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In the past decades, silicon nanocrystals have received vast attention and have been
widely studied owing to not only their advantages including nontoxicity, high availability,
and abundance but also their unique luminescent properties distinct from bulk silicon.
Among the various synthetic methods of silicon nanocrystals, thermal disproportionation
of silicon suboxides (often with H as another major composing element) bears the
superiorities of unsophisticated equipment requirements, feasible processing
conditions, and precise control of nanocrystals size and structure, which guarantee a
bright industrial application prospect. In this paper, we summarize the recent progress of
thermal disproportionation chemistry for the synthesis of silicon nanocrystals, with the
focus on the effects of temperature, Si/O ratio, and the surface groups on the resulting
silicon nanocrystals’ structure and their corresponding photoluminescent properties.
Moreover, the paradigmatic application scenarios of the photoluminescent silicon
nanocrystals synthesized via this method are showcased or envisioned.
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INTRODUCTION

It has been almost 30 years since the discovery of silicon nanocrystals (SiNCs) (Canham, 1990),
which carry unique properties distinct from bulk silicon. Since then, SiNCs have gained enormous
attention around the world and harvested countless achievements in a myriad of hot fields (Kubby
et al., 2006; Liang and Bowers, 2010;Mastronardi et al., 2012a; Bonafos et al., 2012;McVey and Tilley,
2014; Zhai et al., 2014; Sun et al., 2016c; Dasog et al., 2016; Meinardi et al., 2017; Ni et al., 2019). Many
of the applications are based on SiNCs’ photoluminescent properties. Consequently, significant
progress has been achieved in the performance of their photoluminescence (PL) with the concerted
efforts by the numerous nanochemists and physicists: the quantum yield (QY) has risen from a few
percentages to more than 70% (Sefannaser et al., 2021), and the photoluminescence window has been
expanded to a full range from ultraviolet to infrared (Hessel et al., 2012; Ghosh and Shirahata, 2014).
Among the many factors that helped to find the PL benchmarks of SiNCs, the preparation or
synthetic method plays a primary and pivotal role.

Similar to many other widely used nanomaterials, SiNCs can be prepared with versatile methods,
and each of them has its own advantages and challenges. For example, electrochemical etching, one
of the earliest methods for preparing SiNCs (Cullis and Canham, 1991), sacrifices the controllability
of size to realize simplicity (Heinrich et al., 1992; Bley et al., 1996). Similarly, laser ablation also faces
the challenge of controllability, and the requirement of sophisticated equipment hinders its adoption
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by chemical labs, but its facile route allows fabrication in one step
with little waste (Shirahata et al., 2009b; Mangolini, 2013;
Krivonosov et al., 2020). Another synthetic method demanding
for specialized equipment is plasma synthesis, of which the high
yield and surface hydride termination have drawn considerable

interest (Mangolini et al., 2005; Liu et al., 2016; Chen et al.,
2020b). Besides, solution-phase synthesis has the advantages of
high productivity and feasibility (Shirahata et al., 2009a; He et al.,
2011; Atkins et al., 2012;Ma et al., 2016). However, some researchers
have raised the concern that carbon impurities could have been

FIGURE 1 | (A) Three stages of the thermal disproportionation process from room temperature to 1,400°C for HSQ, reprinted with permission from Hessel et al.
(2007). Copyright 2007 American Chemical Society. (B) Photographs of HSQ heated at 500, 600, 700, 800, 900, 1,000, and 1,100°C for an hour respectively (top to
bottom), as prepared (right) and finely ground (left), reprinted with permission from Hessel et al. (2006). Copyright 2006 American Chemical Society. (C) Schematic
diagram of core-shell structured SiNCs with a model of the first ten atomic layers, reprinted with permission from Thiessen et al. (2019). Copyright 2019 American
Chemical Society.
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incorporated into the product (Oliinyk et al., 2019; Ddungu et al.,
2020; Wilbrink et al., 2020). In this context, if one is seeking the
combined merits of tunability in size, relatively high production
yields without carbon contamination, and concise processing
procedures, then thermal disproportionation of silicon-rich oxides
might be a suitable option. This eminent method has been widely
utilized to enable the investigations of SiNCs’ chemical and physical
properties.

The foundation of thermal disproportionation (in some
reports referred to as “pyrolysis”) is rooted in the properties of
silicon-rich oxide (some materials include H element as well)
which would be decomposed to silicon and silicon dioxide under
high-temperature treatment (above 900°C). The products’ figures
of merits, especially photoluminescence properties, can be
feasibly predetermined and adjusted during the thermal
process. In addition, when freed from the oxide, the SiNCs
prepared this way are often capped with active surface hydride
groups, which enable further surface functionalization (Dasog
et al., 2014; Chen et al., 2017).

Based on the advantages above, it is important to figure out the
underlying contributor to the photoluminescent properties of
SiNCs synthesized via the thermal disproportionation reaction.
In this review, we first describe the basics of the thermal process
and then discuss several key factors that dominate the properties
of the resulting products, including size, temperature,
composition, defects, and surface group. Finally, some
paradigmatic applications of SiNCs synthesized via the
thermal disproportionation reaction with appreciable
photoluminescent properties are highlighted.

HEATING PROCESS

The dynamic conversion process between the initial and final
stage often remains a mystery, although it might be easier to
identify the raw materials and final products of thermal
disproportionation. Researchers have made great efforts to
reveal the truth. The most studied precursor for the thermal
disproportionation method is hydrogen silsesquioxane (HSQ), of
which the pyrolysis was proposed to experience three stages
(Figure 1A). When the temperature was lower than 400°C,
HSQ began to cross-link, and the cage network was
redistributed with associated loss of SiH4, but the definitive
assignment of structural changes still required further research.
Next, as the temperature rose from 500 to 900°C, amorphous Si
nanodomains were formed and dehydrogenated. The source of Si
nanodomains remained unclear, but it was possibly from SiH4.
Only when the temperature was higher than 900°C, the crystalline
products could be obtained. The pyrolysis process could also be
further divided into five stages including trace solvent loss and
collapse of pore structure unmentioned before (Hessel et al.,
2006). The pictures of HSQ heated at different temperature were
illustrated (Figure 1B). Besides, during rapid heating, the released
SiH4 could not escape from the quickly formed SiO2 matrix
before decomposition, which may enhance the productivity.

With the structure similar to HSQ which has the formula of
HSiO1.5, the cross-linked (HSiO1.5)n sol−gel polymer could

undergo stages of Si cluster nucleation and crystallization, and
above 1,100°C evident formation of SiNCs was observed
(Henderson et al., 2009). Such polymer can be feasibly
synthesized in a chemistry lab via the hydrolysis of common
silane precursors (e.g., trichlorosilane); thus, the thermal
disproportionation of it has been adopted as an economic
alternative to the expensive commercial HSQ, for the synthesis
of SiNCs with the diameter of several nm (Mastronardi et al.,
2011; Mastronardi et al., 2012b; Sun et al., 2013).

However, the presence of Si-H bond seems not to be the
prerequisite for the generation of SiNCs, as other silicon-rich
oxide precursors can disproportionate. For instance, the
conversion of microstructure within SiO from nanocluster to
nanocrystal during pyrolysis was studied (Wang et al., 2007).
When the temperature was below 300°C, a single random-
bonded SiO-like phase was present; then, amorphous silicon-rich
nanoclusters emerged and grew larger as the temperature rose from
400°C to 800 °C because of the exsolution of excess silicon. Finally, at
a critical point between 800–900°C, silicon began to crystalize.

As for the heating process of silicon-rich oxide in the form of
film, a theory of two thermal disproportionation stages was
proposed, namely the precipitation of Si when the temperature
was above 500°C and the crystallization of excess Si with the even
higher temperature starting from ∼1,000°C (Gan et al., 2011).
Since the PL had a close relationship with the size of SiNCs rather
than that of amorphous silicon, the crystallization temperature
therefore mattered (Thiessen et al., 2020). Amorphous materials
cannot crystalize until the temperature reaches the threshold
value. Below the threshold temperature, materials exist in the
form of nanocluster, whose size increases with rising temperature.
A diffusion kinetic model was built to explain the phenomenon
which indicated that the diffusion coefficient has no relevance
with composition (Nesbit, 1985), so the growth of size depends
mainly on temperature.

Echoing with what we stated at the beginning of this section, it
is quite obvious that the final products after very high-
temperature treatment are the mixtures of SiNCs and SiO2,
but what are the structure and composition of nanoclusters
and their surrounding matrix before crystallization occurs?
Here we discuss some more studies aiming at lower treating
temperatures to help illustrate this aspect.

For example, heating siloxene, which can be seen to have the
formula of Si6O3H6, at 400 °C for 90 min, could result in
amorphous silicon dioxide embedded with small particles of
amorphous silicon (Stutzmann et al., 1993). For precursors
without H, Meldrum’s group revealed that the matrix for the
Si clusters is not pure SiO2 if the reaction was incomplete, but is
instead a mixture of SiO2 and SiO for the whole temperature
range (Wang et al., 2007). In order to get a deeper
understanding of the reaction process, the mechanism of
transition from silicon-rich oxide to SiNCs was explored with
the help of quantum mechanics and Monte Carlo (MC)
simulation (Grimme et al., 2007). The result showed the
driving force of pyrolysis conversion was mainly the
incomplete O coordination, accompanied by strain as a
minor contributor. O diffusion played a key role in
controlling the reaction instead of excess Si diffusion.
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All in all, we may not have covered all kinds of silicon-rich
oxide precursors, but whether the precursor contains H or not,
the thermal disproportionation generally follows the similar
process. It can be compartmentalized into stages like the
structural rearrangement, growth of the nanocluster or
nanodomains, and finally crystallization of amorphous silicon
which is often marked by a threshold temperature. Upon close
examination, the SiNCs obtained are considered to possess the
structure of crystalline core inside an amorphous shell
(Figure 1C) (Borrero-Gonzalez et al., 2011; Thiessen et al., 2019).

FACTORS ON PHOTOLUMINESCENCE

Needless to say that the photon of photoluminescence originates
from the combination of electrons and holes. For direct bandgap
materials like CdSe, the bottom of the conduction band fits the
top of the valance band, resulting in efficient photoluminescence
and nanosecond lifetime. However, limited by the indirect
bandgap nature such that holes and electrons possess different
k values (crystal momentum) in the Brillouin zone, bulk silicon
can hardly emit light. However, decreasing its size to a few
nanometers smaller than the Bohr radius (∼5 nm), silicon
nanocrystals amazingly exhibit photoluminescence. The

mechanism of this incredible phenomenon remains
controversial. Many hypotheses have been put forward, such
as the quantum confinement model (Canham, 1990), quantum
confinement-luminescence center model (Qin and Jia, 1993; Qin
and Li, 2003), and photoluminescence related to Si/SiO2 interface
defects (Torchynska et al., 2003). Among them, the quantum
confinement effect model is the most widely acknowledged
hypothesis, despite the fact that other PL mechanisms are also
proposed by researchers according to their concrete research.
During the following sections, some of these mechanisms would
be leveraged to elucidate the astonishing PL phenomena with
details, but, experimentally, the PL performance of SiNCs
predominantly depends on the major influencing factors
categorized below, which should be comprehensively
understood for the future development of SiNCs.

Size
According to the quantum confinement effect, the band structure
of nanoparticles is different from that of bulk materials. When the
geometric radius of SiNCs reduces to lower than the radius of
Bohr’s exciton, the energy levels of the valence band and the
conduction band would change from continuous to discrete, and
this broadens the energy bandgap. Accordingly, with the decrease
of the SiNCs’ size, the absorption and fluorescence peaks blueshift

FIGURE 2 | (A) PL peak energy versus diameter of SiNCs and the curve corresponds to the effective mass approximation (EMA), reprinted with permission from
Hessel et al. (2012). Copyright 2012 American Chemical Society. (B) PL wavelength in visible range (solid line) and NIR range (dashed line) versus diameter of SiNCs and
the inset shows the summary of PL center versus fraction number, reprinted with permission fromMastronardi et al. (2012). Copyright 2011 American Chemical Society.
(C) Mechanism of the SiNCs photochemical etching by HF, reprinted with permission from Rodríguez Núñez et al., 2012. Copyright 2011 American Chemical
Society. (D) AQY versus volume of antisolvent used and the corresponding size of SiNCs shown in the inset, reprinted with permission from Sun et al. (2015). Copyright
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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(Sykora et al., 2008; Prokofiev et al., 2009; Kelly et al., 2010a; Kelly
et al., 2010b). A number of groups have observed and revealed
this relationship between PL energy or wavelength and the sizes
of SiNCs (Figures 2A,B).

In order to fabricate SiNCs with different size distributions,
heating temperature and time are the first options that are
effective and feasible. Generally both higher temperature and
longer heating time would result in larger nanocrystals (Borrero-
Gonzalez et al., 2011), but the temperature especially played a
more crucial role among the two factors (Gan et al., 2011). For
example, 3.3 nm of SiNCs was found after the disproportionation
of HSQ at 1,100°C for 60 min. Raising the processing temperature
to 1,400 °C could result in a relatively large size of 8.7 nm, but
prolonging the processing time to 1,440 min at 1,100°C could
only increase the size to 3.6 nm (Hessel et al., 2007). Alternatively,
after the formation of SiNCs, a posttreatment of HF etching could
also adjust SiNCs’ size distribution subsequently. The HF etching
not only removes the concomitant oxides from the thermal
disproportionation method, but also reduces SiNCs’ diameter.
However, the etching reaction between Si and HF exhibited slow
reaction kinetic process that hindered its application in reality. In
this regard, the photochemistry etching method developed by
Kolasinski (Kolasinski, 2003), Reipa (Choi et al., 2007), and
Veinot (Rodríguez Núñez et al., 2012) et al. improved this
situation and accelerated the etching process by treating the
SiNCs in HF solution under the irradiation of light (Koyama
and Koshida, 1993; Mizuno et al., 1996). Unlike the traditional
chemistry etching that required an electronegative atom (e.g., O,
F) bonding to Si to initiate the etching process, the
photochemistry etching instead polarized the surface silicon by
the localization of holes, which drove the nucleophilic attack
(Figure 2C). As the photochemistry etching continuously
progressed, the size of SiNCs could only be reduced to a
limiting value and no further dissolution would occur
afterwards (Choi et al., 2007). It was probably because the
band gap of SiNCs increased as the size shrunk until the band
gap was larger than the photon energy. In addition, the
photochemistry etching process not only provided a novel
method to adjust the PL, but also guaranteed the narrow size
distribution with a full width at half maximum (FWHM) of PL
peak as low as 90 nm, which is comparable to some of the lowest
records reported (Rodríguez Núñez et al., 2012).

As for the relationship between the size and QY, taking the
most-studied HSQ as an example, it was heated within the
temperature range from 1,100 to 1,400 °C in a reducing
atmosphere (10% H2 + 90% Ar) to obtain the SiNCs with a
wide size distribution from under 3–90 nm, all of which were
treated by similar surface passivation (Hessel et al., 2012). The
photoluminescence test result revealed that the emission peak
ranged from 720 nm for the size of 3 nm to 1,060 nm for the size
of 12 nm, and the QY accordingly decreased from 8 to 0.4%,
which is accorded with the quantum confinement model. Beyond
the size of 12 nm, the bandgap of SiNCs closely approached that
of the bulk silicon; thus, the PL of SiNCs could be hardly
measured. Numerous researchers came to the similar
conclusion which was coincident with the quantum
confinement model, but some experiment results indicated the

inverted trend of the PL QY versus size. Ozin’s group
(Mastronardi et al., 2012b) found the AQY of small
allylbenzene-capped SiNCs instead monotonically decreased as
the size of SiNCs decreased from 2 to 1 nm, despite the fact that
the PL peaks still blueshifted with the decreasing size, following
the rules of quantum confinement. To explore the reason for this
puzzling controversy, SiNCs were prepared with a series of size
distributions from 2–7 nm with the help of size-selective
precipitation, covering the whole size regime that possesses the
strong quantum confinement effect (Sun et al., 2015). The result
was surprising. As the size of SiNCs decreased monotonically, the
AQY of these materials first increased and then fell after reaching
the highest point, exhibiting a “volcano” plot (Figure 2D). The
peak of the plot was obtained with SiNCs of 3 nm, in view of the
fact that the luminescence lifetime (τ) and quantum yield (QY)
are determined by the mutually competing radiative Γr and
nonradiative Γnr rates of excitons, as illustrated in

τ−1 � Γr + Γnr (1)

QY � Γr/(Γr + Γnr) (2)

PL lifetimes were measured to figure out the change of
radiative relaxation. It turned out that PL lifetime decreased as
the particle size decreased from 2 to 1 nm (Mastronardi et al.,
2012b). The analysis combining the QY and lifetimes indicated
the significant difference between the radiative recombination
and nonradiative recombination. Specifically, the nonradiative
recombination decreased dramatically more than radiative
recombination as the size was smaller. Thus, the nonradiative
recombination played a dominant role during the falling apart
(left side) of the “volcano” plot in the low size regime. The
attenuation of low-temperature lifetime compared with room-
temperature lifetime further indicated that the drop of
nonradiative recombination came from the vibration organic-
capping group and oxidation-related defects. As for the right side
of the “volcano” plot with larger size, when size decreased, the
more confined spatial distribution of photogenerated electron-
hole pairs was beneficial to radiation recombination and photon
escapement; therefore, radiative recombination was instead
dominant in this regime, resulting in the inversed trend
compared to the left side of the volcano plot. The peak
position of the “volcano” plot may change slightly for different
materials, but the overall trend is in common (Riabinina et al.,
2006; Yu et al., 2017).

Composition
Silicon-rich oxide as the only reactant and precursor in the
disproportionation reaction directly determines the proportion
of the SiNCs in the products, so the composition of this precursor,
particularly the Si/O ratio, has an enormous influence on the
products. For instance, Sun found that the mass yield of SiO was
more than twice that of (HSiO1.5)n because of the higher Si/O
ratio (Sun et al., 2016b). Meanwhile, the Si/O ratio can ultimately
determine the threshold heating temperature for the synthesis of
SiNCs (Dvurechensky et al., 1982). If silicon-rich oxides in the
form of thin film are defined as SiOx, then when x < 1, it requires
only 850 °C with a heating time of 1 h in the Ar atmosphere to
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obtain SiNCs, whereas when x is between 1 and 2, there is no
appearance of SiNCs until the temperature hits the value of
1,050 °C. In another similar study, the minimum temperature
of crystallization for Si/O ratio higher than one was between 800
and 950°C, but higher than 950°C for Si/O ratio less than 1
(Nesbit, 1985). In a word, at the same heating temperature, SiNCs
obtained from a SiOx precursor with a smaller x would be with
larger size, better crystallization, and thereby redshift of PL peak
position (Figure 3A) (Riabinina et al., 2006; Borrero-González
et al., 2010; Saxena et al., 2011).

Note that even if the precursors are with the same Si/O ratio,
their structural discrepancy can lead to variance in the product.
HSQ and (HSiO1.5)n have the same Si/O ratio, but are composed
with different molecular structures. Under the same pyrolysis

condition, it turned out that the SiNCs obtained from the former
possessed a larger size than the latter (Henderson et al., 2009).
The explanation was that the atom diffusion within the
(HSiO1.5)n cross-linked network required higher energy, which
would hinder the formation and growth of SiNCs.

Another situation is when the precursor is not purely
constituted by Si, O, and H. It is well known that doping with
a small amount of groupⅢ andⅤ elements such as B and P would
dramatically influence the electrical properties of silicon wafer. As
for the SiNCs with only a few nanometers in size, even a single
impurity atom would make a difference in the optical and
electrical properties of SiNCs. Boron and phosphorus are the
most used dopants in the silicon-rich oxides and thereby in the
product SiNCs. Their accompanied charge carriers after doping
are opposite. However, their effects on PL are somehow similar:
both boron-doped and phosphorus-doped SiNCs exhibited
decreased PL intensities compared with pure SiNCs under the
same excitation condition. The nonradiative Auger
recombination induced by B or P doping was accounted for
the drop of PL in the doped SiNCs (Mimura et al., 1999; Mimura
et al., 2000; Joo et al., 2019). However, upon closer examination,
the PL of P-doped SiNCs first increased to a maximum and then
decreased as the P concentration further increased (Figure 3B).
The temporary enhancement of P-doped SiNCs’ PL was because
the stress at the interface between SiNCs and SiO2 matrix, which
was induced during the cooling process after thermal
disproportionation, was released by incorporating the P atoms
into the matrix (Fujii et al., 1999). Although the doping of
individual B or P into SiNCs would result in the quenching of
PL, doping both B and P into SiNCs simultaneously could lead to
the opposite result. The opposing charge carriers originated from
the doping of B and P could be mutually compensated, which
would avoid the Auger recombination. Therefore, the strong
suppression of PL intensity would not occur in this case.
Instead, enhanced PL intensity after codoping better than the
pure SiNCs was observed, explained by two reasons. First, the
softening of SiO2 matrix caused by the doping of B and P would
reduce the stress of the products obtained after the annealing
process and prevent the appearance of defects between the
interface of SiNCs and SiO2. The other reason was that the
electrons supplied by the P doping passivated the surface
dangling bonds (Fujii et al., 2004). Those two mechanisms
worked concertedly to enhance the PL intensity of B and P
codoped SiNCs. In addition, the stability and dispersibility of
the codoped SiNCs in polar solvents were also strengthened. The
B and P codoped SiNCs maintained to be stable in methanol over
one year and no precipitates were formed. A model was
established to explain this phenomenon. The codoping of B
and P formed P-B pairs within the SiNCs, and the B ions
were located on the surface side whereas the P ions were on
the core side. Therefore, the codoped SiNCs exhibited negative
surface potential, which guaranteed the electrostatic repulsion for
the high stability and dispersibility in methanol (Sugimoto et al.,
2012). Besides, metal elements could also function as dopants
(Wang et al., 2020; Xu et al., 2021a). Shirahata’s group
synthesized metal- (Mn, Ni, Co, Cu) doped SiNCs
accompanied by a redshift of PL while maintaining the relative

FIGURE 3 | (A) Room-temperature PL spectra for annealed SiyO1-y at
1,100°C in a forming atmosphere with different y, reprinted with permission
from Borrero-González et al. (2010). Copyright 2010 American Institute of
Physics. (B) Integrated PL intensity of P-doped SiNCs as a function of P
concentration, reprinted with permission from Mimura et al. (2000). Copyright
2000 American Physical Society.
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high QY of 26% for codoping (Chandra et al., 2017). The metal
elements within the SiNCs created new impurity states near the
valence band, which resulted in the redshift of PL. Moreover, the
narrower size distribution of transition-metal-doped SiNCs than
the pure SiNCs was another advantage for this method.

Defects
After thermal disproportionation of silicon-rich oxide, many
defects emerged at the interface between SiNCs and SiO2, as
the result of mismatch of the crystal structure and the dangling
bonds. Pb center is a typical kind of defect that is widespread at
these interfaces, which accounted for many nonradiative
recombinations. Pb centers, the neutrally charged and
paramagnetic dangling bonds, are the dominant charge traps
at the interface between SiNCs and SiO2. Depending on its Fermi
level in the silicon bandgap, it would either lose or gain an
electron (Brower, 1988). As the nonradiative recombination
centers, Pb defects would reduce PL intensity of SiNCs
undoubtedly. Hence, it is necessary to passivate the Pb centers
to obtain SiNCs with excellent PL.

In one study, SiNCs were prepared by annealing the Si
implanted SiO2 at the temperature of 1,100°C in a N2

atmosphere for 1 h; then, the sample was passivated in the
forming gas (95% N2 + 5% H2) at 500°C for another hour
(Cheylan and Elliman, 2001). The resulting PL of SiNCs/SiO2

was effectively promoted after passivation. A redshift was also
observed (Figure 4A) (Borrero-Gonzalez et al., 2011). Since
larger SiNCs were likely to contain more defects, the positive
influence of passivation was more effective for larger SiNCs than
the smaller ones (Borrero-Gonzalez et al., 2011). Moreover, the
passivation process was even reversible. Heating the passivated
samples in the N2 atmosphere at ∼500°C could regenerate
dangling bonds at the interface, which resulted in the decrease
of PL intensity with blueshift. The PL performance could be
completely reversible during the reciprocation of passivation and
depassivation after the first three circles (Li et al., 2014b).
Alternatively, the UV irradiation could also reintroduce defects
for depassivation (Godefroo et al., 2008).

To study the influence of temperature and heating time of
passivation, amorphous SiOx was annealed at 1,100°C for 1 h and
then postannealed in the forming gas at the varying temperature
ranging from 400 to 700°C with the passivation time varying from
5 to 60 min (Li et al., 2014b). The result indicated that the higher
the temperature, the greater the PL intensity, until the PL
intensity saturated near 600°C and no further improvement of
PL intensity was observed at 700°C. Similarly, the PL intensity
first increased and gradually reached a constant value with the
prolonging heating time. The saturation of the PL intensity at
high temperature and long time could be explained by the balance
of passivation and depassivation. The passivation mentioned
above was achieved by the reaction between hydrogen
molecules (H2) and dangling bonds. However, due to the
steric hindrance of the interface structure between SiNCs and
SiO2, the hydrogen molecule was too large to contact with
exceptional dangling bonds. Therefore, using hydrogen atoms
(single H) for passivation, whose volume was smaller than H2,
could further improve the PL intensity. With this concept,
postmetallization annealing (Wilkinson and Elliman, 2003)
and H atomic plasma (Jung et al., 2008) were two effective
methods to realize hydrogen atomic passivation. Nevertheless,
the complicated process of atomic passivation limited its
application, though it benefited the enhancement of PL intensity.

The passivation effect is also seen with annealing in oxygen
atmosphere (Yoon, 2011). However, the situation changed for
overtreatment. SiNCs embedded SiO2 samples were first annealed
in N2 atmosphere at 1,100°C and then passivated in dry air flow at
temperatures ranging from 400 to 800°C for 15–90 min (Li et al.,
2014a). When the passivation temperature was below 600°C, the
effect was roughly the same as hydrogen passivation: the PL
intensity was first improved and then gradually saturated as the
temperature and passivation time increased. However, the PL
intensity started to fall when the temperature was above 600°C. In
addition, at 800°C, the PL intensity first increased to a maximum
for 0.5 h of passivation and next decreased accompanied by a
blueshift as the time was prolonged. Such different phenomena
can be attributed to the oxidation of SiNCs (Brongersma et al.,
1998). The oxygen not only could passivate the dangling bonds,

FIGURE 4 | (A) PL spectra of SiNCs/SiO2 after annealing at 1,100 °C in
N2 (□) and after an additional anneal at 500°C in forming gas (N2+H2) (○). The
spectrum for the sample annealed at 1,100 °C in N2 has been multiplied by a
factor of 5 to highlight the redshift (△). The solid lines represent the
Gaussian fit to the data, reprinted with permission from Cheylan and Elliman.
(2001). Copyright 2001 American Institute of Physics. (B) PL intensity of
SiNCs/SiO2 at 1.7 eV (left axis) and the SiNCs’mean size from TEM analysis
(right axis) vs. annealing time at 1,100°C in N2, reprintedwith permission from
López et al. (2002). Copyright 2002 American Institute of Physics.
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but also could oxide SiNCs, which resulted in the shrinkage of
size and reduced number of SiNCs. At temperatures higher
than 600°C, the oxidation effects instead of passivation played
a dominant role, which resulted in the decrease of PL
intensity.

Therefore, passivation is an excellent choice if the proper
conditions are selected, to strengthen the PL for the merits of both
the enhancement of PL intensity and the conservation of SiNCs’
structure (Figure 4B) (López et al., 2002; Li et al., 2014a).
However, the passivation procedure complicates the
production process. Hence, many researchers use a one-step
compromising method that directly annealed the amorphous
silicon-rich oxide in forming gas (e.g., 5% H2 in Ar or N2) to
produce SiNCs embedded SiO2 with passivated interface,
removing the extra passivation steps (Hessel et al., 2012; Yang
et al., 2014; Thiessen et al., 2019).

Surface Modification
Surface modification is a powerful technique to grant many
nanomaterials with colloidal dispersibility and tunability of
optical properties, and this is especially true for SiNCs.

The first merit of modification process is that it improves the
PL stability. This is exemplified by ensembles covalently modified
with alkynes and alkenes which are the most used ligands for
functionalizing SiNCs through hydrosilylation. The prevention of
oxidation and passivation of surface defects were the two main
reasons that account for the improvement of stability after
modification (Liu et al., 2006). The longer carbon chain length
was particularly favorable in this regard for better oxidative and
optical stability (Clark et al., 2010). Another way to produce
SiNCs with superior stability was incorporating the SiNCs into
surfactants, e.g., a structure where SiNCs were covered with a
monolayer of quatsomes (Silbaugh et al., 2017) (Figure 5A). The
quatsomes were vesicular bilayers self-assembled by cholesterol
and cetyltrimethylammonium bromide (CTAB) surfactants. The
products obtained by the combination of SiNCs and quatsomes
could remain stable after several weeks in water with the
conservation of PL of SiNCs.

Second, surface modification can shift the PL position. In
retrospect, we emphasized that the size matters for the peak
position, but the ultimate surface functionalization can disrupt or
even override the size effect. As an example, different capping

FIGURE 5 | (A) Scheme of the interactions of SiNCs (solid points) and quatsomes (CTAB is the blue-headed structure, and cholesterol is the yellow structure), and
the formation of the stable SiNCs covered with a monolayer of quatsomes, reprinted with permission from Silbaugh et al. (2017). Copyright 2017 American Chemical
Society. (B) PL spectral of SiNCs with different size and functionalized with NH4Br and allylamine, reprinted with permission from Wolf et al. (2013). Copyright 2013
American Chemical Society. (C) Schematic representation of the synthesis process of pyrene-functionalized SiNCs, reprinted with permission from Mazzaro et al.
(2015). Copyright 2015 American Chemical Society. (D) The pictures of SiNCs/PMAA under the irradiation of ambient light (top) and UV (bottom). From left to right
were pure PMAA, H-terminated SiNCs/PMAA with smaller SiNCs and bigger SiNCs, and dodecene-terminated SiNCs/PMAA with smaller SiNCs and bigger SiNCs,
reprinted with permission from Marinins et al. (2016). Copyright 2016 American Chemical Society.
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groups including alkynes, phenylacetylene, 4-ethynylanisole, 1-
ethynyl-3-fluorobenzene, and 3-ethynylthiophene were
functionalized with SiNCs (Kelly and Veinot, 2010), and their
PL behaviors were investigated. The PL decay rates of the
functionalized SiNCs were contingent on the electron donating
ability of organic ligands. The stronger the electron donating
ability of substituents, the faster the decay rate of
photoluminescence. Complete PL quenching was even
observed for SiNCs functionalized with 3-ethynylthiophene. In
another study, redshift was observed after modification with
similar capping groups: after modifying SiNCs with
phenylacetylene, 2-ethynylnaphthalene, and 2-ethynyl-5-
hexylthiophene groups, the functionalized SiNCs exhibited a
redshift of ∼50, ∼65, and ∼115 nm correspondingly (Angi
et al., 2018). The in-gap state near the conduction band
originated from the aromatic groups was responsible for the
redshifts. Besides, in some circumstances the PL of some SiNCs
even had no relevance with size. Veinot’s group (Dasog et al.,
2013) discovered distinctively different PL phenomena between
dodecene terminated SiNCs and NH4Br or allylamine
functionalized SiNCs. The former followed the rules of
quantum confinement, but the latter exhibited size-
independent blue PL with a constant peak position of
∼415 nm (Figure 5B) (Dasog and Veinot, 2012). This size-
independent PL phenomenon was attributed to the charge
transfer from the excited state of SiNCs to nitrogen-related
surface states in SiNCs. Then the radiative recombination
occurred completely at the nitrogen-related states, which had
no relevance with the size of SiNCs (Lannoo et al., 1996; Fuzell
et al., 2013; Sinelnikov et al., 2017).

Third, surface modification can enhance the absorption of
excitation light and thereby the PL intensity. The indirect
bandgap of SiNCs leads to weak absorption of light. To
overcome this drawback, light-harvesting antenna was
proposed, by imitating chlorophyll which collects sunlight and
transfers energy to the reaction center. Similarly, antenna, with
excellent light absorption efficiency, first absorbed the incident
light and then transferred the energy in the form of electrons to
the SiNCs. Finally, the electronic excitation energy of SiNCs
transformed into light energy and was emitted in the form of
photons. The antenna, as a key functioning component during
this absorbing-emitting process, was required to be not only with
the higher excited state than that of SiNCs, but also with a suitable
distance to the SiNCs acceptor. Because the shorter the length of
antenna, the higher the transmission efficiency of the absorbed
energy (Mazzaro et al., 2015), pyrene chromophores were the
most used light-harvesting antennae. After modifying SiNCs with
pyrene chromophores (Figure 5C), the dramatic improvement of
absorption at 345 nm was observed. The PL of SiNCs
functionalized with pyrene chromophores was as 140%
brightness as H-terminated SiNCs with the same size
(Mazzaro et al., 2015). Besides, SiNCs functionalized with
tetraphenylporphyrin Zn (II) chromophores or pyrene
exhibited near-infrared PL and long PL lifetime, which
promised the potential application of bioimaging (Locritani
et al., 2014; Fermi et al., 2015). Since Korgel’s group (Romano
et al., 2016) had summarized the characteristics of light-harvesting

antennae system comprehensively, this article would not duplicate
the detailed descriptions.

Finally, the surface functionalization is not limited to small
molecules discussed above. Actually, SiNCs could be
incorporated into polymers to make photoluminescent
composites, which might be applicable in more versatile
devices. For example, SiNCs were dispersed into off-
stoichiometric thiol-ene (OSTE) composition followed by UV
irradiation to obtain the SiNCs/OSTE hybrids. The comparatively
high QY of ∼65% was observed for SiNCs/OSTE hybrids, which
was even higher than the same SiNCs dispersed in toluene
solutions. The passivation of SiNCs’ dangling bonds by mobile
radicals in the polymer accounted for this excellent optical
property (Marinins et al., 2017). In addition, the combination
of SiNCs and polymers could also exhibit incredible
photostability. The QY of SiNCs/poly(methyl methacrylate)
hybrids only reduced from ∼60 to ∼40% after nearly 7 weeks
(Marinins et al., 2016). In another research, the polystyrene
matrix improved the alkali resistance of SiNCs (Yang et al.,
2014). Thanks to the indirect band-gap structure, the SiNCs’
optical transition near the emission state was very weak, which
led to the large Stokes shift. Therefore, the composites of SiNCs
and polymers generally appeared transparent under the ambient
light unlike other semiconductor quantum dots such as CdSe
(Figure 5D) (Marinins et al., 2016).

Temperature During PL Measurement
As described in the previous sections, temperature matters
because it is decisive for the size of SiNCs synthesized, but its
influence on the PL properties is not confined within the synthetic
process. In fact, tuning the temperature during PL measurement
serves as a powerful tool for understanding the fundamentals of
the PL behaviors of SiNCs. Brus’s group conducted a profound
study of the SiNC’s photoluminescence at low temperatures
(Wilson et al., 1993). As the temperature decreased from 300
to 20 K, the PL intensity monotonically increased accompanied
by a blueshift of peak position. The lifetime of the SiNCs was also
increased, but not proportionally to the increment of PL intensity.
When the temperature was lower than 50 K, the
photoluminescence intensity almost kept constant, but
the lifetime was still lengthening. According to Eqs 1, 2 in the
previous section, this puzzling phenomenon could be explained.
At such low temperature, the radiative recombination term
dominated the QY, while the substantially suppressed
nonradiative recombination could be ignored. In other words,
the emission should purely come from radiative recombination
with a theoretical QY of 100%. However, the reality deviated from
this hypothesis with the QY of 20%. The possible reason was the
existence of defects with extra nonradiative recombination.
Besides, the extent of such influence of temperature is
contingent on the size distribution. The variation of PL
intensity of the smaller SiNCs at low temperature was
generally greater than that of the larger ones (Wilson et al.,
1993). However, this rule does not apply to SiNCs with a large size
in the weakly confined regime (Jakob et al., 2019). For instance,
the dramatical drop of PL lifetime was observed starting from
above 10–20 K for 4.2 nm SiNCs, but the drop of PL lifetime was
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not observed until the temperature rose to 150 K for 9.0 nm
SiNCs (Takeoka et al., 2000). Meanwhile, at lowered temperature,
the PL peaks of SiNCs with a relatively large diameter of 7.19 and
8.67 nm would redshift instead of blueshift (Figure 6) (Jakob
et al., 2019). Besides, their mean decay time significantly
increased upon cooling. Strangely, the PL intensity of 8.67 nm
SiNCs decreased in the range of 700–950 nm, but increased in the
range of 950–1,100 nm when the temperature fell. These puzzling
phenomena could hardly be explained by a single theory. Perhaps
a combination of bandgap widening, saturation effects, and
Förster resonance energy transfer (FRET) may help the
interpretation (Jakob et al., 2019).

APPLICATIONS

As discussed in the previous sections, SiNCs obtained by the
thermal disproportionation generally exhibit size-dependent PL
which is originated from their intrinsic band-gap (Sun et al.,
2016a). The most efficient PL emission often falls within the near-
infrared which fits the biological windows (Sun et al., 2016b).
Moreover, not only the luminescent range but also the PL lifetime
of SiNCs is susceptible to the surface species. Therefore, these

characteristics have made bioimaging, sensor, and some
luminescent devices the most viable applications for SiNCs
synthesized from thermal disproportionation.

Sensor
Exploring new methods to enhance the PL intensity of SiNCs has
always been the subject for the researches mentioned previously.
However, thinking out of the box, quenching the PL rather than
boosting it is not always detrimental, especially in the case of
sensors. For instance, the PL of dodecyl functionalized SiNCs was
quenched when they were in contact with nitroaromatic
compounds such as nitrobenzene, nitrotoluene, and
dinitrotoluene (Gonzalez et al., 2014). The quenching process
was a dynamic process via electron transfer which occurred from
the conduction band of SiNCs to the vacant π* orbital of the
nitroaromatic compounds. Based on this mechanism, the dodecyl
functionalized SiNCs dispersed in toluene solution can be dip-
coated onto the filter paper to fabricate SiNCs sensors for
detecting nitroaromatic compounds. When the sensor paper
was exposed to nitroaromatic compounds, whether in the
form of gas, liquid, or solid, the contact area exhibited
significantly suppressed luminescence under the irradiation of
UV (365 nm) lamp compared with other luminescent parts. This
sensor paper provided an extra choice for on-site detection of
explosives that contained nitrogroups. Based on the similar
quenching mechanism, SiNCs sensors for other compounds
were also investigated. Combining the SiNCs and
mAmetrine1.2 (a protein variant), a SiNCs sensor was
produced for p-nitrophenyl-containing organophosphate nerve
agents paraoxon (PX) and parathion (PT). This sensor in the
form of paper exhibited high sensibility such that the detection
limitation for the concentration was as small as 5 μΜ (Figure 7A)
(Robidillo et al., 2019). Besides the sensors for direct detection,
some other sensors based on SiNCs synthesized from thermal
disproportionation required multiple steps for detection. Veinot’s
group demonstrated that the conjugation of urease with SiNCs
would first catalytically resolve urea into ammonia, which would
quench the PL of SiNCs (Robidillo et al., 2018). In this way, the
urea could be detected.

Bioimaging
Integrating the merits of biological compatibility, high PL
intensity, and long PL lifetime, SiNCs attracted a lot of
attention in the field of bioimaging (Li and Zhu, 2013). In
order that SiNCs could be localized in specific tissues or
organs, the dispersibility in water and selective absorption by
tissue were required. Therefore, it was crucial to functionalize the
SiNCs with proper organic groups. For example, SiNCs obtained
by the pyrolysis of (HSiO1.5)n were first functionalized with 1-
octadecene to ensure NIR PL of SiNCs. Then, alkyl-capped SiNCs
were covered by the matrix of PEG to form surface-functionalized
solid lipid nanoparticles (SLN) in order to realize colloidal
stability. As for the cell experiments, clear NIR emission could
be observed for human MDA435 breast cancer cells which
contained SiNCs (Figure 7B) (Henderson et al., 2011). In
addition to the two-step treatment of SiNCs mentioned above,
SiNCs could be simply functionalized with specific capping

FIGURE 6 | (A) PL peak energy and (B) PL peak shift relative to the peak
energy at 300 K versus SiNCs’ size at selected temperatures reprinted with
permission from Jakob et al. (2019). Copyright 2019Wiley-VCH Verlag GmbH
& Co. KGaA, Weinheim.
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groups that ensure both the colloidal stability and
biocompatibility. Veinot’s group demonstrated that the SiNCs
terminated with D-mannose and L-alanine, respectively, both
exhibited comparable PL for biological imaging of MCF-17
human breast cancer cells (Zhai et al., 2014). The control
experiment was performed by exposing cells to pentanoic acid
functionalized SiNCs with the aim of investigating if mannose or
alanine functionalization could induce cells’ phagocytosis. A
positive result that the uptake of mannose and alanine
functionalized SiNCs instead of pentanoic acid functionalized
SiNCs by the MCF-17 human breast cancer cells was obtained,
indicating the multifunctions of D-mannose and L-alanine.

Other Applications
Apart from the two applications mentioned above, SiNCs are also
good candidates for photon manipulations as photosensitizers.

This is often realized via the energy transfer from the lowest
energy state of the exciton generated in SiNCs to the ground
triplet state of oxygen molecules adsorbed on their surface. The
long lifetime and huge surface area of SiNCs were beneficial for
the high photosensitizing efficiency to generate 1O2 at room
temperature (Llansola Portoles et al., 2010). To further
enhance the singlet oxygen generation of SiNCs, the SiNC-dye
conjugates were investigated. The SiNCs absorbed near-UV
radiation and then transferred this energy to the triplet state
of the attached dyes, which increased the number of triplet states
and finally enhanced the singlet oxygen generation (Beri et al.,
2020). As a reactive oxidant, singlet oxygen exhibited great
potential for quantities of applications, such as chemical
synthesis (Manfrin et al., 2019; Karsili and Marchetti, 2020),
environmental protection (García-Fresnadillo, 2018; Bu et al., 2021),
and photodynamic therapy (Guo et al., 2010; Bartusik-Aebisher

FIGURE 7 | (A) Images of SiNCs coated filter paper spotted with PX and a blank control under the irradiation of UV light (365 nm), reprinted with permission from
Robidillo et al. (2019). Copyright 2019 American Chemical Society. (B) SiNCs loaded SLN within the MDA435 human breast cancer cells emitted red PL under the
irradiation of 458 nm light, reprinted with permission from Henderson et al. (2011). Copyright 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (C) Schematic
representation of the device containing allylbenzene-capped SiNCs (AB-ncSi) as the emissive layer, reprinted with permission from Mastronardi et al. (2012).
Copyright 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (D) Illustration of SiNCs-polymer Fabry-Pérot microresonator and (E) the spectra of SiQD-polymer
hybrid/blend with (solid line) or without (dashed line) Fabry-Pérot cavity structure, reprinted with permission from Cheong et al. (2021). Copyright 2021 American
Chemical Society.
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et al., 2021; Osuchowski et al., 2021), and thus the application fields
of SiNCs were also broadened.

Photonic devices have always been another sought-after field
for SiNCs with high QY value and solution processibility after
functionalization. In order to reduce the environment toxicity of
LED industry, SiNCs were considered as replacement for CdSe
and PbS (Puzzo et al., 2011), and the surface modification with
organic groups such as allylbenzene could effectively improve
their poor EQE as OLEDs (Figure 7C) (Mastronardi et al.,
2012a). Besides, carrier multiplication was observed in silicon,
which would dramatically enhance the photovoltaic efficiencies
for solar cells (Timmerman et al., 2011). Sukhanov’s group
indicated that the 12% increase of power conversion efficiency
of silicon quantum dot solar cell came from the defect passivation
at the surface of solar cell by SiNCs and the decrease of the optical
reflectance (Dorofeev et al., 2014; Gribov et al., 2018).
Engineering the bandgap of SiNCs can further improve the
solar cell efficiency. A novel stepwise bandgap SiNCs layer
structure was put forward, which was composed of a top layer
(high bandgap) and a bottom layer (low bandgap). This
combination improved charge transfer efficiency, and hence
the power conversion efficiency of SiNCs solar cell was also
increased from 16.50 to 17.50% compared to the efficiency of
solar cell with uniform bandgap structure (Kwak et al., 2017;
Kwak et al., 2020). In addition to the PL intensity, PL line width
also played a critical role in light-emitting devices. A novel
structure with Fabry−Pérot resonators was put forward
(Cheong et al., 2021). By incorporating SiNCs-polymer hybrid/
blend between two reflective silver mirrors (Figure 7D), the
devices obtained an incredibly narrow spectral bandwidth of
9 nm, which revealed its potential for color filter application
(Figure 7E). Without modification process, the H-terminated
SiNCs could be used for luminescence patterning or optical
storage because of the photoactivation by blue or UV
irradiation. Exposing the H-terminated SiNCs under UV
irradiation for a few minutes, their PL intensity would
increase dozens of times (Lockwood et al., 2011). Other
applications such as lasers were also investigated by
researchers because of the distinctive optical gain of SiNCs
embedded in SiO2 with a broad gain curve ranging from 650
to 850 nm (Pavesi, 2000; Liang and Bowers, 2010; Koshel et al.,
2011). Again we would like to state that the applications of SiNCs
would never be limited within the cases discussed above, and here
we only highlight some of those employed SiNCs synthesized
from the thermal disproportionation reaction.

CONCLUSION AND OUTLOOK

With the continuous development of SiNCs’ research, the
relationship between structure and PL properties of SiNCs has
been gradually revealed, which has spawned the design of novel
SiNCs-based materials with excellent PL performance and in turn
the potential for wide application and industrial production. For
the synthesis of SiNCs, thermal disproportionation offers an
excellent choice, by integrating the merits of feasible
production, precise controllability of size, PL emission from

the bandgap, and availability for further surface modification.
There is a toolbox of approaches to tune the PL of SiNCs
synthesized with this method. The most straightforward ways
are to adjust the size of SiNCs under the guidance of quantum
confinement effects, such as tuning the heating temperature,
heating time, Si/O ratio, and the structure of precursors. Apart
from the size of SiNCs, defects generated at the interface of SiNCs
and concomitant SiO2 also play an important role to abate PL as
nonradiative recombination centers. In this regard, hydrogen and
oxygen passivation are effective methods to eliminate defects, and
some organic capping groups exhibit similar functions. Besides, a
wide variety of capping groups enrich the possibilities of SiNCs.
Through surface reactions like hydrosilylation, functionalized
SiNC are endowed with biocompatibility and tunability in
both emission wavelength and intensity, meeting different
targeted application requirements.

However, thermal disproportionation is not flawless. First of
all, the Si/O ratio of the raw materials limited the production
yields of SiNCs. For SiO, the maximum atomic conversion of Si is
50% theoretically, and the actual yield would be much lower than
50%, considering that the majority of the product is still the
matrix of SiO and SiO2 which gains all the weight of O and half of
the Si, and the conversion would never be complete. Next, to
release the SiNCs from the matrix, HF etching is usually required,
which might be a cumber and hazard to nonchemists. Finally,
high heating temperature during the thermal disproportionation
requires extensive energy consumption, resulting in high cost and
significant carbon footprint.

While not being impeccable, thermal disproportionation is a
prevailing and solid technique to yield luminescent SiNCs,
towards which the understanding may lead to the design and
implementation of more viable photonic and biocompatible
applications. We envision several potential directions for its
further developments. First, more versatile compositions of the
silicon-rich oxides through introduction of metal elements and
inorganic components could endow SiNCs with new catalytic
behaviors (Wong et al., 2017; Sun et al., 2020). For example, Ti-
doped silicon nanocages would enhance their catalytic
performance for CO2 hydrogenation because of the
unsaturated electronic states of silicon cage, which was
originated from the strong covalent bonding between Si and
Ti (Pei et al., 2019; Wu et al., 2020).

Second, hybridizing the precursor with suitable solvents and
polymers could offer compatibility with conventional printing
and the novel 3D printing techniques, which in turn renders
patterning of the luminescent Si structures possible. As a recent
example demonstration, hybrid dots of silicon and carbon
combined with binders were invented as anticounterfeiting
inks, which could be applied to various substrates for printing,
including yarns, cotton fabric, cellulosic paper, glass, metal,
silicon wafer, and PET film (Fu et al., 2021; Lyu et al., 2021).
The highly saturated color of the inks could also be realized by
Mie resonance of silicon nanoparticles (Sugimoto et al., 2020;
Okazaki et al., 2021). Besides, the combination of 3D printing
technique and quantum dots could enable the fabrication of
optoelectronic devices with complex structures (Chen et al.,
2020a; Xu et al., 2021b). By incorporating the silicon quantum
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dots into the 3D printed devices, the hybrids could be more
biocompatible and environmentally benign.

Third, photosensitizers for upconversion have drawn
increasing attention recently. Similar to the photosensitizers
mentioned in Other Applications section for singlet oxygen
generation, silicon quantum dots absorb light energy and
convert it to the spin-triplet excitons centered on molecules
bound to their surface. By functionalizing SiNCs with 9,10-
diphenylanthracene ligands, the SiNCs obtained could
upconvert 488–640 nm light to 425 nm violet light (Xia et al.,
2020). However, the quenching of triplet excitons by oxygen
hindered further development of SiNCs with the property of light
upconversion. To strengthen the stability, polymer barriers on
SiNCs’ surfaces to retard the diffusion of oxygen has been
demonstrated as a viable solution (Xia et al., 2021). Moreover,
bidirectional triplet exciton transfer could also be realized by
functionalizing SiNCs with perylene chromophores (Huang et al.,
2021). Despite the fact that the SiNCs employed in these works
were synthesized via nonthermal plasma, we are confident that
SiNCs generated from thermal disproportionation should exhibit
similar behaviors.

Fourth, electronic devices have been an unfading field of
SiNCs (Ni et al., 2019). Besides the traditional SiNCs light-
emitting devices and photovoltaics, the new-generation
optoelectronic synaptic devices have been demonstrated.
For example, synaptic transistors structures that combined
the perovskite and SiNCs exhibited the increased optical

sensitivity and decreased electrical energy consumption
(Yin et al., 2020; Zhu et al., 2020). We expect that SiNCs
could find their use in more novel forms of devices, e.g.,
related to data storage, laser, and amplifiers (Dohnalova et al.,
2014).

Finally, classical silane and organosilicon chemistry is still a
treasure house to refer to (Dasog et al., 2016; de Almeida et al.,
2021), for the endless ways of surface modifications of SiNCs
freed from the oxide matrix, which could confer a myriad of new
functionalities on them, enabling unforeseen but exciting
applications.
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