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By uniformly analyzing 723 RNA-seq data from 91 tissues and cell types, we built a comprehensive gene atlas and studied

tissue specificity of genes in cattle. We demonstrated that tissue-specific genes significantly reflected the tissue-relevant biol-

ogy, showing distinct promoter methylation and evolution patterns (e.g., brain-specific genes evolve slowest, whereas testis-

specific genes evolve fastest). Through integrative analyses of those tissue-specific genes with large-scale genome-wide asso-

ciation studies, we detected relevant tissues/cell types and candidate genes for 45 economically important traits in

cattle, including blood/immune system (e.g., CCDC88C) for male fertility, brain (e.g., TRIM46 and RAB6A) for milk produc-

tion, and multiple growth-related tissues (e.g., FGF6 and CCND2) for body conformation. We validated these findings by us-

ing epigenomic data across major somatic tissues and sperm. Collectively, our findings provided novel insights into the

genetic and biological mechanisms underlying complex traits in cattle, and our transcriptome atlas can serve as a primary

source for biological interpretation, functional validation, studies of adaptive evolution, and genomic improvement in

livestock.

[Supplemental material is available for this article.]

Over the last decade, genome-wide association studies (GWAS)
have been successful at discovering trait-/disease-associated geno-
mic variants (Visscher et al. 2012, 2017). However, such studies
provided limited information about novel molecular mechanisms
underlying complex traits and diseases, partly due to the lack of
knowledge of in what tissues or cell types those genomic variants
would act. Recently, researchers have been actively pursuing a
comprehensive map of functional elements, aiming to identify
which genes and regulatory factors (e.g., promoters and enhanc-
ers) are functional or active in a large range of tissues and cell
types—for example, Roadmap Epigenomics (Roadmap Epigenom-
ics Consortium et al. 2015), GETx (The GTEx Consortium 2017),
and Cell Atlas (Regev et al. 2017) projects in human, as well as
the Functional Annotation of Animal Genomes (FAANG) project
in livestock (Andersson et al. 2015). Integrative analyses of func-
tional genome information with large-scale GWAS data provide

unprecedented potential to discover trait-/disease-relevant tissues
or cell types, which is crucial for understanding the molecular un-
derpinnings of complex traits and diseases (Finucane et al. 2018;
Hormozdiari et al. 2018). For instance, the Roadmap Epigenomics
Consortium (2015) showed that GWAS hits of many traits and
diseases are significantly enriched in epigenomic marks (e.g.,
H3K4me1) of trait-/disease-relevant tissues and cell types in hu-
mans. Finucane et al. (2018) recently explored disease-relevant
tissues and cell types for various human diseases by examining
their heritability enrichments among diverse tissues and cell types,
such as inhibitory neurons for bipolar disorder (Finucane et al.
2018).

In livestock, due to the limited amount of functional genome
data available (Fang et al. 2019), to our knowledge no previous
publication has systematically reported the causal tissues or cell
types for complex traits and diseases of economic importance. A
comprehensive map linking complex traits with their specifically
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relevant tissues will offer valuable information for fine-mapping
causal genes/variants, for functionally validating of GWAS hits
(i.e., selecting the “right” tissues and cell types), and for under-
standing of adaptive evolution (Quiver and Lachance 2018), as
well as for the design of genome editing experiments (Ruan et al.
2017). Additionally, a better understandingof the genetic architec-
ture underlying complex traits maymake a contribution to the ge-
netic improvement programs among livestock species (Goddard
and Hayes 2009; Georges et al. 2019). For instance, Fang et al.
(2017a,b) reported improved genomic prediction accuracy for
mastitis and milk production traits in cattle by incorporating bio-
logical priors and gene expression information relevant to bacte-
rial infection into genomic predictionmodels (Fang et al. 2017a,b).

Here, we uniformly assembled and analyzed 723 (156 newly
generated and 567 existing) RNA-seq data sets to build a new
gene atlas in cattle (Supplemental Code), which included 91 tis-
sues and cell types from 447 individuals (http://cattlegeneatlas
.roslin.ed.ac.uk). We summarized the global design of this study
in Supplemental Figure S1. We first detected genes that were high-
ly and specifically expressed in each tissue or cell type and then ex-
plored their biological characteristics in terms of biological
function, DNA methylation, and evolution. We detected relevant
tissues/cell types and candidate genes for 45 complex traits of eco-
nomic importance in cattle, including 18 body conformation, six
milk production, 12 reproduction, eight health, and one feed effi-
ciency traits, by integrating those tissue-specific genes with large-
scale (n=27,214 bulls) GWAS data. We validated our findings by
analyzing whole-genome DNA methylation data across major
somatic tissues and sperm in cattle. In addition, we tested whether
the tissue-specificity information of genes can improve genomic
prediction. Our results, for the first time, systemically establish
connections at the RNA level between tissue/cell types and com-
plex traits in livestock and provide an important starting point
for post-GWAS functional experiments to explore genotype-phe-
notype relationships in livestock.

Results

Summary of cattle gene atlas

Using a uniform pipeline of bioinformatics analysis, we obtained
18,468,126,120 clean reads from723 RNA-seq data sets with an av-
eraged uniquely mapping rate of 94.18%. We summarized details
of sample information in Supplemental Table S1. We determined
the normalized expression levels (i.e., fragments per kilobase per
millionmapped reads, FPKM) for all 24,616 Ensembl genes among
723 samples. In general, we found an average of 15,864 genes (me-
dian=16,086, ranging from 7807 to 18,258) expressed (FPKM>0)
across 91 tissues and cell types, of which the majority (n= 14,682
on average) were protein-coding genes (Supplemental Fig. S2).
Despite differences in experimental conditions and sample charac-
teristics, samples from similar tissues and cell types clustered
together based on their gene expression profiles (Fig. 1A), validat-
ing the potential of our data for studying the specificity of tissue
expression. For instance, we found that samples from 14 adult
brain regions (central neural system, CNS) clustered together
with those from fetus brain and four other brain endocrine tissues
(stalk median eminence [SME], anterior pituitary, posterior pitui-
tary, and pineal gland). All samples from seven blood/immune tis-
sues and cell types clustered together, including CD4 cells, CD8
cells, white-blood cells, lymphocyte, spleen, thymus, and lymph
nodes (Fig. 1A).

Detection and functional characterization of tissue-/

cell type–specific genes

We calculated a t-statistic to measure the specific expression of a
gene in a given tissue/cell type (Methods). We found that tissues
and cell types within the same system highly positively correlated
based on these t-statistics (Supplemental Fig. S3), indicating the
high similarity of their tissue-specific expression. Of special inter-
est, we found that mammary gland highly negatively correlated
with corpus luteum and endometrium (Pearson’s r=−0.88 and
−0.85, respectively) (Supplemental Fig. S3). This may reflect the
well-known, antagonistic relationship between milk yield and fer-
tility in dairy animals (Veerkamp et al. 2001; Berry et al. 2003).
Additionally, liver and rumen epithelial cells negatively correlated
with several immune tissues and cell types, including CD4 cells,
CD8 cells, white blood cells, and thymus (the averaged Pearson’s
r=−0.62) (Supplemental Fig. S3). This may support the observed
connections between feed efficiency and immune responses in
cattle (Hou et al. 2012). However, the underlying molecular mech-
anisms of these negative correlations are largely unknown and re-
quire further investigations.

We detected tissue-specific genes for each tested tissue based
on the rank of t-statistics (i.e., top 5%). We showed the top tissue-
specific genes in brain (GRM5), liver (SLC22A9), white blood cell
(FCRL3), uterus (TDGF1), and testis (TRIM69) as examples in
Figure 1B. The functional annotation of tissue-specific genes vali-
dated the known tissue-relevant biology (Fig. 1C; Supplemental
Table S2). For instance, brain-specific genes significantly enriched
for nervous system development (FDR=1.67×10−48, enrichment
fold=3.24), liver for organic acid metabolism process (FDR=1.33×
10−51, enrichment fold=4.92), white blood cell for regulation of im-
mune system (FDR=7.81×10−48, enrichment fold=3.85), uterus for
embryonic morphogenesis (FDR=1.97×10−20, enrichment fold =
3.63), and testis for male gamete generation (FDR=2.94× 10−28,
enrichment fold =5.08) (Fig. 1C). In addition, we confirmed that
promoters of tissue-specific genes in liver and muscle had specifi-
cally low DNA methylation in the corresponding tissues
(Supplemental Fig. S4), consistent with promoter methylation be-
ing negatively correlated with gene expression (Smith and
Meissner 2013). For instance, the promoter methylation of
SLC22A9 (liver-specific expression), which is an important hepatic
transport protein (Riedmaier et al. 2016), was significantly lower in
liver when compared to other tissues (Supplemental Fig. S5).
Moreover, our motif enrichment analysis of tissue-specific genes
revealed potential master regulators (transcriptional factors)
(Supplemental Fig. S6; Supplemental Table S3), which could con-
tribute to regulation of gene activity and differentiations of cell
types and tissues (Spitz and Furlong 2012). As shown in
Supplemental Figure S6, we found that STAT1 was significantly
(FDR<0.05) enriched in CD4 cells and lymph nodes, which
have crucial roles in multiple immune responses (Shuai and Liu
2003; Hu and Ivashkiv 2009), whereas ZFX, which participates
in neuronal differentiation, was significantly enriched in hippo-
campus and cerebral cortex (Harel et al. 2012; Burney et al. 2013).

To explore the evolutionary conservation of tissue-specific
genes amongmammals,we first compared the cattle tissue-specific
genes with human tissue-specific genes among 10 major tissues.
We found that tissue-specific genes significantly overlapped in
the matched tissues between cattle and human (Fig. 1D). We fur-
ther explored dN/dS ratios of orthologous genes between cattle
and five othermammals (i.e., human,mouse, dog, pig, and sheep).
We consistently observed that genes specific for brain regions had

Cattle gene atlas enhances GWAS interpretation

Genome Research 791
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.250704.119/-/DC1
http://cattlegeneatlas.roslin.ed.ac.uk
http://cattlegeneatlas.roslin.ed.ac.uk
http://cattlegeneatlas.roslin.ed.ac.uk
http://cattlegeneatlas.roslin.ed.ac.uk
http://cattlegeneatlas.roslin.ed.ac.uk
http://cattlegeneatlas.roslin.ed.ac.uk
http://cattlegeneatlas.roslin.ed.ac.uk
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.250704.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.250704.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.250704.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.250704.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.250704.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.250704.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.250704.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.250704.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.250704.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.250704.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.250704.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.250704.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.250704.119/-/DC1


the significantly lowest dN/dS ratios, whereas genes specific for
male reproductive tissues (e.g., testes and sperm) and blood/im-
mune system (e.g., lymph nodes) had the significantly highest
dN/dS ratios (Fig. 2; Supplemental Fig. S7). We then correlated
the expression of all orthologous genes among major tissues in
both cattle versus human and cattle versus sheep comparisons
and confirmed that testes had the lowest correlation, whereas
brain showed a relatively higher one (Supplemental Fig. S8). Our
findings demonstrated that, in constrained tissues (e.g., brain), tis-
sue-specific genes tended to evolve slowly, whereas in the relaxed
tissues (e.g., testes), tissue-specific genes evolved more rapidly, re-
vealing the importance of tissue-driven evolution.

Detection of tissues and cell types relevant with 45 agronomic

traits

By integrating tissue-specific genes with large-scale GWAS, we re-
vealed a comprehensive genetic relationship between 91 tissues/
cell types and 45 complex traits of economic importance in cattle,
providing novel insights into the molecular underpinnings of
such economically important traits (Fig. 3). To validate our find-
ings, we repeated GWAS signal enrichment analyses using tissue-
specific DNA methylation regions instead of tissue-specific genes.
We found GWAS enrichments from DNAmethylation highly cor-

related with those from gene expression across all 45 traits among
multiple tissues, for example, sperm (Pearson’s r=0.67; P=4.41×
10−7) and lung (Pearson’s r=0.65; P= 1.60×10−6) (Fig. 4).We sum-
marized details of all 288 significant (FDR<0.1) associations be-
tween traits and tissues in Supplemental Table S4. In addition,
we summarized the top three expressed tissues of all 525 fine-
mapped genes across all complex traits in Supplemental Table
S5. The details of fine-mapped genes were described previously
(Jiang et al. 2019).

Milk production traits

Generally, we observed that milk production traits were signifi-
cantly associatedwith a few tissues and cell types (Fig. 3), indirectly
supporting their highly polygenic architecture (Cole et al. 2009;
Kemper and Goddard 2012). Of note, we found that mammary
glandwas themost significant (P=2×10−4) tissue for protein yield
(Supplemental Fig. S9A) and validated this by demonstrating that
two of its fine-mapped genes (i.e., CSN1S1with the posterior prob-
ability of causality (PPC) =1, and PAEPwith PPC=0.84) were high-
ly specifically expressed in mammary gland and milk cells
(Supplemental Fig. S9B). Mammary gland was also the top signifi-
cant tissue (P= 1.5 ×10−3) for lifetime net merit, which is an eco-
nomic index including multiple traits that is used to rank
animals for selection, suggesting the importance of a “good”

BA

C

D

Figure 1. General characteristics of the cattle gene atlas. (A) Clustering analysis of all 723 RNA-seq samples using t-SNE (t-Distributed Stochastic
Neighbor Embedding) procedure. (CNS) Central neural system. (B) Examples of tissue-specific genes in brain (GRM5), liver (SLC22A9), white blood cells
(FCRL3), uterus (TDGF1), and testes (TRIM9). The y-axis is the raw gene expression, that is, fragments per kilobase per million mapped reads (FPKM). (C)
Gene Ontology enrichment analysis of tissue-specific genes (the top 5% of genes based on t-statistics). The value in each bar is the fold of enrichment. (D)
The enrichment analysis of cattle tissue-specific genes with human tissue-specific genes. The P-value is obtained using a hypergeometric test.
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mammary gland in the dairy industry. Moreover, we found two
fine-mapped genes, MRTFA (previously known as MKL1) (PPC=
1) and NCF4 (PPC=0.55), for milk/protein yields and protein per-
centage, respectively, which specifically expressed in blood/im-
mune system (Supplemental Fig. S10). This provides evidence of
the underlying genetic correlations between milk production
and immune disorders (e.g., mastitis) in cattle. Although brain tis-
sues showed no significant enrichments for milk production (Fig.
3), we noticed that they indeed exhibited a significantly higher en-
richment for milk production as compared to other types of traits,
except for feed efficiency (i.e., residual feed intake [RFI]) (Fig. 5A).
We found two fine-mapped genes, TRIM46 (PPC=0.59) and
RAB6A (PPC=0.79), for protein percentage and milk yield, respec-
tively, which highly specifically expressed in brain regions (Fig.
5B). By examining quantitative trait loci (QTL) of 19milk-relevant
traits in cattle QTLdb, we confirmed that brain-specific genes were
significantly enriched for genes (i.e., closest genes to the lead SNPs)
associated withmilk production traits (e.g., milk yield and fat/pro-
tein percentage) but not for certainmilk content traits (e.g., such as
milk iron and zinc contents) (Supplemental Fig. S11). To further
explore which brain regions were relevant to milk production
traits, we pinpointed tissue-specific genes within 11 brain regions
and another four brain endocrine tissues.We observed that anteri-
or pituitary, cerebellum, and temporal cortex were significantly
(FDR<0.05) associated with protein yield (Fig. 5C). To our knowl-
edge, no previous publication has reported such relationships be-
tween the brain and milk production by an integrative analysis
of genomic and transcriptomic data.

Body conformation traits

Body conformation (type) traits were significantly associated with
many tissues and cell types, except for brain regions (Fig. 3), similar
to findings in humanheight (Finucane et al. 2018), reflecting their
highly polygenetic architectures. We used cattle stature as an ex-
ample and found that three of its fine-mapped genes with PPC=
1, FGF6, CCND2, and TCP11, were highly specifically expressed
in fetal muscle, rumen epithelial cell, and testes, respectively
(Supplemental Fig. S9C,D). By examining heritability enrichments

of human height among 33 tissues (Finucane et al. 2018), we ob-
served that these tissues significantly positively correlated
(Pearson’s r=0.64; P= 6.82×10−5) between humanheight and cat-
tle stature in terms of GWAS signal enrichment (i.e., −log10P)
(Supplemental Fig. S12). Uterus and aorta were the top signifi-
cantly enriched tissues for both human height and cattle stature,
and they significantly associated withmany other body type traits
in cattle as well, such as rump width and rump angle (Fig. 3). All
these findings support the view that mammals shared similar mo-
lecular mechanisms underlying body size.

Reproduction and health traits

We noticed that immune/blood system was significantly associat-
ed with multiple reproduction traits (Fig. 3). Overall, reproduction
traits showed a significantly higher enrichment in immune/blood
systemwhen compared to other types of traits (Fig. 6A). The lymph
node was the most significant tissue for both sire conception rate
(P<10−5) and sire still birth (P<10−5) (Fig. 6B; Supplemental
Table S4). We found a fine-mapped gene (i.e., CCDC88C with
PPC=1) of DFB (days to first breeding, a measurement of fertility
ability), which highly specifically expressed in both blood/im-
mune system and infundibulum (Fig. 6C). CCDC88C plays impor-
tant roles in the regulation of T cells maturation during bacterial
inflammation (Kennedy et al. 2014). Additionally, we found that
immune/blood system was significantly associated with several
health traits (Fig. 3). For instance, thymus was the top relevant
(P=2.70× 10−3) tissue for ketosis (KETO) (Fig. 6B). We also found
C6, a fine-mapped gene (PPC=1) for somatic cell score (SCS) in
milk, highly specifically expressed in liver and duodenum (Fig.
6C). SCS is an important indicator of mastitis in dairy cattle
(Heringstad et al. 2006). Because the small intestine system exhib-
ited immune functions (Santaolalla and Abreu 2012) and showed
significant associations with multiple reproduction traits and
health traits (Fig. 3), we further pinpointed tissue-specific genes
within blood/immune system and four intestine parts, including
ileum, duodenum, jejunum, and caecum. We found that thymus
showed the highest andmost significant enrichments for multiple
health and reproduction traits, including daughter still birth,

Figure 2. Comparison of dN/dS ratios of tissue-specific genes across all the 91 tissues and cell types between human and cattle. The red line represents the
averaged dN/dS ratio of all orthologous genes between human and cattle. For each tissue, we compared tissue-specific genes of this tissue against the re-
maining genes using a two-tailed t-test; (∗) P<0.01.
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daughter calving ease, SCS, KETO, DFB, and displaced abomasum
(DSAB). CD8 cells were significantly associatedwith daughter calv-
ing ease and daughter still birth, whereas CD4 cells were signifi-
cantly associated with cow conception rate and SCS (Fig. 6D).

Feed efficiency

Weobserved that the alimentary canal was the top relevant system
for feed efficiency (i.e., RFI), amongwhich rumenwas themost sig-
nificant (P=5.70×10−3) tissue (Supplemental Fig. S13). We also
found that brain pons was associated (P= 2.19× 10−2) with RFI,
which suggests the important role of the gut-brain axis in feed in-
take (Konturek et al. 2004). Nasal mucosa was another tissue asso-
ciated (P=1.06×10−2) with RFI, in line with the fact that olfactory
receptors are known to be associated with RFI in cattle (Seabury
et al. 2017).

A further application of this gene atlas is to explore whether
the tissue specificity of genes could enhance genomic improve-
ment in dairy cattle. We focused on three milk production traits

(milk, fat, and protein yields). To reduce the redundancy and com-
putational burdens, we clustered 91 tissues and cell types into 20
categories (Supplemental Fig. S14A). For each category, we then fit-
ted SNPs within tissue-specific genes of this category and those in
the remaining genome into a two-component Bayesian prediction
model. By comparing with a two-component model (i.e., all genes
vs. the remaining genome), whose prediction accuracy was similar
to that of a single-component model (including all SNPs), we
found that there is no improvement in genomic prediction accura-
cy on average (Supplemental Fig. S14B).We showed that the num-
ber of SNPs within tissue-specific genes did not bias prediction
accuracy of models (Supplemental Fig. S15). However, we found
the category consisting of immune/blood system and liver resulted
in an increase of 0.041, 0.032, and 0.015 in prediction accuracy for
fat yield, milk yield, and protein yield, respectively (Supplemental
Fig. S14B). Another category consisting of salivary gland, larynx
cartilage, tongue, chorid plexus, andmuscle also increased the pre-
diction accuracy across the three milk traits, that is, 0.044, 0.028,
and 0.003 for fat, milk, and protein yields, respectively. We also

Figure 3. The relationships between 45 complex traits and 91 tissues and cell types. The color corresponds to enrichment degrees (i.e., −log10P) that are
computed using a sum-based GWAS signal enrichment analysis based on the top 5% tissue-specific genes and a 50-kb extension. (∗) Corrected-P (FDR) <
0.1.
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observed that brain regions led to an increase of 0.033 and 0.016 in
prediction accuracy for fat yield and milk yield, respectively, but
not for protein yield (Supplemental Fig. S14B). Of note was that
DGAT1, a well-known milk and fat gene of large effect (Grisart
et al. 2002), was not in those categories, implying that multiple
loci of small effects are enriched in these tissue-specific genes.

Discussion

In this study, we built a cattle gene atlas by analyzing 723 RNA-seq
data uniformly across 91 tissues and cell types, which also allows
for phenome-wide association analysis of genes of interest in hu-
mans. Compared to the previous gene expression atlas based on
the reference Hereford cow in 2010 (Harhay et al. 2010), we pro-
duced∼70 timesmore data using RNA-seq (100-bp average length)
instead of 3′ tag sequencing (20 bp), which enabled us to examine

more genes (n=22,243) than before (n=16,517). To increase the
statistical power for detecting tissue-specific genes, we generated
another 51 new RNA-seq data from 14 major somatic tissues and
sperm in Holstein, as well as uniformly analyzed other 567 public
RNA-seq data of high quality. Using this newly built gene atlas, we
identified relevant tissues/cell types and candidate genes for 45
complex traits of economic importance and further applied it in
genomic prediction. Of interest, we observed that brain was asso-
ciated with milk production traits, and two brain-specific genes,
TRIM46 and RAB6A, were fine-mapped genes for protein percent-
age and milk yield, respectively. TRIM46 plays key roles in neuro-
nal polarity and axon specification (van Beuningen et al. 2015),
whereas RAB6A is a key regulator of membrane traffic from the
Golgi apparatus toward the endoplasmic reticulum (Matsuto
et al. 2015). PheWAS based on both Gene atlas (http://geneatlas
.roslin.ed.ac.uk/region-phewas/) (Canela-Xandri et al. 2018) and
GWAS atlas (https://atlas.ctglab.nl/PheWAS) (Watanabe et al.
2019) showed that TRIM46 was significantly associated with
many metabolic traits (e.g., blood urea nitrogen and impedance
of leg), whereas RAB6Awas significantly associated with both neu-
rological and metabolic traits (e.g., cingulum axial diusivities and
whole body fat-freemass). Our cattle gene atlas will serve as a valu-
able source for the livestock science community to interpret GWAS
findings, to design follow-up validation experiments through
choosing the “right” tissues and cell types, as well as to enhance
genomic improvement in livestock. With more molecular pheno-
types becoming available across diverse tissues in livestock in the
near future, for instance, from the on-going FAANG project
(Andersson et al. 2015), our current research strategy will help
gain more novel insights into the genetic and biological mecha-
nisms underpinning agronomic traits and thus enhance genomic
improvement programs.

We noticed some limitations in our current study. Our basic
assumption here was that genomic variants ultimately regulated
complex traits by altering gene expression in the relevant tissues
and cell types. Previous studies showed that themajority of expres-
sion quantitative trait loci (eQTL) were cis-variants (The GTEx
Consortium 2017). We therefore focused on cis-regulators of tis-
sue-specific genes by extending certain distances (i.e., 10 kb,
20 kb, and 50 kb) around such genes. In order to study trans-
eQTLs, we need a large amount of samples for each tissue and
cell type due to their relatively small effects (Grundberg et al.
2012). The cell type composition of tissues could confound our in-
terpretation of results. As we showed in Figure 6D, CD4 cells and
CD8 cells had distinct enrichments across 19 reproduction and
health traits. Therefore, pure bulk cells and/or single-cell expres-
sion data may help further detect which cell types are causal in a
trait-relevant tissue. Additionally, tissues sharing similar expres-
sion patterns with causal tissues could hinder us from detecting
the “drivers” among multiple “passengers,” which is similar to
the situation with GWAS results, wherein we can only interpret
the significant tissues and cell types as the “best proxy” for the
causative one. We are also limited by the availability of transcrip-
tomic data, thus potentially ignoring trait-relevant tissues and
cell types, which are only biological important for the given traits
in certain physiological stages or environmental conditions.

Due to the large amount of linkage disequilibrium (LD)
among genomic markers within a single cattle breed (e.g.,
Holstein), traditional single-component prediction models (e.g.,
GBLUP and BayesA), which assume that all markers are drawn
from the same prior distribution, work quite well within breed
(Meuwissen et al. 2001). Suchhigh LDwithin breed and the highly

Figure 4. Validation of trait-tissue associations using DNA methylation
data across seven tissues. Each dot represents a trait. The y-axis is for
GWAS signal enrichments (−log10P) obtained using tissue-specific DNA
methylated regions, whereas the x-axis is for GWAS signal enrichments ob-
tained using tissue-specific expressed genes. The r is for Pearson’s
correlation.

Cattle gene atlas enhances GWAS interpretation

Genome Research 795
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.250704.119/-/DC1
http://geneatlas.roslin.ed.ac.uk/region-phewas/
http://geneatlas.roslin.ed.ac.uk/region-phewas/
http://geneatlas.roslin.ed.ac.uk/region-phewas/
http://geneatlas.roslin.ed.ac.uk/region-phewas/
http://geneatlas.roslin.ed.ac.uk/region-phewas/
http://geneatlas.roslin.ed.ac.uk/region-phewas/
http://geneatlas.roslin.ed.ac.uk/region-phewas/
https://atlas.ctglab.nl/PheWAS
https://atlas.ctglab.nl/PheWAS
https://atlas.ctglab.nl/PheWAS
https://atlas.ctglab.nl/PheWAS
https://atlas.ctglab.nl/PheWAS


polygenic architecture of economic traits also make it hard to par-
tition genomic variance into distinct components accurately in a
linear mixed model framework, due to the potential high correla-
tions among components. When incorporating tissue-specific
genes into the extended prediction models, we thus observed a
limited increase in prediction accuracy within Holstein compared
to the traditional model, consistent with our previous findings
(Fang et al. 2017a,b). However, this functional information may
contribute much more to genomic prediction in other scenarios
where reduced relatedness is observed between reference and tar-
get populations, such as multiple breeds and over generations
(Liu et al. 2015; MacLeod et al. 2016; Fang et al. 2017a,b). In addi-
tion, when a large range of biological priori information is avail-
able in the future, we may use GWAS enrichment analysis as a
guide to choose the most “relevant” biological priori information
for genomic prediction, as genomic prediction is often computa-
tionally intensive (Fang et al. 2017a).

Methods

Bioinformatics analysis of second-generation sequencing data

In this study,wecollectedall 156 samples under the approval of the
U.S.Department ofAgricultureAgricultural Research Services Insti-
tutional Animal Care and Use Committee under the Protocol 16-
016. We provided references where RNA-seq data were retrieved
(i.e., SRP042639, PRJNA177791, PRJNA379574, PRJNA416150,
PRJNA305942, PRJNA392196, PRJNA428884, PRJNA298914,
PRJEB27455, PRJNA268096, and PRJNA446068) and summarized
details of all 723 analyzed RNA-seq samples in Supplemental Table
S1. Among the newly generated data, we collected 51 from six Hol-
stein cows (GSE137943, GSE148707), 94 from the sequenced Her-
eford cow (L1 Dominette 01449) and its relatives (GSE128075)

using a similar list as described before (Harhay et al. 2010),
five from sperm of a Holstein bull (GSE131851), and six
from rumen epithelial cells of Holstein calves (GSE129423) (Fang
et al. 2019).Briefly,weextracted the totalRNAfromsnap-frozen tis-
sues using TRIzol (Thermo Fisher Scientific) according to the man-
ufacturer’s instructions. We measured the quantity and purity of
RNAusing aNanoDrop8000Spectrophotometer (NanoDropTech-
nologies) and Agilent 2100 Bioanalyzer System (Agilent). We se-
quenced these RNA samples using the Illumina HiSeq 2000
platform (Illumina) with paired-end (100- to 150-bp) reads
for most of them and single-end reads for the rest (Supplemental
Table S1).

We analyzed all 723 RNA-seq data uniformly using the fol-
lowing bioinformatics pipeline. First, we removed contaminating
adapter molecules, reads containing ploy(N), and low-quality
reads using Trimmomatic (version 0.38) (Bolger et al. 2014), ob-
taining a total of 18,468,126,120 clean reads. We then mapped
clean reads to the cattle reference genome UMD3.1.1 using
HISAT2 (version 2.1.0) (Kim et al. 2015), resulting in an averaged
uniquely mapping rate of 94.18% (Supplemental Table S1). We
used Ensembl genes (release 94) as the gene annotation file, in-
cluding 24,616 genes. We determined gene expression levels
(i.e., FPKM) using StringTie (version 1.3.4) (Pertea et al. 2015),
while accounting for differences in sequence depth and gene
length across samples.

Based on known biology (Harhay et al. 2010), we classified 91
tissues and cell types into 17 biological categories. In order to
detect tissue-/cell-specific genes, we computed a t-statistic for
each gene in a given tissue using the following approach
(Finucane et al. 2018), by excluding tissues and cell types in the
same biological category while accounting for known covariates
(i.e., age, sex, and study) (Supplemental Table S1). We scaled the
log2-transformed expression (i.e., log2FPKM) of genes to have a
mean of zero and variance of one within each tissue and cell type.

B

A C

Figure 5. Relationships betweenmilk production traits and brain regions. (A) Milk production traits have a significantly higher GWAS signal enrichments
(−log10P) than other types of traits in 14 brain regions (CNS), except for feed efficiency (i.e., residual feed intake [RFI]). We calculate P-values between
groups using Student’s t-test. (B) Two fine-mapped genes, TRIM46 (top; posterior probability of causality [PPC] = 0.59) and RAB6A (bottom; PPC =0.79),
for protein percentage and milk yield, respectively, are specifically highly expressed in CNS compared with all other tissues and cell types. (C) The associ-
ations of milk production traits with brain regions and four brain endocrine tissues (i.e., stalkmedian eminence [SME], anterior pituitary, posterior pituitary,
and pineal gland) based on the GWAS signal enrichments of tissue-specific genes detected within these brain-relevant tissues. (∗) Corrected-P (FDR) <0.1.
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y = m+Xb+ Zc+ e, (1)

where y is the scaled log2FPKM, μ is the intercept,X is the dummy
variable for tissue, where samples of the tested tissue (e.g., CD4
cells) were denoted as ‘1’, whereas samples outside the same cate-
gory (e.g., non-blood/immune tissues and cell types) were denoted
as ‘−1’, b is the corresponding tissue effect, and Z is the matrix for
covariables, including age, sex, and study effects. c is the corre-
sponding covariable effects, and e is the residual effect. We fitted
this model for each gene in each tissue using the ordinary least-
squares approach, as implemented in R (R Core Team 2018), and
then obtained the t-statistic (i.e., the coefficient, b, divided by its
standard error) for each gene to measure its expression specificity
in the corresponding tissue. We employed the same approach to
pinpoint tissue-specific genes within a biological category of inter-
est (e.g., brain-regions and blood/immune system). We ranked
genes in each tissue according to their t-statistic and chose the
top 3%, 5%, and 10%of genes as tissue-specific genes, respectively.
We conducted all subsequent analyses using these three cut-offs
and obtained similar results. Therefore, we only presented results
from the top 5% in Results.

We conducted the functional enrichment analyses for tissue-
specific genes using a hypergeometric test with GO database, as
implemented in PANTHER 14.0 (Mi et al. 2012). We obtained
the tissue-specific genes of 10 major tissues in humans (https
://www.proteinatlas.org/humanproteome/tissue/tissue+specific)
and then tested their enrichments with cattle tissue-specific genes
among the matched tissues using a hypergeometric test. We con-
ducted the motif enrichment analyses for the promoter regions
(i.e., 1500 bp upstream of and 500 bp downstream from the tran-

scriptional start sites [TSSs]) of tissue-specific genes using MEME
software (Bailey et al. 2009). For enrichment analyses with cattle
QTLdb (Release 36, Aug. 22, 2018) (Hu et al. 2012), we chose
QTLs for 19 milk-relevant traits and then arbitrarily considered
the gene closest to the lead SNP in each corresponding QTL as
the “causal” gene. We thus obtained a list of “causal” genes for
each of the 19 milk-relevant traits. We conducted the QTL enrich-
ment analysis for tissue-specific genes using the same hypergeo-
metric test like the GO enrichment analysis. For DNA
methylation data (Zhou et al. 2018), we also mapped them to
the cattle reference genome UMD3.1.1 using Bismark v0.19.0
(Krueger and Andrews 2011). We only kept CpG sites with at
least fivefold coverage for subsequent analyses. We employed
an entropy-based framework to determine tissue-specific DNA
methylation regions, as implemented in the SMART2 software
(Liu et al. 2015). We only considered tissue-specific hypomethy-
lated regions to validate our results of trait-relevant tissues ob-
tained by using tissue-specific genes, because hypomethylation
is generally related to gene activation (Jones 2012). We deter-
mined the promoter methylation level for each gene as the aver-
age methylation of CpG sites within its promoter region as
defined above. We then obtained the adjusted promoter methyl-
ation in a tissue by adjusting for the averaged methylation over
the entire genome in this particular tissue. For comparing gene
expression among cattle, sheep, and human, we retrieved multi-
tissue gene expression for human from GTEx v6 https://
gtexportal.org/home/datasets, and for sheep from https://doi
.org/10.1371/journal.pgen.1006997.s004. We obtained the
ortholog genes among mammals from Ensembl v94 (https://
www.ensembl.org/info/website/archives/index.html).

BA

C

D

Figure 6. Associations of male reproduction and health traits with blood and immune tissues and cell types. (A) Reproduction traits have a significantly
higher GWAS signal enrichment (−log10P) than other types of traits in blood/immune tissues. We calculate P-values between groups using Student’s t-test.
(B) Enrichments of tissues and cell types with sire conception rate (SCR) and ketosis (KETO) disease. (C ) Expression patterns of two fine-mapped genes
across all 91 tissues and cell types, C6 (top; PPC = 1 for somatic cell score [SCS]) and CCDC88C (bottom; PPC = 1 for day of first birth [DFB]). (D)
Associations of male reproduction and health traits with blood/immune tissues and cell types and four intestinal parts based on the GWAS signal enrich-
ments of tissue-specific genes detected within these immune-relevant tissues and cell types. (∗) Corrected-P (FDR) < 0.05.
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Single-marker GWAS and fine-mapping results

We previously reported details of the single-marker GWAS and
fine-mapping analyses for body type, reproduction, production,
and health traits from 27,214 U.S. Holstein bulls (Jiang et al.
2019; Freebern et al. 2020 ) and for feed efficiency (i.e., RFI) from
3947 Holstein cows (Li et al. 2019). Briefly, we used de-regressed
breeding values (predicted transmitting abilities [PTA]) of
Holstein bulls as phenotypes. We have adjusted such phenotypes
for all known systematic effects, including herd, year, season, and
parity (Norman et al. 2009). For feed efficiency, we corrected for
the dry matter intake for milk yield, metabolic body weight,
body weight change, and several environmental effects to obtain
RFI (Lu et al. 2015). We used the high-density genotypes (777K)
and imputed sequence markers (n=2,619,418) with an imputa-
tion accuracy of 96.7% (Vanraden et al. 2017), minor allele fre-
quency (MAF) > 0.01, and Hardy-Weinberg Equilibrium (HWE)
test (P> 10−6) to conductGWAS analyses for RFI and the remaining
traits, respectively.We employed the following linear mixedmod-
el, implemented in MMAP software (https://mmap.github.io/), to
test for association of genomic variants with all complex traits ex-
cept for RFI:

y = m+Xb+ g + e, (2)

where y is the de-regressed PTA, μ is the overall mean, X is the ge-
notype of a genomic marker (coded as 0, 1, or 2), b is the marker
effect,g � N(0, s2

gG) is the polygenic effect accounting for familial
relationship and population structure, and e � N(0, s2

eR) is the re-
sidual. G is the genomic relationship matrix (Vanraden 2008),
built using HD markers with MAF>0.01. R is a diagonal matrix
with Rii = 1/r2i − 1, where r2i is the reliability of phenotype for
the ith individual. For RFI, we used a single-stepmethod to conduct
GWAS analysis, which was implemented in the BLUPF90 (version
2018) (Wang et al. 2012; Li et al. 2019).

GWAS signal enrichment analysis

Because complex traits being studied here are highly polygenic
(Cole et al. 2009; Kemper and Goddard 2012; Boyle et al. 2017),
we applied the following sum-based marker-set test approach, as
implemented in the QGG package (Rohde et al. 2019), to deter-
mine whether GWAS signals were enriched in tissue-specific
genes.We added 10-kb, 20-kb, and 50-kbwindows around gene re-
gions to include the potential cis-regulatory variants. Previous
studies showed that this approach had at least equal power when
compared to other commonly used GWAS signal enrichment
methods in humans (Rohde et al. 2016), Drosophila melanogaster
(Sørensen et al. 2017), and livestock (Sarup et al. 2016; Fang
et al. 2017a,c), especially for the highly polygenic traits.

Tsum =
∑mf

i=1

b2, (3)

wheremf is the number of genomic markers within a list of tissue-
specific genes, and b is the marker effect from single-marker
GWAS. We controlled marker-set sizes and LD patterns among
markers through applying the following genotype cyclical permu-
tation strategy (Rohde et al. 2016; Sørensen et al. 2017). Briefly, we
first ordered marker effects (i.e., b2) using their chromosome posi-
tions (i.e., b21, b

2
2, ⋯ b2m−1, b

2
m). We then randomly selected one

marker (i.e., b2k ) from this vector as the first place and shifted the
remaining ones to new positions, while retaining their original or-
ders (i.e., b2k , b

2
k+1, ⋯ b2m−1, b

2
m, b

2
1 ⋯ b2k−1) to maintain correlation

patterns among markers. We calculated a new summary statistic
for given tissue-specific genes using their original chromosome lo-
cations. To obtain an empirical P-value for a list of tissue-specific

genes, we repeated this permutation procedure 10,000 times and
employed a one-tailed test of the proportion of random summary
statistics greater than that observed.

For comparison, we also employed the following count-based
approach that focused on the top variants passing a certain ge-
nome-wide significance level:

Tcount =
∑mf

i=1

I (pi , p0), (4)

wheremf is the number ofmarkers in the tested tissue-specific gene
list, pi is the P value for the ith marker from single-marker GWAS, p0
is an arbitrarily selected significant threshold, and I is an indicator
function that takes value one when pi< p0, and value zero other-
wise. Here, we chose p0 = 0.01 as the significant cut-off. Under
the null hypothesis, we assumed that Tcount follows a hypergeomet-
ric distribution (Sørensen et al. 2017). We observed that results
from these two GWAS enrichment approaches showed a positive
correlation of 0.68 (Supplemental Fig. S16A). We here focused
on results of a sum-basedmethod. As results of 10-kb and 20-kb ex-
tensions were similar to those of 50-kb (Supplemental Fig. S16B),
we only showed results of the 50-kb extension.

SNP-set-based genomic prediction analysis

Wedivided the entireHolstein cattle population into the reference
population (n=19,575) and the validation population (n =3983)
according to the year of birth (Vanraden et al. 2017). We applied
the SNP-set-based genomic prediction (SSGP) software to incorpo-
rate tissue-specific genes into genomic prediction (https://sites
.google.com/view/ssgp), which allows us to split genomic markers
into different groups with group-specific effect variance.

y = m+
∑p

h=1

Khgh + e, (5)

where y is the phenotype vector (i.e., PTA), μ is the population
mean, and p denotes the number of genetic components in the
model. Here, we choose p=2, corresponding to random effects
for markers within the category-specific genes and the remaining
genome, respectively. The random effects within the hth compo-
nent are assumed to follow a multivariate normal distribution:
gh � MVN(0, Whs

2
mh
); h = 1 or 2, whereWh is a predefined diag-

onal matrix to weight each of the random effects, and s2
mh

is as-
sumed to follow an inverse-gamma distribution with
component-specific parameters s2

mh
� Inv−Gamma(amh

, bmh
),

amh
and bmh

are shape and scale parameters, respectively. Kh is
the corresponding design matrix. e is the residual effect following
normal distribution e � MVN (0, Rs2

e ), where R is the diagonal
matrixwith apredefinedweight for error variance. Tomakemodels
comparable (i.e., the same number of parameters to be estimated),
we fitted another model with two genomic components as a null
model, where all 24,616 genes as the first component and the
rest of the genome as the second component. We also fitted a sin-
gle-component model that was equivalent to the GBLUP model.
We determined the prediction accuracy as the correlation between
predicted PTAs and true PTAs in the validation population.

Data access

All raw and processed sequencing data generated in this study
have been submitted to the NCBI Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession num-
bers GSE128075, GSE137943, GSE147087, GSE147184, and
GSE148707. The GWAS summary statistics for all complex traits
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have been submitted to Figshare, that is, body type, production,
and reproduction traits under https://figshare.com/s/ea726fa95
a5bac158ac1, and the remaining ones under https://figshare
.com/s/94540148512dddf7ed32. All scripts and source codes can
be found as Supplemental Code, as well as at the Cattle Gene
Atlas (http://cattlegeneatlas.roslin.ed.ac.uk) and GitHub (https
://github.com/LingzhaoFang1/Cattle-GeneAtlas).
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