropods. The ability to
propagate Wolbachia continuously in tick cell lines provides a platform to examine how these bacteria
might modulate the replication of tick-borne arboviruses, bacteria and protozoa, potentially leading to
novel control strategies for tick-borne diseases. In light of our demonstration, that tick cells are capable
of supporting long-term infection with Wolbachia, the exact nature of the relationship between the
bacterium, ticks and other parasitic arthropods such as Ixodiphagus in the field should be re-examined.
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