
entropy

Article

Error Bound of Mode-Based Additive Models

Hao Deng 1, Jianghong Chen 2, Biqin Song 1,* and Zhibin Pan 1,*

����������
�������

Citation: Deng, H.; Chen, J.; Song, B.;

Pan, Z. Error Bound of Mode-Based

Additive Models. Entropy 2021, 23,

651. https://doi.org/10.3390/

e23060651

Academic Editor: Ercan Kuruoglu

Received: 22 March 2021

Accepted: 19 May 2021

Published: 22 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Science, Huazhong Agricultural University, Wuhan 430070, China; dengh@mail.hzau.edu.cn
2 College of Electrical and New Energy, China Three Gorges University, Yichang 443002, China;

chenjh97@126.com
* Correspondence: biqin.song@mail.hzau.edu.cn (B.S.); pzbhallow@mail.hzau.edu.cn (Z.P.)

Abstract: Due to their flexibility and interpretability, additive models are powerful tools for high-
dimensional mean regression and variable selection. However, the least-squares loss-based mean
regression models suffer from sensitivity to non-Gaussian noises, and there is also a need to improve
the model’s robustness. This paper considers the estimation and variable selection via modal
regression in reproducing kernel Hilbert spaces (RKHSs). Based on the mode-induced metric
and two-fold Lasso-type regularizer, we proposed a sparse modal regression algorithm and gave
the excess generalization error. The experimental results demonstrated the effectiveness of the
proposed model.

Keywords: modal regression; additive models; reproducing kernel Hilbert spaces; error bound

1. Introduction

Regression estimation and variable selection are two important tasks for high-dimensional
data mining [1]. Sparse additive models [2,3], aiming to deal with the above tasks simulta-
neously, have been extensively investigated in the mean regression setting. As a class of
models between linear and nonparametric regression, these methods inherit the flexibility
from nonparametric regression and the interpretability from linear regression. Typical
methods include COSSO [4] and SpAM [2] and its variants, such as Group SpAM [3],
SAM [5], Group SAM [6], SALSA [7], MAM [8], SSAM [9], and ramp-SAM [10]. From the
lens of nonparametric regression, the additive structure on the hypothesis space is crucial
to overcome the curse of dimensionality [7,11,12].

Usually, the aforementioned models are limited to the estimation of the conditional
mean under the mean-squared error (MSE) criterion. However, for the complex non-
Gaussian noises (e.g., the skewed noise, the heavy-tailed noise), it is difficult to extract
the intrinsic trends from the mean-based approaches, resulting in degraded performance.
Beyond the traditional mean regression, it is interesting to formulate a new regression
framework under the (conditional) mode-based criterion. With the help of the recent works
in [13–19], this paper aimed to propose a new robust sparse additive model, rooted in
modal regression associated with the RKHS.

As an alternative approach to mean regression, modal regression has been investigated
on statistical behavior [14,15,17] and real-world applications [20,21]. Yao [14] proposed a
modal linear regression algorithm and characterized its theoretical properties under the
global mode assumption. As a natural extension of Lasso [22], Wang et al. [15] considered
the regularized modal regression and established its analysis on the generalization bound
and variable selection consistency. Feng et al. [17] studied modal regression by a learning
theory approach and illustrated its relation with MCC [23,24]. Different from the above
global approaches, some local modal regression algorithms were formulated in [16,25]
with convergence guarantees. Recent literature [26] gave a general overview of modal
regression, and a more comprehensive list of references can be found there.

The proposed robust additive models are formulated under the Tikhonov regular-
ization scheme, which involves three building blocks, including the mode-based metric,
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the RKHS-based hypothesis space, and two Lasso-type penalties. Since the linear func-
tion space, polynomial function space, and Sobolev/Besov space are special cases of the
RKHS, the kernel-based function space is more flexible than the traditional spline-based
spaces or other dictionary-based hypotheses [2,5,27–29]. The mode-induced regression
metric is robust to the non-Gaussian noise according to the theoretical and empirical
evaluations [14,15,17]. The regularized penalty addresses the sparsity and smoothness
of the estimator, which has shown promising performance for mean regression [2,29–31].
Therefore, different from mean-based kernel regression and additive models, the mode-
based approach enjoys robustness and interpretability simultaneously due to its metric
criterion and trade-off penalty. The estimator of our approach can be obtained by integrat-
ing the half-quadratic (HQ) optimization [32] and the second-order cone programming
(SOCP) [33].

The rest of this article is organized as follows. After introducing the robust additive
model in Section 2, we state its generalization error bound in Section 3. Finally, Section 5
ends this paper with a brief conclusion.

2. Methodology
2.1. Modal Regression

In this section, we recall the basic background on modal regression [19,34]. Let X be a
compact subset of Rp associated with the input covariate vector and Y ∈ R be the response
variable set. In this paper, we considered the following nonparametric model:

Y = f ∗(X) + ε, (1)

where X = (X1, . . . , Xp)T ∈ X , Y ∈ Y , and ε is a random noise. For feasibility, we denote
by ρ the underlying joint distribution of (X, Y) generated by (1).

Being different from the traditional mean regression under the noise condition
E(ε|X = x) = 0 (e.g., Gaussian noise), we just require that the mode of the conditional
distribution of ε equal zero at each x ∈ X . That is:

∀x ∈ X , mode(ε|X = x) = arg max
t∈R

Pε|X(t|X = x) = 0, (2)

where Pε|X is the conditional density of ε given X. Notice that the zero condition is not
specified to the homogeneity or symmetry distribution of noise ε, and some non-Gaussian
noises (e.g., the skewed noise, the heavy-tailed noise) are not excluded.

From (1), we further deduce that:

f ∗(u) :=
p

∑
j=1

f ∗j (uj) = mode(Y|X = u) = arg max
t

PY|X(t|X = u),

where u = (u1, . . . , up)T ∈ X and PY|X denotes the density of Y conditional on X. Then,
the purpose of modal regression is to find the target function f ∗ according to the empirical
data z = {zi}n

i=1 = {(xi, yi)}n
i=1 drawn independently from ρ.

For modal regression, the performance of a predictor f : X → R is measured by the
mode-based metric:

R( f ) =
∫
X

PY|X( f (x)|X = x)dρX (x), (3)

where ρX is the marginal distribution of ρ with respect to input space X .
Although the target function f ∗ is the maximizer of R( f ) over all measurable func-

tions, it cannot be estimated directly via maximizing (3) due to the unknown PY|X and ρX .
Fortunately, some indirect density-estimation-based strategies were proposed in [14,15,17].
As shown in Theorem 5 of [17], R( f ) equals the density function of random variable
E f = Y− f (X) at zero, e.g.,

R( f ) = PE f (0).
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Therefore, we can find an approximation of f ∗ by maximizing the empirical version of
PE f (0) with the help of kernel density estimation (KDE).

Let Kσ : R×R → R+ be a kernel with bandwidth σ, and its representing function
φ : R → [0, ∞) satisfies φ( u−u′

σ ) = Kσ(u, u′), ∀u, u′ ∈ R. Typical kernels used in KDE
include the Gaussian kernel, the Epanechnikov kernel, the logistic kernel, and the sigmoid
kernel. The KDE-based estimator of PE f (0) is defined as:

P̂E f (0) =
1

nσ

n

∑
i=1

Kσ(yi − f (xi), 0) =
1

nσ

n

∑
i=1

φ(
yi − f (xi)

σ
) := R̂σ( f ).

Learning models for modal regression are usually formulated by Tikhonov regularization
schemes associated with the empirical metric R̂σ( f ); see, e.g., [15,35].

Naturally, the data-free modal regression metric, w.r.t. R̂σ( f ), can be defined as:

Rσ( f ) =
1
σ

∫
X×Y

φ(
y− f (x)

σ
)dρ(x, y).

In theory, the learning performance of estimator f : X → R can be evaluated in terms
of R( f ) −R( f ∗), which can be further bounded via Rσ( f ) −Rσ( f ∗) (see Theorem 10
in [17]).

Remark 1. As illustrated in [17], when taking Kσ as a Gaussian kernel, the modal regression for
maximizingRσ( f ) is consistent with learning under the maximum correntropy criterion (MCC).
By employing different kernels, we can provide rich evaluated metrics for better robust estimation.

2.2. Mode-Based Sparse Additive Models

The additive model is formulated as follows,

Y =
p

∑
j=1

f ∗j (Xj) + ε, (4)

where Xj ∈ X, (j = 1, 2, · · ·, p), Y ∈ Y , and f ∗j are unknown component functions. By
employing nonlinear hypothesis function spaces with an additive structure, the additive
model provides better flexibility for regression estimation and variable selection [19]. In [28],
the theoretical properties of the sparse additive model with the quantile loss function were
discussed. We introduce some basic notation and assumptions in a similar way.

Suppose that E f ∗j (Xj) = 0 and ‖ f ∗j ‖Kj ≤ 1 for each f ∗j in (4) with j ∈ S . Here,
f ∗j : Xj → R is an unknown univariate function in a reproducing kernel Hilbert space
(RKHS)Hj := HKj associated with kernel Kj and norm ‖ · ‖Kj [30,31], and S ⊆ {1, . . . , p}
is an intrinsic subset with cardinality |S| < p. This means each observation (xj, yj) is
generated according to:

yi = ∑
j∈S

f ∗j (xij) + εi, i = 1, . . . , n,

where xi = (xi1, . . . , xip)
T ∈ Rp, f ∗j ∈ Hj and ε satisfies the condition (2).

For any given j ∈ {1, . . . , p}, denote Br(Hj) = {g ∈ Hj : ‖g‖Kj ≤ r}. The hypothesis
space considered here is defined by:

F = { f =
p

∑
j=1

f j : f j ∈ Br(Hj), i = 1, . . . , p}, (5)
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which is a subset of the RKHSH = { f = ∑
p
j=1 f j : f j ∈ Hj} with the norm:

‖ f ‖2
K = inf{

p

∑
j=1
‖ f j‖2

Kj
: f =

p

∑
j=1

f j}.

For each Xj and the corresponding marginal distribution ρXj , we denote ‖ f j‖2
2 :=∫

Xj
| f j(u)|2dρXj(u). Given inputs {xi}n

i=1, define the empirical norm of each f j as:

‖ f j‖2
n :=

1
n

n

∑
i=1

f 2
j (xij), ∀ f j ∈ Hj, j ∈ {1, . . . , p}.

With the help of the mode-based metric (3) and the hypothesis space (5), we formulated
the mode-based sparse additive model as:

f̂ = arg max
f∈F
{R̂σ( f )− λ1

p

∑
j=1
‖ f j‖n − λ2

p

∑
j=1
‖ f j‖Kj}, (6)

where (λ1, λ2) is a pair of positive regularization. The first regularization term is sparsity-
promoting [11,36], and the second one guarantees smoothness in the solution.

By the representer theorem of kernel methods (e.g., [37]), the solution of (6) admits
the following form:

f̂ (u) =
n

∑
i=1

p

∑
j=1

α̂ijK(uj, xij), u = (u1, . . . , up)
T

with a collection of coefficients {α̂j = (α1j, . . . , αnj)
T ∈ Rn : j = 1, . . . , p}.

The optimal coefficients with respect to (6) are the solution to the following non-
convex optimization:

max
αj∈Rn ,αT

j Kjαj≤1
{ 1

n

n

∑
i=1

φ(
yi −∑

p
j=1 KT

ji αj

σ
)− λ1√

n

p

∑
j=1
‖Kjαj‖2 − λ2

p

∑
j=1

√
αT

j Kjαj}

where Kji = (Kj(x1j, xij), . . . , Kj(xnj, xij))
T ∈ Rn and Kj = (Kj(xij, xl j))

n
i,l = (Kj1, . . . , Kjn) ∈

Rn×n.

Remark 2. There are various combinations of sparsity and smoothness regularization for additive
models [2,3,29–31]. The regularization in this paper adopting a two-fold group Lasso scheme, which
was employed in [28], but in quantile regression settings, is also different from the coefficient-based
regularized modal regression in [19].

Remark 3. From the lens of computation, the proposed algorithm (6) can be transformed into
a regularized least-squares regression problem by HQ optimization [32]. Then, the transformed
problem can be tackled with the SOCP [33] easily.

3. Error Analysis

This section states the upper bounds of the excess quantityR( f ∗)−R( f̂ ). For the ease
of presentation, we only considered the special setting whereHj ≡ Hj′ , ∀j, j′ ∈ {1, . . . , p},
and we denote ⊕p

j=1Hj asHK with sup K(x, x) ≤ 1.
Recall that the Mercer kernel K : X × X → R admits the following spectral expan-

sion [38]:

K(x, x′) = ∑
`≥1

b`ψ`(x)ψ`(x′), x, x′ ∈ X ,
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where {(b`, ψ`)}`≥1 are the pairs of eigenvalue-eigenfunctions of integral operator T f :∫
K(·, x) f (x)dρX (x) with b1 ≥ b2 ≥ . . . ≥ 0.

To evaluate the complexity ofHK in terms of the decay rate of eigenvalues {b`}`≥1 [27,28],
we refer to Assumption 1 in [28] as the basis of our analysis.

Assumption 1. There exist s ∈ (0, 1) and constant c1 > 0 such that b` ≤ c1`
− 1

s , ∀` ≥ 1.

As illustrated in [27,28], the requirement s < 1 is a weak condition since ∑` b` =
EK(x, x) ≤ 1. In particular, it holds b` � `−2h for the Sobolev spaceHK = Wh

2 (h > 1
2 ) with

the Lebesgue measure on [0, 1].
To describe the hypothesis in RKHS, we refer to Assumption 2 in [28].

Assumption 2. For some s ∈ (0, 1) given in Assumption 1, there exists a positive constant c2
such that ‖ f ‖∞ ≤ c2‖ f ‖1−s

2 ‖ f ‖s
K, ∀ f ∈ HK.

Remark 4. To understand the statistical performance of the proposed estimator without any “corre-
latedness” conditions on covariates, Rademacher complexity [39] was used to measure functional
complexity in [28]. We drew on the experience of [28].

In general, Assumption 2 is stronger than Assumption 1 and is satisfied when the
RKHS is continuously embeddable in a Sobolev space. For the uniformly bounded {ψ`}`≥1,
this sub-norm condition is consistent with Assumption 1.

For any given independent input variables {xi}n
i=1 ⊂ X , define the Rademacher

complexity:

Rn( f ) :=
1
n

n

∑
i=1

σi f (xi), ∀ f ∈ HK,

where {σi}n
i=1 is an i.i.d. sequence of Rademacher variables that take {±1} with probabil-

ity 1/2. As shown in [40], it holds:

ERn{ f ∈ HK{‖ f ‖K = 1, ‖ f ‖2 ≤ t}} � 1√
n
[

∞

∑
`

min{t2, b`}]
1
2 .

Moreover, from Assumption 1, define:

γn := inf{γ ≥
√

A log p̃
n

, E[ sup
‖ f ‖K=1,‖ f ‖2≤t

|Rn( f )|] ≤ γt + γ2, ∀t ∈ (0, 1)}

� max{
√

A log p̃
n

, (
1
n
)

1
2(1+α) }.

The main idea of our error analysis is to first state a theory result for a defined event
and then investigate the behavior of f̂ in (6) conditional on that event.

Define η(t) := max{1,
√

t, t/
√

n} for any t > 0 and ξn := ξn(λ) = max{λ− α
2 n−

1
2 ,

λ−
1
2 n−

1
1+α ,

√
log p

n }, and consider the event:

θ(t) = {| 1
n

n

∑
i=1

εi f (xi)| ≤ cαη(t)ξn(‖ f ‖2 + λ
1
2 ‖ f ‖K), ∀ f ∈ HK},

where {εi}n
i=1 are zero-mean i.i.d. random variables with |εi| ≤ L and cα is a constant

depending on α and L.

Remark 5. To analyze the behavior of the regularized estimator conditioned on the event, several
basic facts of the empirical processes were introduced in [28]. Our work can be boiled down to this
framework. We introduced the relevant lemmas in [28] as a stepping stone.
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Lemma 1. Let Assumptions 1 and 2 be true. If log p√
n ≤ 1, it holds:

P(θ(t)) ≥ 1− exp{−t}, ∀λ > 0, t ≥ 1.

The following lemma (see also Theorem 4 in [41]) demonstrates the relationship
between the empirical norm ‖ · ‖n and ‖ · ‖2 for functions inHK.

Lemma 2. For A ≥ 1 and any given p̃ ≥ p with log p̃ ≥ 2 log log n, there exists a constant c
such that:

‖ f ‖2 ≤ c(‖ f ‖n + γn‖ f ‖K)

and:
‖ f ‖n ≤ c(‖ f ‖2 + γn‖ f ‖K)

with confidence at least 1− p̃−A, where γn � max(
√

A log p̃
n , ( 1

n )
1

2(1+α) ).

Lemma 3. Let {zi}n
i=1 ⊂ Z be independent random variables, and let Γ be a class of real-valued

functions on Z satisfying:

‖γ‖ ≤ ηn, ∀γ ∈ Γ, and
1
n

n

∑
i=1

var(γ(zi)) ≤ ι2n,

for some positive constants ηn and ιn. Define ζ := supγ∈Γ |
1
n ∑n

i=1 γ(zi)− Eγ(z)|. Then,

P{ζ ≥ Eζ + t
√

2(ι2n + 2ηnEz) +
2ηnt2

3
≤ exp{−nt2}

For any given ∆− and ∆+, define:

F (∆−, ∆+) = { f =
p

∑
j=1

f j ∈ HK : γn

p

∑
j=1
‖ f j − f ∗j ‖2 ≤ ∆−, γ2

n

p

∑
j=1
‖ f j − f ∗j ‖K ≤ ∆+},

Lemma 4. Let Assumptions 1 and 2 be true for eachHj. For any given A ≥ 2, with confidence at
least 1− p̃−A, it holds:

Rσ( f ∗)−Rσ( f )− (R̂σ( f ∗)− R̂σ( f )) ≤ c∗η(t0)(∆− + ∆+) + exp{− p̃},

for any f ∈ F (∆−, ∆+) with max{∆−, ∆+} ≤ e p̃, where t0 = 2 log( 2
√

3
log 2 ) + A log p̃ + 2 log p̃,

λ = n−
1

1+α , and c∗ is a positive constant.

Proof. Denote Γ = {γ(z) : γ(z) = 1
σ φ( y− f ∗(x)

σ )− 1
σ φ( y− f (x)

σ ), f ∈ F (∆−, ∆+)}. It is easy
to verify that:

Eγ(z)− 1
n

n

∑
i=1

γ(zi) = R( f ∗)−R( f )− (R̂( f ∗)− R̂( f )), γ ∈ Γ.

Let ζ := supγ∈Γ |
1
n ∑n

i=1 γ(zi)− Eγ(z)|. From Lemma 3, we have:

ζ ≤ Eζ +

√
2t(ι2n + 2ηnEζ)

n
+

2ηnt
3n

, (7)

with probability at least 1 − exp{−t}, where constants supγ∈Γ ‖γ‖∞ = ηn and

supγ∈Γ

√
1
n ∑n

i=1 var(γ(zi)) = ιn. Observing that:
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√
2t(ι2n + 2ηnEζ)

n
≤

√
2tι2n

n
+ 2

√
ηnEζ

n
≤

√
2t
n

ιn + Eζ +
ηn

n
, (8)

we can take:

ι2n ≤ 2E(γ(z))2 = 2E(
1
σ

φ(
y− f ∗(x)

σ
)− 1

σ
φ(

y− f (x)
σ

))2 ≤ 2‖φ′‖2
∞

σ4 ‖ f − f ∗‖2
2 ≤

2‖φ′‖2
∞

σ4
∆2
−

γ2 , (9)

and:

ηn = sup
γ∈Γ
‖γ‖∞ ≤

‖φ′‖∞

σ2 ‖ f ∗ − f ‖∞ ≤
‖φ′‖∞

σ2 ‖ f ∗ − f ‖K ≤
‖φ′‖∞

σ2
∆+

γ2
n

. (10)

Combining (7)–(10), we obtain with confidence at least 1− exp{−t}

ζ ≤ 2Eζ +
2‖φ′‖∞

γnσ2

√
t
n
+

κ‖φ′‖∞∆+

σ2γ2
n

1 + t
n

.

By a symmetrization technique in [42], we have:

Eζ ≤ 2ERn(Γ) ≤
2‖φ′‖∞

σ2 ERn(F − f ∗).

Applying Lemma 3 forRn(F − f ∗), we obtain that:

E[Rn(F − f ∗)] ≤ Rn(F − f ∗) + 4
∆−
γn

√
2t
n
+

∆+

γ2
n

1 + t
n

,

with probability at least 1− 2 exp{−t}. Moreover, with probability at least 1− 2 exp{−t},
it holds:

ζ ≤ 8‖φ′‖∞

σ2 Rn(F − f ∗) +
6‖φ′‖∞∆−

γnσ2

√
t
n
+

5‖φ′‖∞∆+

γ2
nσ2

1 + t
n

≤ 8‖φ′‖∞

σ2

p

∑
j=1
Rn(Hj − f ∗j ) +

6‖φ′‖∞∆−
γnσ2

√
t
n
+

5‖φ′‖∞∆+

γ2
nσ2

1 + t
n

.

For the event θ(t), Lemma 1 demonstrates that:

|Rn( f )| ≤ cαη(t)ξn(‖ f ‖2 + λ
1
2 ‖ f ‖K), ∀ f ∈ HK, ∀λ > 0,

with confidence 1− exp{−t}. Then,

ζ ≤ 8‖φ′‖∞cαη(t)ξn

σ2 sup
f∈F
{

p

∑
j=1
‖ f − f ∗j ‖2 + λ

1
2

p

∑
j=1
‖ f j − f ∗j ‖K}+

6‖φ′‖∞∆−
γnσ2

√
t
n
+

5‖φ′‖∞∆+

γ2
nσ2

1 + t
n

.

Taking λ = n−
1

1+α , we can verify that cγn ≥ ξn and ξnλ
1
2 ≥ cγ2

n. Then,

ζ ≤ 8cαη(t)‖φ′‖∞

σ2 (∆+ + ∆−) +
6∆−‖φ′‖∞

σ2

√
t

A log p̃
+

5∆+‖φ′‖∞t
σ2 A log p̃

,

for some event θ(∆−, ∆+).
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For t = 2 log(2
√

3/ log 2) + A log p̃ + 2 log p̃, we deduce that e− p̃ ≤ ∆− ≤ e p̃

and e− p̃ ≤ ∆+ ≤ e p̃ considering (2p̃ + 1)2 different discrete pairs ∆j
− = ∆j

+ := 2−j,
j = − p̃, . . . , p̃, and we deduce that:

P(
⋂
k,j

θ(∆j
−, ∆j

+)) ≤ 1− 3(
2

log 2

2
p̃2 exp{−2 log(

2
√

3
log 2

− A log p̃− 2 log p̃} ≤ 1− p̃−A.

When ∆− ≤ e− p̃ or ∆+ ≤ e− p̃, it is trivial to obtain the desired result.

The proof of Lemma 4 is derived from the proof of Proposition 1 in [28] for the quantile
regression. We state our main result on the error bound.

Theorem 1. Let the regularization parameters of f̂ defined in (6) be λ1 =
√

ξγn and λ2 = ξγ2
n,

where ξ = max{2cη(t0), 4} with η(t) = max{1,
√

t, t/
√

n}, t0 = 2 log(2
√

3/ log 2) +

A log p̃ + 2 log p̃, and γn � max(
√

A log p̃
n , ( 1

n )
1

2(1+α) ). Under the conditions of Assumptions 1
and 2, for any p̃ ≥ p such that log p ≤

√
n and log p̃ ≥ 2 log log n, then for some constant

A ≥ 2, such that with probability at least 1− 2d̃−A:

R( f ∗)−R( f̂ ) ≤ cs‖φ′‖∞η(t0)(η(t0))
1
4
√

γn ≤ c(η(t0))
5
4 max{( A log p̃

c
)

1
4 , (

1
n
)

1
4(1+α) }

≤ c max{
√

A log p̃,
A log p̃√

n
}

5
4 ·max{( A log p̃

n
)

1
4 , (

1
n
)

1
4+4α }

≤ c max{ (A log p̃)
7
8

n
1
4

,
(A log p̃)

1
2

n
1

4+4α

,
(A log p̃)

3
2

n
3
4

,
(A log p̃)

5
4

n
3+2α
4+4α

}.

Proof. By the definition of f̂ in (6), we know that:

R̂σ( f̂ )− λ1 ∑
p
j=1 ‖ f̂ j‖n − λ2 ∑

p
j=1 ‖ f̂ j‖Kj ≥ R̂σ( f ∗)− λ1 ∑

p
j=1 ‖ f ∗j ‖n − λ2 ∑

p
j=1 ‖ f ∗j ‖Kj .

This implies that:

R̂σ( f̂ )−Rσ( f ∗)− λ1

p

∑
j=1
‖ f̂ j‖n − λ2

p

∑
j=1
‖ f̂ j‖Kj

≥ [Rσ( f̂ )−Rσ( f ∗)]− [R̂σ( f̂ )− R̂σ( f ∗)]− λ1

p

∑
j=1
‖ f ∗j ‖n − λ2

p

∑
j=1
‖ f ∗j ‖Kj .

Moreover,

Rσ( f ∗)−Rσ( f̂ ) ≤ Rσ( f ∗)−Rσ( f̂ ) + λ1 ∑
j/∈S
‖ f̂ j‖n + λ2 ∑

j/∈S
‖ f̂ j‖K

≤ [Rσ( f ∗)−Rσ( f̂ )]− [R̂σ( f ∗)− R̂σ( f̂ )] + λ1 ∑
j∈S

(‖ f ∗j ‖n − ‖ f̂ j‖n) + λ2 ∑
j∈S

(‖ f ∗j ‖K − ‖ f̂ j‖K)

≤ [Rσ( f ∗)−Rσ( f̂ )]− [R̂σ( f ∗)− R̂σ( f̂ )] + λ1 ∑
j∈S
‖ f̂ j − f ∗j ‖n + λ2 ∑

j∈S
‖ f̂ j − f ∗j ‖K . (11)

Taking λ1 =
√

ξγn, λ2 = ξγ2
n with γn = max{

√
A log p̃

n , ( 1
n )

1
2+2α }, α ∈ (0, 1), we de-

duce that:

γn

p

∑
j=1
‖ f̂ j − f ∗j ‖2 ≤ 2p(

1
n
)

1
2+2α ≤ 2p̃(

1
4
) ≤ e p̃, ∀n ≥ 1, p̃ ≥ p,

and:

γ2
n

p

∑
j=1
‖ f j − f ∗j ‖Kj ≤ γnγn

p

∑
j=1
‖ f̂ − f ∗‖Kj ≤ e− p̃.
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Therefore, we verify that f̂ ∈ F (∆−, ∆+) with ∆− ≤ e p̃ and ∆+ ≤ e p̃. With the choices
λ2 = λ2

1 = ξγ2
n, it holds:

λ1‖ f̂ j − f ∗j ‖n + λ2‖ f̂ j − f ∗j ‖K ≤ 2(λ1 + λ2) = 4
√

ξγn, j ∈ S .

due to the fact ‖ f j‖n ≤ ‖ f j‖K ≤ 1, for any f j ∈ HKj .
According to Lemma 4 and (11), we obtain:

Rσ( f ∗)−Rσ( f̂ )

≤ cηt0‖φ′‖∞

σ2 (γn

p

∑
j=1
‖ f̂ j − f ∗j ‖2 + γ2

n

p

∑
j=1
‖ f̂ j − f ∗j ‖K) + λ1 ∑

j∈S
‖ f̂ j − f ∗j ‖n + λ2 ∑

j∈S
‖ f̂ j − f ∗j ‖K + e− p̃

≤ cη(t0)‖φ′‖∞

σ2

√
ξγn + e− p̃,

with probability at least 1− 2p̃−A.
Notice that log p̃ ≥ 2 log log n implies that e− p̃ ≤ n−2 ≤ γn. Then:

Rσ( f ∗)−R( f̂ ) ≤ cη(t0)‖φ′‖∞

σ2

√
ξγn.

Combining this with Theorem 9 in [17] and setting σ = (‖φ′‖∞η(t0)
√

ξγn)
1
4 , we

obtain the desired result.

The proof of Theorem 1 is inspired by that of Theorem 1 in [28]; see [28] for more details.
According to Theorem 1, we can conclude that the mode-based SpAM can achieve the learning

rate with polynomial decay O(n−
1

4+4α ) since ε ∈ [0, 1] and A, p̃ are positive constants.

4. Experimental Evaluation

To demonstrate the efficiency of our method, in this section, we evaluated our model
on some synthetic datasets. The data in Rp with dimension p = 5 and p = 10 were
generated randomly according to the uniform distribution on the interval [0, 1]. Then,
we computed the MSE of our estimator f̂ . Figures 1–3 depict the MSE of f̂ when the
parameter pair (λ1, λ2) = (0, 1), (1, 0) and (1, 1), respectively, while the number of samples
n varies from 50/60 to 80/90. This paper used Yalmip [43] modeling in the MATLAB
environment and called fmincon to solve the problem. From the figures, we can notice that
the MSEs tended to decrease with the increase of the number of samples n under three
kinds of parameter settings, which verified that our method was effective in the regression
of high-dimensional data.

𝑛
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E
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f 
 
መ 𝑓

Figure 1. MSE of f̂ when (λ1, λ2) = (0, 1).
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Figure 2. MSE of f̂ when (λ1, λ2) = (1, 0).
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𝑛

Figure 3. MSE of f̂ when (λ1, λ2) = (1, 1).

5. Conclusions

In this work, we proposed a mode-based sparse additive model and established its
generalization error bound. The theoretical results extended the previous mean-based
analysis to the mode-based approach. We demonstrated that the mode-based SpAM can

achieve the learning rate with polynomial decay O(n−
1

4+4α ), which is comparable to the
previous result in [15] with O(n− 1

7 ). In the future, it will be important to further explore
the variable selection consistency of the proposed model.
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