
Cartilage
1(4) 306 –311
© The Author(s) 2010
Reprints and permission:  
sagepub.com/journalsPermissions.nav
DOI: 10.1177/1947603510373918
http://cart.sagepub.com

Introduction

Articular cartilage disease defines a large disease burden 
afflicting our population.1-5 Significant efforts continue in 
developing and tracking treatment solutions for articular 
cartilage lesions at various stages of their progression.6 A 
considerable interest exists for effective surgical interventions 
that address an earlier stage of disease progression rather 
than waiting for full-thickness articular cartilage lesions to 
develop. Early surgical intervention is appealing for an aging 
population to mitigate downstream disease burden associated 
with full-thickness defects. Surgical treatment of fibrillated 
partial-thickness articular cartilage lesions remains an impor-
tant category because these lesions can be readily diagnosed 
and characterized by visual and tactile cues during surgery 
and hence remain an attractive therapeutic target for early 
surgical intervention modalities.

Surgical treatment for fibrillated partial-thickness lesions 
has been traditionally limited to debridement chondroplasty 
techniques developed to remove the damaged articular carti-
lage that causes a mechanical and inflammatory impairment 
of joint function and leads to a deterioration of joint health. 
Smoothing the articular surface can eliminate the mechanical 
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Abstract

Objective: Early surgical intervention for articular cartilage disease is desirable before full-thickness lesions develop. As early 
intervention treatments are designed, native chondrocyte viability at the treatment site before intervention becomes an 
important parameter to consider. The purpose of this study is to evaluate native chondrocyte viability in a series of speci-
mens demonstrating the progression of articular cartilage lesions to determine if the chondrocyte viability profile changes 
during the evolution of articular cartilage disease to the level of surface fibrillation. Design: Osteochondral specimens dem-
onstrating various degrees of articular cartilage damage were obtained from patients undergoing knee total joint replace-
ment. Three groups were created within a patient harvest based on visual and tactile cues commonly encountered during 
surgical intervention: group 1, visually and tactilely intact surfaces; group 2, visually intact, tactilely soft surfaces; and group 
3, surface fibrillation. Confocal laser microscopy was performed following live/dead cell viability staining. Results: Groups 1 
to 3 demonstrated viable chondrocytes in all specimens, even within the fibrillated portions of articular cartilage, with little 
to no evidence of dead chondrocytes. Chondrocyte viability profile in articular cartilage does not appear to change as 
disease lesion progresses from normal to surface fibrillation. Conclusions: Fibrillated partial-thickness articular cartilage 
lesions are a good therapeutic target for early intervention. These lesions retain a high profile of viable chondrocytes and 
are readily diagnosed by visual and tactile cues during surgery. Early intervention should be based on matrix failure rather 
than on more aggressive procedures that further corrupt the matrix and contribute to chondrocyte necrosis of contiguous 
untargeted cartilage.
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Figure 1. Confocal laser microscopy images, group 1. Representative images depicting live cell stain (green), dead cell stain (red), and 
a combined image with both live cell and dead cell stain. Original magnification 10x.

stress risers that cause symptoms and propagate cartilage 
damage; removal of the loose surface debris associated with 
loss of cartilage function decreases the biologic load the joint 
needs to address.7-11 Although an attractive surgical approach, 
current debridement chondroplasty techniques are imprecise, 
are aggressive, and induce necrosis and collateral damage to 
contiguous untargeted cartilage tissue at the treatment site.12-23 
Accordingly, widespread adoption of current debridement 
chondroplasty techniques as an early surgical intervention 
modality to treat fibrillated partial-thickness lesions has not 
emerged due to the fear of contributing to disease progression 
resulting from an attempt to provide disease burden relief.

Because it is difficult to imagine an early surgical interven-
tion for articular cartilage that does not include in situ removal 
of damaged tissue present at the lesion locale, researchers have 
sought to create more targeted interventions that are based on 
lesion progression. As early surgical intervention techniques 
become more precise and allow tissue preservation of articular 
cartilage, native chondrocyte viability at the treatment site 

before intervention becomes an important parameter to con-
sider. The purpose of this study is to evaluate native chondro-
cyte viability in a series of specimens demonstrating the 
progression of articular cartilage lesions to determine if the 
chondrocyte viability profile changes during the evolution of 
articular cartilage disease to the level of surface fibrillation.

Materials and Methods
Osteochondral specimens were harvested from patients under-
going total knee replacement under an approved Institutional 
Review Board protocol. The total knee replacement procedures 
were performed by a single surgeon in the normal course of 
his practice. The tissue to be normally discarded during the 
procedure was examined prior to harvest once the knee joint 
was entered surgically to determine if it met the requirements 
for study inclusion. Specimens were included that demon-
strated an area of uniform normal or partial-thickness damage 
of sufficient size to obtain test samples wherein harvest margin 

Figure 2. Confocal laser microscopy images, group 2. Representative images depicting live cell stain (green), dead cell stain (red), and 
a combined image with both live cell and dead cell stain. Original magnification 10x.
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artifact would not be a confounding variable.24 Three groups 
were created within each patient tissue harvest based on visual 
and tactile characteristics of the specimens as customarily 
assessed during surgery: group 1 included visually and tactilely 
normal cartilage surfaces, group 2 included visually normal 
but tactilely soft (as judged by indentation pressure) cartilage 
surfaces, and group 3 included surface fibrillation of the car-
tilage surfaces.

Immediately after harvest, three 0.5-mm coronal sections 
of each cartilage sample were obtained referencing the cen-
ter of the sample after removal of subchondral bone. The 
sections were prepared for staining by washing in HEPES 
buffered saline solution. Live/Dead® Reduced Biohazard 
Cell Viability Kit 1 “green and red fluorescence,” SKU 
#L-7013 (Invitrogen, Carlsbad, California), was used per 
the manufacturer’s specification to stain specimens. Speci-
mens were gluteraldehyde fixed, transferred to standard flat 
glass slides, and flooded with VectaShield® fluorescence 
protection oil prior to the placement of #1.5 borosilicate glass 
coverslips over each specimen section.

The cartilage tissue and the articular surface were assessed 
by confocal fluorescence laser microscopy analysis performed 
by personnel blinded to the identity of the samples. Confocal 
imaging was performed with an Olympus IX-81 inverted 
microscope coupled to an Olympus FV300 confocal laser 
scanning unit (Center Valley, Pennsylvania) using 488-nm 
laser excitation. Live chondrocytes were captured under green 
fluorescent channel (505-525 nm), and dead chondrocytes 
were captured under red fluorescent channel (577-634 nm), 
generating a live image, a dead image, and an integrated image.

Results
Six separate osteochondral specimens originating from femo-
ral condyle resection were included for study (n = 6), with 2 
specimens per group. Figures 1 to 3 demonstrate representa-
tive images of the specimens. Interspecimen comparisons did 

not reveal significant differences in relative chondrocyte 
population densities, chondron orientation, or cellular distri-
bution patterns. Comparison of specimens within a patient 
harvest indicated a distinct progression of lesion from normal 
to fibrillated.

Group 1 specimens (Figure 1) demonstrated intact and 
normal articular surfaces consistent with gross visual and 
tactile inspection of the harvested tissues. The superficial, 
transitional, and deep zones remained structurally intact with 
chondrocytes and chondron appearances typical of normal 
articular cartilage. Live chondrocytes were observed residing 
throughout the tissue abundantly and present in zonal density 
patterns typical of healthy cartilage. Dead chondrocytes were 
not observed within the substance of the cartilage tissue. The 
lamina splendens region appeared congruous without evidence 
of disruption.

Group 2 specimens (Figure 2) demonstrated intact but 
softened articular surfaces consistent with gross visual and 
tactile inspection of the harvested tissues. The superficial, 
transitional, and deep zones remained structurally intact, but 
the superficial zone demonstrated areas with loss of surface 
cellularity and lacunar emptying within the superficial zone 
deep to the lamina splendens. Live chondrocytes were abun-
dantly present in zonal density patterns typical of healthy 
cartilage around and below the surface changes. Dead chon-
drocytes were not observed within the substance of the car-
tilage tissue. Adjacent to the softened segments, a more typical 
normal appearance was observed without softening, loss of 
surface cellularity, or lacunar emptying, as noted in group 1 
specimens indicating lesion transition.

Group 3 specimens (Figure 3) demonstrated typical fibril-
lated articular surfaces consistent with gross visual and tactile 
inspection of the harvested tissues. The superficial zone was 
clearly disrupted by the fibrillation, but chondrocytes with 
a flattened appearance typical of this zone remained present 
even toward the base of the fibrillation. The fibrillation did 
not penetrate deep to the transitional zone of the articular 

Figure 3. Confocal laser microscopy images, group 3. Representative images depicting live cell stain (green), dead cell stain (red), and a 
combined image with both live cell and dead cell stain. Original magnification 10x.
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cartilage tissue in any specimen. Within the fibrillated tissue 
itself, live chondrocytes were observed residing within the 
tissue at varying distances from the surface of the fibrillation. 
Live chondrocytes were abundantly present in zonal density 
patterns typical of healthy cartilage around and below the 
surface fibrillation. Occasional dead chondrocytes were 
observed to reside in a more extruded position at the margins 
of the fibrillation itself but not within the substance of the 
morphologically intact cartilage tissue. Adjacent to the fibril-
lated segments, a more typical softened appearance was 
observed without fibrillation but with loss of surface cellular-
ity and lacunar emptying within the superficial zone deep to 
the lamina splendens, as noted in group 2 specimens indicat-
ing lesion transition.

Discussion
This study explored chondrocyte viability in tissue specimens 
demonstrating various levels of articular cartilage lesion pro-
gression in patients undergoing joint replacement surgery. 
Although a small sample size, the results indicate that articular 
cartilage retains a very high percentage of native viable chon-
drocytes even when lesion progression has led to matrix failure 
and subsequent surface fibrillation within the same patient. 
Because of the predominant chondrocyte viability noted, sur-
face fibrillation appears to be an important stage to consider 
for early surgical intervention—a stage that can be readily 
diagnosed by visual and tactile cues during surgery.

Matrix failure–based early intervention for articular 
cartilage disease should be considered a therapeutic target 
because preserving functioning cartilage tissue is important. 
Injury and loss of the superficial zone has been strongly asso-
ciated with the progression of cartilage disease,25-29 and treat-
ments that contribute to superficial zone injury accelerate the 
natural progression and disease burden of osteoarthritis.25,29-33 
Once articular cartilage lesions have progressed to matrix 
failure leading to surface fibrillation, those chondrocytes 
within the fibrillation, although noted to be viable in this 
study, may be not be useful to retain considering that fibril-
lation matrix stress risers can cause additional chondrocytes 
to become extruded as untreated fibrillation lesions propagate 
in response to additional loading.34-41 Stabilizing superficial 
zone lamina flaps, cleavage planes, and the peeling or break-
ing of denatured collagen fibrils can be a reasonable matrix 
failure–based therapeutic target. From an early surgical inter-
vention perspective, precisely removing this fibrillated tissue 
as a means to stabilize lesions is preferable, as long as the 
underlying intact chondrons are not injured, because it has 
been noted that spatial reorganization and proliferation of 
superficial zone chondrocytes occur in response to distant 
partial-thickness lesions and may serve as a mechanism to 
recruit metabolically active units to address focal disease.42

Although many studies have supported the efficacy of 
debridement chondroplasty in relieving patient symptoms 
by smoothing the articular surface and decreasing the biologic 

load of joint cartilage debris,7-11 these benefits have yet to be 
shown to contribute to long-term joint health, to promote 
cartilage longevity, or to mitigate joint replacement surgery. 
This may be due to the nature of current interventions that 
are excessively damaging to these lesions and notably con-
tribute to disease progression.12-23 If iatrogenic cartilage dam-
age can be eliminated during debridement chondroplasty, 
whereby superficial zone chondrocytes at or around the lesion 
are preserved, the opportunity to effect beneficial changes 
in chondrocyte function remains in that resident cell function 
may be recruited to aid healing.42-47 Even though other experi-
mental techniques have failed to show a significant repair 
response of native chondrocytes within partial-thickness 
lesions,48-50 further study is required to determine whether 
early surgical intervention treatments that preserve and sta-
bilize tissue permit or even induce a normal healing response.
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