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Abstract: Plant proteins have been proposed as an alternative to animal-origin proteins in the
wine industry because they are allergen-free and vegan-friendly. The aim of this study was to
evaluate the effectiveness of plant proteins as fining agents on red wines with different phenolic
composition. Two formulations for commercially available vegetal proteins (potato and pea origin)
were assessed at two doses to modulate the fining treatment to the wine phenolic profile. The results
evidenced that fining agents derived from plants have different levels of effectiveness on the removal
of phenolic compounds depending on the origin, the formulation used, dose applied, and also
wine characteristics. On Nebbiolo wine, the study was particularly significant due to its phenolic
composition. One pea-based fining agent had an effect comparable to gelatin (animal origin) on the
removal of polymeric flavanols with a minor loss of anthocyanins and therefore better preserving
the wine color in terms of intensity and hue. For Primitivo, Montepulciano, and Syrah wines, even
though there was a formulation-dependent effect, vegetal proteins gave more balanced reductions in
terms of target phenolic compounds contributing to astringency and color perception.
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1. Introduction

The use of fining agents in winemaking is widely known as a processing aid to clarify, enhance
the wine stability, remove off-flavors, and, particularly in red wines, soften sensory properties such as
bitterness and astringency by modulating phenolic composition [1]. Traditional fining agents based on
proteins of animal origin, including casein, egg albumin, gelatin, and isinglass, are commonly used
to remove protein-reactive phenolic compounds [2]. However, color losses and unpleasant aromas
can sometimes occur in the wine after the fining treatment [3]. From the health point of view, animal
proteins have allergenic or intolerant potential and their residual presence in the wine may pose an
important risk in sensitive individuals [1,4]. In this sense, according to EU regulation No. 579/2012 [5],
all potentially allergenic fining agents present in the wine at a concentration higher than 0.25 mg/L
have to be declared on the wine label. In the last recent years, cultural and ideological aspects are
also increasingly influencing the wine market. Thereby, the global increase in vegetarian and vegan
consumers has highlighted the necessity to make wines using fining products that represent a possible
alternative to animal-derived fining agents. For this purpose, vegetal proteins have been already
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isolated from cereals, legumes, potatoes [6,7], seaweeds, grape seed extracts [8,9], and yeasts [10,11].
Other vegetal non-proteinaceous products, such as polysaccharide-based agents isolated from cell wall
material of fresh apples and grapes or their respective pomaces, have shown great potential for wine
fining purposes [12–15].

Focusing on protein-based fining agents, they can have a different affinity to different types of
phenolic compounds. Proteins interact with wine phenolic compounds initially through hydrogen
bonding and hydrophobic interactions, forming soluble complexes. In fact, gelatin is a highly
efficient fining agent because of its potential hydrogen binding sites [3]. Subsequently, phenolic
compounds are removed by precipitation through self-association of the complexes formed [16] or
formation of insoluble protein aggregates (cross-linkages between proteins) incorporating the target
species [17]. This precipitation induces reduced astringency and depends on the protein to tannin ratio
as well as on the amino acid composition, tertiary structure, hydrophobicity, and molecular mass of
proteins [2,18]. It is well-known that proline-rich proteins have a strong affinity to phenolic compounds
and therefore they are of great interest for wine fining [19]. Concretely, aromatic ring structures of
phenolic compounds have hydrophobic properties and the presence of galloylated units enhances the
hydrophobic interactions with proline-rich proteins [20].

Among allergen-free vegetal proteins isolated from cereals, corn zeins are a heterogeneous protein
mixture made of polypeptides differing in molecular mass, aggregation state, and isoelectric point.
The effectiveness of zein as a fining agent could be due to their relative hydrophobicity, which is
associated with the high content of non-polar amino acids [21,22]. In Cabernet Sauvignon, Merlot, and
Valpolicella red wines, these authors reported that corn protein doses ranging from 5 to 15 g/hL are
able to decrease wine turbidity and remove phenolic compounds, such as anthocyanins (−2.90–11.64%)
and proanthocyanidins (−5.40–19.26%) after settling for 48 h at 20 ◦C, in a similar way to animal gelatin
while preserving red wine color. Higher variability is found in the scientific literature in wine fining
effectiveness for rice-based proteins. They have relatively low proline content and therefore only
reduce slightly total tannins and astringency, showing also a low influence on the Cabernet Sauvignon
wine color after settling for 48 h at 20 ◦C [7]. However, the use of molecular mass fractions ranging
from 10 to 32 kDa promotes the removal of phenolic compounds that contribute to bitter and astringent
perception and, at the same time, preserves the color of Samtrot and Lemberger red wines after storing
in the dark at 8 ◦C for 24 h [23].

Grape-endogenous proteins sourced from grape seed extracts (GSE) have also shown good
performance in decreasing Chardonnay white wine turbidity and increasing oxidative stability. In the
Raboso red wine, a reduction in some anthocyanins (−1.0–4.0%) and proanthocyanidins (−3.2–5.9%)
was observed, similarly to other animal- and vegetal-derived fining agents tested, without markedly
affecting wine chromatic characteristics (less than −5%). Nevertheless, the most important impact of
GSE corresponds to the sensory attributes, reducing the vegetal notes in the Raboso rosé wine and
both acidity and astringency in the Raboso red wine [8]. The dosages used were 5, 10, and 20 g/hL of
GSE, corresponding respectively to 2.2, 4.4, and 8.7 g/hL of protein.

Despite the effort made by various research groups in relation to the use of vegetal proteins as
wine fining agents, few have been commercialized until now. Some of these products are based on
Patatin P. It is a major 39–45 kDa glycoprotein from potato, with low proline content, whose fining
ability has been demonstrated in red wines. Different studies have evidenced that proteins from
potato reduce total tannin content and astringency similarly to gelatin, and even better than other
fining agents in Aglianico and Cabernet Sauvignon red wines [6,7]. Nevertheless, these two studies
reported contrasting results in relation to the wine color. The use of patatin for wine fining during
one week at 14 ◦C preserves the chromatic characteristics of red wine, even though it removes 30% of
monomeric anthocyanins at 30 g/hL dose in Aglianico red wine [6], whereas a significant decrease
in the hue parameter is found in Cabernet Sauvignon after settling for 48 h at 20 ◦C [7]. Therefore,
the wine phenolic composition and the fining conditions (dose, temperature, and time) may influence
the impact of fining agents. In addition, other studies highlighted that potato protein with molecular
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mass fractions between 10 and 32 kDa reduces efficiently non-polymeric bitter and astringent marker
compounds in red wines, such as caftaric acid, (+)-catechin, and (−)-epicatechin, with a minor impact
on color intensity [23].

Other commercialized products are legume-derived proteins extracted from pea, although lentil,
soybean, and lupine have been also studied as possible sources of vegetal protein. All of them are
efficient fining agents when compared to gelatin, but soybean and lupine are considered allergenic
substances [1]. In Aglianico red wine, either young or aged for twelve and twenty-four months, a recent
study has reported that pea protein shows limited interaction with proanthocyanidins after settling for
168 h at 20 ◦C [18]. However, selective enzymatic hydrolysis, reducing the protein size but keeping
hydrophobic binding sites intact, could enhance the accessibility to phenolic compounds and therefore
improve the fining efficiency of pea protein. Lentil and soybean proteins, followed by hydrolyzed
pea protein, remove efficiently proanthocyanidins in red wines (about 30–40% for monomers and
70–80% for proanthocyanidin dimers and trimers). An important advantage of pea protein isolate
is the preservation of anthocyanins, whose losses occur and are particularly noticeable in young red
wine so color tonality is not influenced by wine fining with pea, lentil, soybean, or gelatin proteins [18].
Other authors confirmed the lower efficiency of pea proteins to remove tannins when compared to
gelatin and potato proteins [7], but they evidenced that the three vegetal-derived proteins reduce
similarly the astringency of Cabernet Sauvignon wine. Similarly, the pea protein had a minor impact
on proanthocyanidins in Catalanesca white wine [24]. In white wine, another study reported that pea
protein could be an alternative to potassium caseinate by decreasing similarly total phenols (about
−9%) and wine color (about −11% to –12%) at 0.4 g/L dose, being pea protein less efficient at reducing
the browning potential [25].

There are few commercialized products alternative to the use of animal allergenic proteins for
wine fining and some studies have provided contradictory results. Considering the increasing demand
for the production of wines suitable for allergen-sensitized, vegetarian, and vegan consumers, the
study aimed to compare the effectiveness of commercialized vegetable proteins derived from pea and
potato, and the traditionally used fining agent (i.e., animal gelatin) at two different doses. Concretely,
their ability to both remove monomeric, oligomeric, and polymeric flavanols that are involved in the
wine astringency perception and preserve anthocyanins and color characteristics was assessed. The
study was carried out on four monovarietal red wines, characterized by different phenolic content and
composition, to assess the possibility of adapting the fining agent and dosage to a specific type of wine
and/or phenolic profile. To our knowledge, no scientific study has been published on vegetal proteins
derived from pea and potato for the fining of wines with different phenolic composition.

2. Results and Discussion

The wines were selected on the basis of the different phenolic composition, particularly the
content of oligomeric and polymeric flavanols (FRV and PRO, respectively), as well as the content
of anthocyanins (TA) (control wines, Tables 1 and 2). The lower FRV/PRO ratio corresponds to
Montepulciano wine (0.38), followed by Primitivo (0.41), and this ratio increases in Syrah and Nebbiolo
wines (0.54 and 0.59, respectively). Regarding anthocyanins, Nebbiolo wine is characterized by a low
content (112 mg/L) whereas Syrah is the richest wine in these red pigments (367 mg/L), followed by
Montepulciano and Primitivo (275 and 255 mg/L, respectively).
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Table 1. Phenolic composition of red wines untreated (CO) and treated with fining agents of animal origin (GE) and vegetal origin from pea (PE1, PE2) and potato
(PT1, PT2).

Primitivo Montepulciano Syrah Nebbiolo

Treatment
A280 PRO FRV A280 PRO FRV A280 PRO FRV A280 PRO FRV

(AU, OP 10 mm) (mg/L) (mg/L) (AU, OP 10 mm) (mg/L) (mg/L) (AU, OP 10 mm) (mg/L) (mg/L) (AU, OP 10 mm) (mg/L) (mg/L)

CO 68.8 ± 2.1ab 3254 ± 83a 1323 ± 42abc 84.1 ± 1.1 3440 ± 40a 1330 ± 39a 72.5 ± 1.4a 3094 ± 19a 1659 ± 9abc 56.7 ± 0.5a 3589 ± 16a 2129 ± 33ab
GEL 65.1 ± 2.1bc 2919 ± 76cd 1318 ± 59abc 84.7 ± 0.6 3025 ± 33c 1236 ± 55bc 70.9 ± 1.4ab 2991 ± 43ab 1587 ± 35abcd 52.4 ± 0.4cd 3330 ± 81cd 2085 ± 26b
GEH 62.9 ± 1.0c 2801 ± 66d 1229 ± 4cd 82.1 ± 0.9 2788 ± 44d 1092 ± 10d 66.7 ± 1.3b 2704 ± 30de 1495 ± 39d 51.8 ± 1.1d 3038 ± 0f 1836 ± 45e
PE1L 68.2 ± 1.4abc 3022 ± 87bc 1176 ± 25d 83.2 ± 0.2 3209 ± 79abc 1237 ± 50bc 70.5 ± 1.3ab 2863 ± 75bcd 1649 ± 6a 53.9 ± 0.8bc 3243 ± 77de 1971 ± 49cd
PE1H 68.5 ± 2.1ab 2969 ± 30bcd 1235 ± 13bcd 83.4 ± 2.1 3134 ± 71abc 1186 ± 31c 69.0 ± 2.4ab 2947 ± 33ab 1591 ± 30abcd 53.8 ± 0.4bc 3240 ± 100de 1907 ± 33de
PE2L 67.3 ± 1.9abc 3172 ± 64ab 1347 ± 20ab 85.1 ± 1.4 3262 ± 80ab 1304 ± 3ab 70.0 ± 1.5ab 2910 ± 30abc 1621 ± 40abc 54.8 ± 0.5b 3380 ± 14bcd 2196 ± 36a
PE2H 69.0 ± 0.4ab 3234 ± 43a 1255 ± 9bcd 84.9 ± 1.0 3178 ± 49abc 1306 ± 17ab 69.7 ± 2.0ab 2732 ± 103cde 1544 ± 40bcd 53.7 ± 0.3bc 3306 ± 75cde 2190 ± 22a
PT1L 71.4 ± 2.0a 3000 ± 56bcd 1337 ± 82abc 85.2 ± 1.2 3041 ± 30c 1181 ± 14c 70.0 ± 1.9ab 2935 ± 95ab 1492 ± 39d 54.6 ± 0.5b 3284 ± 103cde 1970 ± 47cd
PT1H 65.5 ± 1.0bc 3159 ± 81ab 1380 ± 39a 82.4 ± 2.2 3112 ± 57bc 1160 ± 5cd 68.0 ± 1.9ab 2620 ± 82e 1527 ± 14cd 52.5 ± 0.5cd 3125 ± 68ef 2058 ± 14bc
PT2L 68.6 ± 2.5ab 3182 ± 20ab 1372 ± 32a 84.4 ± 0.3 3334 ± 14a 1367 ± 19a 69.9 ± 1.0ab 2988 ± 56ab 1632 ± 9ab 54.1 ± 0.3bc 3464 ± 68abc 2151 ± 8ab
PT2H 69.8 ± 2.3ab 3125 ± 30abc 1261 ± 5bcd 85.7 ± 0.5 3212 ± 44abc 1312 ± 24ab 70.8 ± 1.4ab 2885 ± 62bcd 1507 ± 50d 53.3 ± 0.9bcd 3536 ± 47ab 2060 ± 24bc

ANOVA *** *** *** ns *** *** * *** *** *** *** ***

Contrasts’ significance p-values respect to control

CO vs. GEL 0.076 0.000 1.000 0.999 0.000 0.006 0.789 0.309 0.627 0.000 0.001 0.530
CO vs. GEH 0.001 0.000 0.021 0.290 0.000 0.000 0.002 0.000 0.001 0.000 0.000 0.000
CO vs. PE1L 1.000 0.004 0.000 0.939 0.201 0.006 0.610 0.002 0.991 0.000 0.000 0.000
CO vs. PE1H 1.000 0.000 0.193 0.983 0.015 0.000 0.095 0.064 0.727 0.000 0.000 0.000
CO vs. PE2L 0.937 0.928 0.799 0.945 0.711 0.873 0.369 0.013 1.000 0.009 0.008 0.134
CO vs. PE2H 1.000 1.000 0.189 0.983 0.074 0.914 0.263 0.000 0.049 0.000 0.000 0.205
CO vs. PT1L 0.268 0.001 1.000 0.874 0.000 0.000 0.376 0.038 0.001 0.003 0.000 0.000
CO vs. PT1H 0.154 0.807 0.101 0.458 0.006 0.000 0.020 0.000 0.014 0.000 0.000 0.100
CO vs. PT2L 1.000 0.682 0.197 1.000 1.000 0.590 0.335 0.280 1.000 0.000 0.199 0.974
CO vs. PT2H 0.973 0.359 0.296 0.592 0.220 0.985 0.765 0.004 0.003 0.000 0.933 0.116

All data are expressed as average value ± standard deviation (n = 3). Different Latin letters within the same column indicate significant differences among treatments according to Tukey
test (p < 0.05). Sign: *, ***, and “ns” indicate significance at p < 0.05, 0.001, and not significant, respectively. Contrasts values in bold face are significantly different from the control
according to Dunnett test (p < 0.05). A280 = Absorbance measured at 280 nm, PRO = Proanthocyanidins expressed as mg of cyanidin chloride/L of wine, FRV = Flavanols reactive to
vanillin expressed as mg of (+)-catechin/L of wine. CO = Control, GE = Gelatin, PE1 = Pea 1, PE2 = Pea 2, PT1 = Potato 1, PT2 = Potato 2, L = low dose, H = high dose.
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Table 2. Total anthocyanins and color parameters of red wines untreated (CO) and treated with fining agents of animal origin (GE) and vegetal origin from pea (PE1,
PE2) and potato (PT1, PT2).

Primitivo Montepulciano Syrah Nebbiolo

Treatment
TA Color Intensity Hue TA Color Intensity Hue TA Color Intensity Hue TA Color Intensity Hue

(mg/L) (AU, OP 10 mm) (mg/L) (AU, OP 10 mm) (mg/L) (AU, OP 10 mm) (mg/L) (AU, OP 10 mm)

CO 255 ± 1abc 13.97 ± 0.20a 0.708 ± 0.002ab 275 ± 4a 15.12 ± 0.06a 0.664 ± 0.002b 367 ± 11a 13.73 ± 0.14a 0.677 ± 0.001a 112 ± 4a 4.73 ± 0.06a 1.028 ± 0.005bc
GEL 238 ± 3d 13.02 ± 0.01bc 0.708 ± 0.001ab 265 ± 2c 14.22 ± 0.12de 0.669 ± 0.002ab 367 ± 15a 13.08 ± 0.01bc 0.673 ± 0.001bc 92 ± 3de 4.25 ± 0.03de 1.028 ± 0.003bc
GEH 238 ± 2cd 12.19 ± 0.10d 0.709 ± 0.001a 257 ± 2d 13.35 ± 0.08f 0.668 ± 0.001ab 351 ± 7a 12.50 ± 0.12d 0.672 ± 0.001bc 92 ± 2de 3.99 ± 0.04f 1.022 ± 0.000c
PE1L 261 ± 3a 13.68 ± 0.05a 0.707 ± 0.001ab 271 ± 2abc 14.69 ± 0.07bc 0.666 ± 0.001b 361 ± 11a 13.31 ± 0.23bc 0.672 ± 0.001bc 102 ± 3b 4.45 ± 0.09c 1.030 ± 0.005abc
PE1H 236 ± 2cd 13.55 ± 0.05a 0.706 ± 0.001b 267 ± 0bc 14.45 ± 0.07cd 0.665 ± 0.002b 355 ± 9a 13.20 ± 0.13bc 0.672 ± 0.002bc 102 ± 4bc 4.42 ± 0.03cd 1.022 ± 0.003c
PE2L 253 ± 2abcd 13.59 ± 0.12a 0.707 ± 0.001ab 270 ± 2abc 14.82 ± 0.08ab 0.665 ± 0.001b 360 ± 10a 13.20 ± 0.06bc 0.674 ± 0.001ab 96 ± 1bcd 4.64 ± 0.05ab 1.036 ± 0.003ab
PE2H 243 ± 5bcd 13.39 ± 0.02ab 0.706 ± 0.001b 265 ± 3c 14.45 ± 0.16cd 0.664 ± 0.001b 371 ± 6a 13.17 ± 0.08bc 0.672 ± 0.001bc 88 ± 2e 4.46 ± 0.06bc 1.034 ± 0.008abc
PT1L 248 ± 8abcd 13.18 ± 0.06ab 0.708 ± 0.001ab 267 ± 0bc 14.48 ± 0.11cd 0.669 ± 0.002ab 364 ± 15a 12.94 ± 0.10c 0.674 ± 0.002abc 103 ± 3b 4.46 ± 0.08bc 1.035 ± 0.004ab
PT1H 245 ± 2bcd 12.65 ± 0.04cd 0.707 ± 0.001ab 258 ± 2d 13.90 ± 0.24e 0.672 ± 0.005a 352 ± 6a 12.50 ± 0.11d 0.670 ± 0.002c 92 ± 2de 4.22 ± 0.11e 1.041 ± 0.005a
PT2L 255 ± 2ab 13.67 ± 0.04a 0.709 ± 0.000ab 275 ± 1a 14.71 ± 0.07bc 0.666 ± 0.002b 363 ± 6a 13.43 ± 0.11ab 0.673 ± 0.001bc 94 ± 1cde 4.54 ± 0.03bc 1.035 ± 0.005ab
PT2H 251 ± 5abcd 13.48 ± 0.10ab 0.708 ± 0.000ab 272 ± 1ab 14.57 ± 0.08bc 0.666 ± 0.001b 358 ± 8a 13.20 ± 0.23bc 0.674 ± 0.002ab 100 ± 4bc 4.41 ± 0.01cd 1.031 ± 0.000abc

ANOVA *** *** * *** *** ** ns *** *** *** *** ***

Contrasts’ significance p-values respect to control

CO vs. GEL 0.004 0.001 1.000 0.000 0.000 0.081 1.000 0.000 0.006 0.000 0.000 1.000
CO vs. GEH 0.037 0.000 0.635 0.000 0.000 0.240 0.295 0.000 0.005 0.000 0.000 0.413
CO vs. PE1L 0.081 1.000 0.606 0.122 0.001 0.763 0.980 0.008 0.002 0.004 0.000 0.999
CO vs. PE1H 0.014 0.997 0.189 0.002 0.000 0.999 0.671 0.001 0.001 0.002 0.000 0.342
CO vs. PE2L 1.000 1.000 0.395 0.033 0.028 0.999 0.949 0.001 0.128 0.000 0.435 0.271
CO vs. PE2H 0.339 0.405 0.251 0.000 0.000 1.000 0.998 0.000 0.002 0.000 0.000 0.612
CO vs. PT1L 0.843 0.013 1.000 0.002 0.000 0.048 1.000 0.000 0.093 0.006 0.000 0.322
CO vs. PT1H 0.373 0.000 0.635 0.000 0.000 0.000 0.364 0.000 0.000 0.000 0.000 0.011
CO vs. PT2L 0.939 1.000 0.999 1.000 0.002 0.912 1.000 0.073 0.010 0.000 0.012 0.413
CO vs. PT2H 1.000 0.852 0.996 0.670 0.000 0.827 0.864 0.001 0.128 0.000 0.000 0.996

All data are expressed as average value ± standard deviation (n = 3). Different Latin letters within the same column indicate significant differences among treatments according to Tukey
test (p < 0.05). Sign: *, **, ***, and “ns” indicate significance at p < 0.05, 0.01, 0.001, and not significant, respectively. Contrasts values in bold face are significantly different from the
control according to Dunnett test (p < 0.05). TA = Total anthocyanins expressed as mg of malvidin-3-glucoside chloride/L of wine. CO = Control, GE = Gelatin, PE1 = Pea 1, PE2 = Pea 2,
PT1 = Potato 1, PT2 = Potato 2, L = low dose, H = high dose.
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2.1. Total Phenolic Compounds and Flavanols

Regarding Primitivo wine, total phenolic compounds evaluated through the A280 parameter only
showed a significant difference for the high dose of GE (gelatin, conventional treatment) with respect to
untreated wine (−8.6%, p < 0.001; Table 1). By contrast, using more comprehensive parameters such as
the content of polymeric and oligomeric flavanols (PRO and FRV, respectively), a significant decrease
was found for several fining treatments when compared to control wine. PRO content was significantly
reduced when the wine was treated with gelatin independently on the dose (−10.3% and −13.9%,
p < 0.001 for low and high dose, respectively), as occurred with the PT1 treatment (potato-based) at low
dose and PE1 (pea-based) at the two doses studied (−7.8% and −8.8%, p < 0.001 for PT1L and PE1H,
respectively). PE1L treatment reduced both PRO and FRV contents (−7.1%, p = 0.004 and −11.1%,
p < 0.001, respectively), and it was the treatment that most significantly affected FRV. This decrease
could be exploited in wine production because low molecular fractions of flavanols contribute greatly
to wine bitterness [26].

In Montepulciano wine, even if no significant differences in total phenolic compounds (assessed
by A280) occurred using different fining agents, variations in the flavanol content were found for both
FRV and PRO values (Table 1). GE treatments significantly reduced both parameters with respect to
the control (−12.1% and −18.9%, p < 0.001 for PRO, and −7.1%, p = 0.006 and −17.9%, p < 0.001 for
FRV, for low and high dose, respectively), highlighting their effectiveness. The only vegetal fining
agent that allowed a decrease of both PRO and FRV contents was PT1, giving a significant removal of
PRO (−11.6%, p < 0.001 and −9.5%, p = 0.006 for low and high dose, respectively) and FRV (−11.2%
and −12.8%, p < 0.001 for low and high dose, respectively). Instead, PE1 treatments resulted to be
effective mainly on the reduction of low molecular flavanol fraction (FRV, −7.0%, p = 0.006 and −10.8%,
p < 0.001 for low and high dose, respectively) while PRO contents showed a non-significant decrease
when compared to control wine.

In the case of Syrah wine, total phenolic compounds (A280) determination after wine fining
unveiled a significant decrease only using the high dose of gelatin with respect to the control (GEH,
−8.0%, p = 0.002; Table 1). However, the more detailed flavanol estimation using PRO and FRV
parameters evidenced, for GE and PT2 at high dose, a decrease of both PRO (−12.6%, p < 0.001
and −6.7%, p = 0.004, respectively) and FRV (−9.9%, p < 0.001 and −9.2%, p = 0.003, respectively).
In addition, PE2 and PT1 at high dose, as well as PE1 at a low dose, had a significant impact only
on PRO contents (−11.7%, −15.3%, and −7.4%, respectively, p < 0.01), the second fining condition
(PT1H) presenting the highest PRO decrease observed among treatments. This aspect is of particular
relevance because wine astringency is primarily driven by polymeric flavanols [26]. Moreover, the
FRV parameter showed a significant decrease (−10.0%, p < 0.001) also after PT1 treatment at a low
dose when compared to the control wine.

The main differences found in this study concerned Nebbiolo wine because it was strongly affected
by the different fining treatments in terms of A280, PRO, and FRV (all p < 0.001; Table 1). The unusual
phenolic profile of this wine, which is characterized by a limited anthocyanin content and a typically
high flavanols content with respect to the other varieties evaluated, undoubtedly played a major role
in this outcome. A significant reduction of A280 was observed after all treatments (from −3.3% up to
−8.6%, p < 0.01). In fact, this decisive reduction of A280 could be justified by the removal of oligomeric
and polymeric flavanols (FRV and PRO, respectively). The higher decrease in A280 with respect to the
control wine was found for GE treatment at both low and high doses and for PT1 at high dose (−7.5%,
−8.6%, and −7.4%, p < 0.001 for GEL, GEH, and PT1H, respectively). In accordance with the A280

parameter, PRO content was significantly reduced by all treatments with respect to the control (from
−5.8% up to −15.4%, p < 0.01) with the exception of PT2 at both low and high doses. In particular,
GEH was the most effective fining agent in the removal of both PRO and FRV with respect to the
control (−15.4% and −13.8%, respectively, p < 0.001). As well, also PE1 reduced these two parameters
(−9.6% and −9.7%, p < 0.001 for PRO, −7.4% and −10.4%, p < 0.001 for FRV, for low and high dose,
respectively) as also PT1 at low dose did (−8.5% and −7.5%, p < 0.001 for PRO and FRV, respectively).
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By contrast, PE2, GEL, and PT1H treatments led to a PRO decrease (p < 0.01) without significantly
affecting the low molecular flavanol component (FRV).

In the present study, the removal of flavanols during wine fining was similar to or even higher
than that previously published for the use of gelatin, potato-based proteins (about −9% for PRO using
both patatin and gelatin at 10 and 30 g/hL dose, FRV ranging from −1.1% to −13.9% for patatin and
from −7.1% to −18.8% for gelatin at 10 and 30 g/hL [6]), and pea-derived proteins (−6.8% for PRO at
10 g/hL dose [8]; −3–5% of catechin and epicatechin and −15–22% of oligomeric proanthocyanidins
at 20 g/hL dose [18]). The effectiveness of GEH fining agent to remove oligomeric and polymeric
flavanols is undoubted as this treatment reduced PRO and FRV contents more than vegetal-derived
proteins in Montepulciano and Nebbiolo wines, which are richer in polymeric proanthocyanidins, and
was highly effective in Primitivo and Syrah wines. However, this study highlighted for the first time
that both the effectiveness of vegetal-derived proteins and the target compounds are influenced by
the wine phenolic composition. Specifically, the PE1L treatment reduced FRV content more efficiently
than gelatin in Primitivo wine whereas PT1H removed a significantly higher PRO content than gelatin
in Syrah wine. In Montepulciano and Syrah wines, which are characterized by the greatest richness
in total phenolic compounds (expressed as A280, Table 1), PT1H treatment showed a decrease in low
molecular flavanols similar to GEH. Instead, the same PT1H treatment allowed to reduce the PRO
content in Syrah and Nebbiolo wines having a high FRV/PRO ratio. A decrease in FRV content not
significantly different from that obtained for GE1H was achieved using PT1L and PE1H in Syrah and
Nebbiolo wine, respectively.

Fining trials showed that polymeric proanthocyanidins are reduced significantly by a higher
number of vegetal fining agents with respect to low molecular mass flavanols, probably due
to they are firstly precipitated. The higher number of phenolic rings present in the more
polymerized proanthocyanidins increases their hydrophobicity and therefore facilitates flavanol-protein
interactions [17]. In addition to polymerization degree, other characteristics of flavanols such as
galloylation percentage and conformational flexibility may play an important role in removing
these phenolic compounds. In fact, galloylated proanthocyanidins are removed in a preferential
way [17]. Moreover, hydrophobic interactions could be mainly responsible for precipitation by vegetal
proteins derived from pea and potato, and some studies have confirmed the relatively high surface
hydrophobicity of patatin [17,27].

2.2. Total Anthocyanins and Color Parameters

A side effect of wine fining is the removal of colored pigments, which may lead to a wine with
reduced color quality. Different results were obtained depending on the fining agent used, the dose
applied, and the variety in terms of total anthocyanins (TA), color intensity (CI), and tonality (hue) as
reported in Table 2.

In Primitivo wine, significant differences between the wines treated with different fining agents
and the untreated wines (control) were found for TA and CI parameters whereas the hue of the treated
wines agreed with that of the control wine. TA content was significantly decreased with respect to the
control sample when the wine was treated with gelatin at both low and high doses (−6.8%, p = 0.004
and −7.0%, p = 0.037 for GEL and GEH, respectively). As well, the high dose of PE1 (pea-based)
reduced significantly anthocyanins, leading to a decrease of −7.7% for PE1H (p = 0.014). In the case of
gelatin, also a CI decrease was reported with respect to the control (−6.8% and −12.8% for GEL and
GEH, respectively, both p < 0.001), in agreement with the anthocyanins loss. In contrast, even if there
was no significant reduction of TA content, PT1 treatment at a high dose led to a decrease of CI value
with respect to the control (−9.5%, p < 0.001 for PT1H). Although the anthocyanin content mainly
determines wine color, the CI parameter can be magnified by the presence of co-pigments, such as
flavonols and flavanols, which may have been removed by the protein-based treatment. In general,
a similar effect of fining treatment was observed on the three color components (yellow, red, and blue
as A420, A520, and A620, respectively). However, GEL, GEH, and PT1H samples evidenced a higher
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decrease in the blue color component (A620, data not shown), which is related to co-pigmentation
effects [28].

As found for Primitivo, lowered TA content was evidenced in Montepulciano treated wines
depending on the fining treatments, whereas CI value was significantly reduced in all cases with the
exception of PE2 at a low dose (from −2.7% up to −11.7%, p < 0.01) when compared to untreated
wine. GEH and PT1H treated wines reported the lowest TA content, with a loss of −6.6% and −6.2%,
respectively, compared to the control wine (both p < 0.001), followed by GEL and PE2H treatments with
a loss of −3.7% and −3.5% (both p < 0.001) in TA content, respectively. This anthocyanin loss resulted
in an increase in the hue parameter for PT1H treatment (+1.0%, p < 0.001). Even if to a lesser extent,
also PT1L and PE1H showed lower TA content with respect to the control wine (both −2.8%, p = 0.002).
In Montepulciano, a significant loss of anthocyanins resulted in lower color intensity. Anyway, the CI
value was also reduced when TA content was not affected. The removal of oligomeric flavanols can
support this reduction in PE1L sample (Table 1), however, the blue color component was more strongly
affected than yellow and red components in wines treated with PE1L, PT2L, and PT2H, evidencing
that the removal of other co-pigments, such as flavonols, may have occurred.

In Syrah wine, there was no significant loss of anthocyanins, but CI and hue were changed
significantly for several fining treatments (both p < 0.001). In particular, CI value was reduced in all
treated wines, with the exception of PT2L treatment, decreasing from −3.1% up to −9.0% (all p < 0.01)
with respect to the control samples. The highest color losses corresponded to GEH and PT1H treatments
(−9.0%, p < 0.001), followed by PT1L (−5.8%, p < 0.001) and GEL (−4.7%, p < 0.001). Interestingly,
hue value was often lower in treated samples (decreasing from −0.6% to −1.0%, p < 0.01; except for
PE2L, PT1L, and PT2H), meaning a lower yellow color component (A420) with respect to the red
component (A520) and, therefore, the wine shifted to a red hue instead of yellow one. Considering that
no change affected monomeric anthocyanins (data not shown), it is possible to hypothesize a decrease
in anthocyanin-derived pigments, such as pyranoanthocyanins, which contribute to the orange hue
of wines [29]. Granato et al. [18] reported losses of individual anthocyanin-derived pigments in
Aglianico red wine treated with plant-based proteins and evidenced that gelatin removed monomeric
anthocyanins and anthocyanin-flavanol adducts whereas pea-based proteins were ineffective.

Nebbiolo wine was strongly influenced by all fining treatments: a significant reduction from
−8.0% to −21.5% (p < 0.01) of TA was found with respect to the control sample. The higher anthocyanin
loss was reported for PE2 treatment at high dose, followed by gelatin at both the low and high doses,
and PT1 at high dose (−21.5% for PE2H, −18.1% for GEL, GEH, and PT1H, all p < 0.001). This loss was
reflected also in a significant decrease of CI value in all treated samples with respect to the control
(from −3.9% to −15.6%, p < 0.05), which was particularly evident for GE treatment at both low and
high dose, and PT1 at high dose (−10.1%, −15.6%, and −10.7% for GEL, GEH, and PT1H, respectively,
all p < 0.001). Nevertheless, the highest loss of anthocyanins is not in correspondence with the highest
decrease in color intensity. Despite the differences in CI and TA parameters, the hue was significantly
increased only in PT1H wine with respect to the control (+1.3%, p = 0.011). In Nebbiolo, as well
as in Montepulciano, the increased hue, in contrast with Syrah treatments’ effect, could be justified
by the TA decrease, leading to a loss of red color component (A520), which was less observed in
Syrah. This behavior in Syrah could be linked to the greatest richness in anthocyanins and to an
anthocyanin profile prevalent in malvidin-3-glucoside with a high ratio of acylated derivatives, giving
high anthocyanin stability [30]. In this aspect, Nebbiolo wines are particularly different because of
their lower anthocyanin content and less abundance of acylated derivatives [31].

Anthocyanin losses during wine fining have been also reported in many studies, but their
magnitude is variable. In Aglianico red wine, Gambuti et al. [6] reported a removal of total anthocyanins
lower than −4% for patatin and gelatin at doses between 10 and 30 g/hL, whereas Granato et al. [18]
evidenced losses of about −31% for gelatin and of −4% for pea proteins at doses of 20 g/hL. According
to these studies, gelatin (animal origin) and potato-based vegetal proteins reduced more significantly
the content of petunidin-, peonidin-, and malvidin-3-glucoside [6] whereas cyanidin-3-glucoside was
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negatively influenced by pea-derived proteins [18]. In the present work, the results obtained are in
agreement with these findings. In fact, the anthocyanin losses in Primitivo and Nebbiolo wines, which
are richer in cyanidin-3-glucoside than Montepulciano and Syrah, were higher after fining treatments
with pea-derived proteins (PE1H and PE2H, respectively) whereas the lowest contents of anthocyanins
corresponded to both GEH and PT1H treatments in Montepulciano and Syrah wines.

2.3. Comparison between Flavanol Reduction and Color Modification

The first aim of red wine fining is to deplete an unbalanced astringency, which may be given from
an excess of flavanols. However, a strong color loss affects negatively the wine quality. Therefore,
an important key to the fining treatment is the selective reduction of unbalanced polymeric flavanol
content combined with the lowest anthocyanin loss and, as a consequence, the highest final color
intensity. In Figure 1, the polymeric flavanol (PRO) reduction was compared to the anthocyanin (TA)
loss and to the color intensity (CI) decrease, expressed as a percentage.

Gelatin treatments were in general efficient in removing polymeric flavanols, with a
dose-dependent reduction not only for PRO but also for CI in all the varieties. As well, TA removal
was related to the dose in Montepulciano, whereas a higher gelatin dose was not corresponded by a
higher TA decrease in Nebbiolo and Primitivo wines. Interestingly, in Syrah treated wines, the TA
decrease was not significantly different for any of the investigated protein fining agents, in agreement
with TA contents (Table 2), although CI variations were observed.

Pea-based proteins had a different effect depending on the formulation, the dose, and the variety
evaluated (Figure 1). PE1 formulation gave interesting results for PRO removal in Primitivo and
Nebbiolo wines. When PE1 was applied at a high dose, the PRO removal was similar to gelatin (GEH),
even though differences were observed on the anthocyanin loss. In Primitivo wines, PE1H and GEH
treatments caused similar TA reduction (−7.7% and −7.0% for PE1H and GEH, respectively), whereas
in Nebbiolo the removed quantity of anthocyanins by PE1H was significantly lower than that reduced
by gelatin treatments (−8.9% and −18.1%, corresponding to 29.3 mg and 36.7 mg of TA removed/g
of PRO removed, for PE1H and GEH, respectively). On the other hand, the PRO removal by PE1
treatment at low dose was not significantly different to that corresponding to the high dose in Primitivo
(−7.1% and −8.8% of PRO for PE1L and PE1H, respectively) but preserving anthocyanins, whereas
in Nebbiolo wines similar removal of PRO and TA was obtained by using both low and high dose
(27.3 mg and 29.3 mg of TA removed/g of PRO removed for PE1L and PE1H, respectively). In any case,
a reduced loss of CI was observed for PE1L and PE1H treatments with respect to GEH in Nebbiolo
and Primitivo wines. For PE1 formulation, the dose-response effect was negative on PRO removal for
Syrah, namely the higher dose gave poorer results than the lower dose (−7.4% and −4.7% for PRO,
resulting in 26.9 mg and 77.3 mg of TA removed/g of PRO removed for PE1L and PE1H, respectively).
Regarding CI reduction, no significant difference was evidenced for all pea-based treatments in Syrah
wines. The PE2H treatment was interesting in Syrah because it removed PRO similarly to gelatin
(GEH) but preserving anthocyanins (−11.7% and −12.6% of PRO for PE2H and GEH, respectively).
However, in Nebbiolo, the same treatment showed both low PRO removal (−7.9% for PE2H) and the
highest removed amount of TA (−21.4% for PE2H, corresponding to 84.6 mg of TA removed/g of PRO
removed), although there was not the same remarkable effect on the color intensity when compared to
the other pea-based treatments.
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Figure 1. Reduction percentage of wine proanthocyanidins (PRO) after fining treatments with 
proteins of animal origin like gelatin (GE) and of vegetal origin from pea (PE1, PE2) and potato (PT1, 
PT2) with respect to the untreated wine, compared to reduction percentage of total anthocyanins (TA) 

Figure 1. Reduction percentage of wine proanthocyanidins (PRO) after fining treatments with proteins
of animal origin like gelatin (GE) and of vegetal origin from pea (PE1, PE2) and potato (PT1, PT2) with
respect to the untreated wine, compared to reduction percentage of total anthocyanins (TA) and color
intensity (CI). All data are expressed as the average value of individual treatments with respect to the
control ± standard deviation (n = 3). Different lowercase Latin letters for PRO, different uppercase
Latin letters for TA, and different lowercase Greek letters for CI indicate significant differences among
treatments according to Tukey test (p < 0.05), respectively. Sign: **, ***, and ns indicate significance at
p < 0.01, 0.001, and not significant, respectively. GE = Gelatin, PE1 = Pea 1, PE2 = Pea 2, PT1 = Potato 1,
PT2 = Potato 2, L = low dose, H = high dose, (nr) = no reduction occurred.
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Among potato-based treatments, high variability in the efficiency was found, particularly when
applied to the different wines. Regarding the PRO removal, PT1 formulation at high dose gave similar
results to gelatin (GEH) in Nebbiolo and Syrah wines, but anthocyanin losses and CI reduction were
also similar (43.5 mg and 31.9 mg of TA removed/g of PRO removed for PT1H, 36.7 mg and 41.5 mg of
TA removed/g of PRO removed for GEH, respectively, for Nebbiolo and Syrah). PT2H treatment also
provided results in agreement with GEH for Syrah (42.6 mg of TA removed/g of PRO removed) with
reduced CI decrease. In Nebbiolo wines, PT1L treatment reduced anthocyanin losses when compared
to gelatin (−18.1%, −18.1%, and −8.0% for GEH, GEL, and PT1L, respectively) and therefore preserved
better the wine color. In Primitivo and Montepulciano wines, also PT1L treatment gave the best results
for potato-derived proteins, being worse the performance in relation to GEH and similar to GEL (–7.8%
and –11.6% of PRO for PT1L; –10.3% and –12.0% of PRO for GEL, respectively, for Primitivo and
Montepulciano wines). A non-significant dose-dependent reduction of PRO was observed for most
of the potato-based formulations, but this relation was different depending on the variety evaluated.
In fact, a smaller PRO removal was evidenced for PT1 at the high dose in Primitivo and Montepulciano,
when compared to a low dose, whereas the PRO decrease was higher for high dose in Syrah and
Nebbiolo wines.

In most cases, PT2 formulation showed the lowest effectiveness in PRO removal for all the varieties
investigated, being it remarkably lower with respect to gelatin. Taking into account that the dose
recommended by the supplier depends on the protein content, probably this formulation requires a
much higher dose to appreciate its efficiency. In fact, only the highest recommended dose permitted
the significant removal of oligomeric and polymeric flavanols in Syrah wine. However, it was evident
that, even at low doses, anthocyanin contents were significantly reduced in Nebbiolo (up to −16.1%,
p < 0.001, corresponding to a removal of 145 mg and 219 mg of TA/g of PRO for PT2L and PT2H,
respectively) and a significant reduction of color intensity was also observed in Montepulciano, Syrah,
and Nebbiolo with respect to control (Table 2). Therefore, this negative impact on wine color could be
the limiting factor to an increased dosage of PT2.

Interestingly, the present study highlighted that the protein features, such as the proline content
and the molecular mass [20,23], although of great relevance, are not the only ones influencing the
effectiveness of red wine fining. In fact, earlier studies have evidenced that proline-rich proteins,
such as pea-derived proteins, could interact more efficiently with galloylated flavanic derivatives [20].
In addition, molecular mass fractions ranging from 10 to 32 kDa act more specifically on astringent
compounds, i.e., polymeric flavanols, whereas fractions between 30 and 42 kDa could be responsible
for the pigment losses [23]. Therefore, the phenolic profile and concentration can play a key role in the
hydrophobic interactions governing the insolubilisation and therefore the removal of target phenolic
compounds involved in the perception of astringency and color. This was previously suggested by
other authors but it had never been confirmed before.

To better investigate the efficiency of protein treatments and the involved variables, a comparison
of the different treatments was performed by PCA (Figure 2), with the aim of understanding if a
general trend occurred for the same treatment (GE, PE1, PE2, PT1, and PT2), or if there was a stronger
effect of the variety of features in the studied wines (Montepulciano, Primitivo, Nebbiolo, and Syrah).
To minimize the variety differences, the multivariate comparison was done on the normalized data of
each parameter reduction with respect to the control. Dimension 1 (D1) accounted for 42.1% of the
explained variance, whereas dimension 2 (D2) explained 22.0% (total explained variance by the first
two components = 64.1%). Dimension 1 was positively correlated, in order, with the decrease of PRO,
CI, TA, FRV, and A280 (0.858, 0.706, 0.660, 0.656, and 0.651, respectively, all p < 0.001). Dimension 2 was
strongly influenced by color parameters with a positive correlation with hue (0.893, p < 0.001) and a
negative correlation with TA (−0.557, p < 0.001). As well, a less significant positive correlation was also
found between D2 and FRV reduction (0.441, p < 0.001).
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Figure 2. Principal component analysis (PCA) of phenolic compounds and color data obtained from
wines after fining treatments with proteins of animal origin like gelatin (GE) and of vegetal origin from
pea (PE1, PE2) and potato (PT1, PT2). PCA was performed on each parameter reduction with respect
to the control. Confidence ellipses (p < 0.05) were drawn for variety (A) and fining agents formulation
(B). Treatments corresponded to GE = Gelatin, PE1 = Pea 1, PE2 = Pea 2, PT1 = Potato 1, PT2 = Potato 2,
L = low dose, H = high dose. Variety: Pr = Primitivo, Mo = Montepulciano, Sy = Syrah, Ne = Nebbiolo.

Regarding the variety effect (Figure 2A), variety features seem to have an important effect on the
removal of phenolic compounds, being Syrah well separated from the other varieties, in particular
from Nebbiolo, and D2 parameters (mainly hue loss) contributed strongly to the differentiation.
Syrah wines, being rich in stable compounds from the chromatic point of view [30], fining treatments
caused the shift to a red hue instead of yellowish (Table 2). Nebbiolo wines, having a higher ratio of
di-substituted anthocyanin forms, are more prone to anthocyanin loss (Table 2) and consequently, the
decrease of red color component (A520) was evidenced. Regarding vegetal fining agents, PT1 treatments
(potato-derived protein, Figure 2B) were the most effective in the reduction of flavanol compounds,
followed by PE1 (pea-based protein). PT1 treatments removed flavanols in a relatively similar way to
gelatin whereas PE1 formulation preserved better-colored pigments. An important aspect to consider
is the strong influence of formulation for the potato-based fining agents (PT1 and PT2) because PT2
treatment caused only a minor removal of flavanols and few changes in color parameters. Therefore,
great variability in potato-based fining agents on the market can be assumed because of different
sources, extraction conditions, extract preparation, and possible protein hydrolysis [1]. Undoubtedly,
this leads to a different binding affinity and efficiency [23].

2.4. Astringency and Visual Color Assessment

The effect of the fining treatment on wine astringency was attempted by means of chemical
and sensory methods in order to investigate if the significant reduction in the content of phenolic
compounds effectively influenced astringency. The results obtained from the BSA precipitation index,
as described by Boulet et al. [32], and from tasting sessions by a trained panel on astringency are
shown in Table 3. Astringency determinations gave different results depending on the analytical
method: the BSA index highlighted significant differences whereas the sensory-perceived intensity by
the trained panel had not shown relevant differences in terms of astringency among fining treatments.
For Syrah wine, a significant reduction in the BSA index was observed for gelatin at both low and
high dose (–26.7%, p = 0.006 and –27.4%, p = 0.005 for GEL and GEH, respectively), and for PT1, PE1,
and PE2 at high dose (–35.0%, p < 0.001, –25.2%, p = 0.010, and –25.8%, p = 0.009 for PT1H, PE1H,
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and PE2H, respectively) with respect to control wine. The highest decrease in the BSA index may
be due to the greatest removal of polymeric flavanols (PRO, Table 1). Regarding Primitivo wine,
a significantly lower BSA index was found after PT1H fining treatment (–34.6%, p < 0.001) when
compared to control samples, although no reduction of A280, PRO, and FRV was reported (Table 1).
As well, in Montepulciano and Nebbiolo wines, GEH and PT1H treatments also gave the lowest value
of the BSA index, even though it is not significantly different from the control samples. In this case,
the reductions were in accordance with a high decrease of FRV and PRO contents in Montepulciano,
and of A280 and PRO in Nebbiolo (Table 1). Furthermore, in both Montepulciano and Nebbiolo wines,
the trained panel perceived a lower intensity of astringency in the wines treated with PT1H fining
agent with respect to the control, although the differences were not significant. The results obtained for
PT1H formulation are in agreement with the effectiveness reported for potato protein in diminishing
astringency of Aglianico wine [6].

The removal of flavanols, oligomeric or polymeric, is not always directly related to a
reduction of astringency, either sensory perceived or chemically assessed. This could be due to
the complexity of astringency sensation, which can be mainly triggered by polymeric flavanols
of different subunit composition and modified by wine features such as alcohol content, acidity,
and pH [32,33]. It is well known that the perceived astringency is increased at lower pH values.
Furthermore, Quijada-Morín et al. [34] highlighted that polysaccharides, mainly mannoproteins and
rhamnogalacturonan-II (RG-II), reduce astringency perception whereas the presence of mannose and
galactose residues in the oligosaccharide fraction increases the perceived astringency.

Regarding visual color assessment, CIE L*a*b* coordinates (Table S1) were used to calculate
the corresponding color on the RGB scale and the results are reported in Figure 3 for control and
treated wines. In agreement with the significant changes observed in color intensity (Table 2), CIE
L*a*b* parameters were strongly affected by fining treatments (L*, b*, p < 0.001 for all the varieties; a*,
p < 0.01 for Nebbiolo and p < 0.001 for the other varieties, Table S1). This was particularly evident
for GEH and PT1H treatments in Figure 3 for all the varieties evaluated. Lightness (L*) increased
in the treated wines with respect to control samples, even though in different extent depending on
the variety, the fining agent used, and the dose applied. The a* and b* coordinates (red/green color
and yellow/blue color, respectively) also increased for Primitivo, Montepulciano, and Syrah wines,
indicating a displacement towards reddish and yellowish hue, respectively. In contrast, b* values
decreased in Nebbiolo wines treated with gelatin, PE1L, and PT1H showing a hue shifting to blue
whereas a significant reduction in a*values were only found in PT1H treatment, thus reducing the
red color component. In addition, CIE L*a*b* parameters highlighted the variety-dependent effect of
the fining treatments on color modification. The three CIE L*a*b* coordinates increased significantly
with GEL, GEH, and PT1H treatments in Primitivo wines, with all formulations at the high dose in
Montepulciano, and with all fining treatments with the exception of PT2L in Syrah. In Nebbiolo wines,
the three color coordinates were differently affected by the fining treatments.

To quantify the differences found in the wine color at the end of each fining treatment, ∆E* values
were calculated with respect to control. This parameter was previously used to underline the ability of
tasters to detect even small color differences in wines. While differences of one unit in this parameter
could be detectable by tasters when the wine is directly observed [35], the ∆E* threshold suggested to
correctly detect a wine color difference by the human eye was about 3 [36] or 5 units [37] probably as a
consequence of color observation through a glass.
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Table 3. Astringency determined by chemical and sensory analysis of red wines untreated (CO) and treated with fining agents of animal origin (GE) and vegetal origin
from pea (PE1, PE2) and potato (PT1, PT2).

Treatment

Primitivo Montepulciano Syrah Nebbiolo

Sensory BSA Index
(mg/L catechin) Sensory BSA Index

(mg/L catechin) Sensory BSA Index
(mg/L catechin) Sensory BSA Index

(mg/L catechin)

CO 6.54 ± 0.47 1008 ± 113abc 5.43 ± 0.33 601 ± 74abc 4.75 ± 0.67 889 ± 68a 7.54 ± 0.43 585 ± 67ab
GEL 5.25 ± 0.65 957 ± 59bc 4.70 ± 0.84 431 ± 47c 3.69 ± 1.02 652 ± 85b 6.16 ± 0.39 723 ± 49a
GEH 4.89 ± 0.47 912 ± 28c 4.69 ± 0.43 539 ± 62abc 3.51 ± 0.79 646 ± 85b 7.06 ± 0.44 527 ± 27b
PE1L 4.79 ± 0.61 1189 ± 83ab 4.54 ± 0.67 744 ± 87a 4.50 ± 0.80 681 ± 63ab 6.47 ± 0.53 631 ± 68ab
PE1H 4.73 ± 0.86 1057 ± 151abc 4.37 ± 0.60 467 ± 111bc 4.38 ± 1.02 665 ± 105b 6.63 ± 0.79 594 ± 15ab
PE2L 3.70 ± 0.63 1035 ± 144abc 3.94 ± 0.65 477 ± 61bc 3.84 ± 0.95 712 ± 33ab 6.59 ± 0.45 585 ± 34ab
PE2H 4.35 ± 0.70 1214 ± 27a 4.52 ± 0.80 494 ± 44abc 4.24 ± 0.80 660 ± 79b 5.60 ± 0.82 586 ± 86ab
PT1L 6.04 ± 0.46 889 ± 96cd 4.20 ± 0.62 630 ± 74abc 4.33 ± 0.69 675 ± 75ab 6.57 ± 0.42 615 ± 20ab
PT1H 5.39 ± 0.68 660 ± 92d 3.41 ± 0.64 417 ± 102c 4.19 ± 0.96 578 ± 76b 6.02 ± 0.38 570 ± 24b
PT2L 5.04 ± 0.73 968 ± 46bc 4.26 ± 0.76 718 ± 77ab 3.38 ± 1.13 693 ± 50ab 6.68 ± 0.65 597 ± 25ab
PT2H 4.95 ± 0.49 835 ± 98cd 3.60 ± 0.64 646 ± 182abc 3.66 ± 0.90 760 ± 95ab 6.30 ± 0.38 573 ± 69b

ANOVA ns *** ns ** ns ** ns *

Contrasts’ significance p-values respect to control

CO vs. GEL 0.637 0.981 0.981 0.193 0.972 0.006 0.375 0.019
CO vs. GEH 0.352 0.640 0.978 0.972 0.932 0.005 0.996 0.663
CO vs. PE1L 0.289 0.075 0.937 0.344 1.000 0.019 0.666 0.843
CO vs. PE1H 0.254 0.984 0.843 0.418 1.000 0.010 0.820 1.000
CO vs. PE2L 0.015 1.000 0.515 0.500 0.990 0.056 0.781 1.000
CO vs. PE2H 0.105 0.035 0.928 0.663 1.000 0.009 0.086 1.000
CO vs. PT1L 0.998 0.413 0.721 1.000 1.000 0.015 0.761 0.984
CO vs. PT1H 0.751 0.000 0.189 0.135 1.000 0.000 0.277 1.000
CO vs. PT2L 0.461 1.000 0.764 0.577 0.884 0.029 0.855 1.000
CO vs. PT2H 0.396 0.097 0.280 0.996 0.968 0.256 0.503 1.000

Sensory data are expressed as average value ± error calculated as sd/(n)1/2, where sd is the standard deviation and n is the number of panelists (n = 9). BSA data are expressed as average
value ± standard deviation (n = 3). Different Latin letters within the same column indicate significant differences among treatments according to Tukey test (p < 0.05). Sign: *, **, ***, and
“ns” indicate significance at p < 0.05, 0.01, 0.001, and not significant, respectively. Contrasts values in bold face are significantly different from the control according to Dunnett test (p < 0.1).
CO = Control, GE = Gelatin, PE1 = Pea 1, PE2 = Pea 2, PT1 = Potato 1, PT2 = Potato 2, L = low dose, H = high dose.
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Figure 3. Wine color detected at the end of the treatment. Each wine color was acquired by
spectrophotometry, expressed in CIE L*a* b* coordinates, and then converted to 8-bit RGB values for
journal compatibility purposes. For each variety, the CO (Control) sample was extended on the left and
top sides of the color bar to facilitate comparisons with treated wines in terms of colors. Treatments
corresponded to GE = Gelatin, PE1 = Pea 1, PE2 = Pea 2, PT1 = Potato 1, PT2 = Potato 2, L = low dose,
H = high dose.

As can be observed in Figure 3, ∆E* data evidenced several important trends among fining agents
for all the varieties evaluated. Gelatin treatments at high dose (GEH) gave the highest ∆E* values of the
study, the resulting wines consistently achieving ∆E* values above 4.8 units. Only PT1 (potato-based)
fining agent also at the high dose was found to cause a similar color reduction with ∆E* ranging from
3.3 to 5.2; these values being higher than those for GEH only in the case of Syrah wines. Furthermore,
Primitivo and Nebbiolo wines treated with gelatin at a low dose (GEL) showed a visually perceived
color reduction, as well for PT1 at a low dose (PT1L) in Syrah wine (∆E* values between 3.2 and 3.5).
No other pea and potato-based fining agent reached ∆E* values above three units, regardless of the
dose considered.

The results obtained are consistent with previous studies on the impact on young wine color
of fining treatments using gelatin and vegetal proteins from gluten [38]. In the cited study, darker
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colors were found in control wines, although lightness (L*) was not always significantly affected by the
gelatin or gluten protein treatments.

3. Materials and Methods

3.1. Reagents and Standards

Chemicals of analytical reagent grade, cyanidin chloride, (+)-catechin, and bovine serum albumin
were supplied by Sigma-Aldrich (St. Louis, MO, USA). The standard of malvidin-3-O-glucoside
chloride was acquired from Extrasynthese (Genay, France). The solutions were prepared in deionized
water produced by a Milli-Q system (Merck Millipore, Darmstadt, Germany).

3.2. Wines

Four young red wines (one wine for each variety, all belonging to vintage 2016) from Italian
wineries were used in the present study for the fining trials: Primitivo, Montepulciano, Syrah, and
Nebbiolo. They were selected on the basis of their different ratios between oligomeric and polymeric
flavanols because of the impact on bitterness and astringency perception. The chemical characteristics
of these four wines are shown in Table S2.

3.3. Wine Fining Trials

The fining agents used in this study were four commercially available and allergen-free
vegetal-derived protein extracts; two from pea (PE1 and PE2) and other two from potato (PT1
and PT2). The study also included one animal gelatin (GE). For each fining agent, a stock solution of
10% w/v was prepared in deionized water with the exception of PT2, for which a stock solution of 2.5%
w/v was done. Wine fining trials were carried out in completely filled 1-L bottles where two different
dosages (Low and High) were added for each fining agent to each wine. Low (L) corresponds to the
minimum dose +20% (i.e., +1/5) of the recommended dosage range whereas high (H) is the maximum
dose –20% (i.e., –1/5) of the recommended dosage range (Table 4), representing doses commonly used
for wine fining in industrial winemaking. For each wine, the control (CO) was prepared by adding
deionized water instead of the fining agent.

Table 4. Fining agents used in this experiment.

Code Origin Recommended Dose (g/hL) Low Dose (g/hL) High Dose (g/hL)

CO - - - -
GE Animal 5–30 10 25
PE1 Pea 10–20 12 18
PE2 Pea 5–20 8 17
PT1 Potato 5–30 10 25
PT2 Potato 2–5 2.6 4.4

All fining experiments were carried out in triplicate, by setting for 7 d at 18 ◦C. At the end of
the fining treatment, wine samples were filtered on 40 µm cellulose filters (VWR International SAS,
Leuven, Belgium). For each replicate, a 50 mL-aliquot of filtered wine was further centrifuged in a
PK 131 centrifuge (ALC International, Milan, Italy) for 15 min at 3000× g at 20 ◦C and then used for
chemical analysis. The remaining wine from each of the three replicates was homogenized, bottled,
stored at 18 ◦C, and then used for sensory analysis.

3.4. Chemical Analysis after Wine Fining

Wine phenolic composition was determined through spectrophotometric methods using a UV-1800
spectrophotometer (Shimazdu Corp., Kyoto, Japan). In particular, total phenolics were assessed by
the measurement of absorbance at 280 nm in deionized water (A280). Proanthocyanidins (PRO) were
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determined after acid hydrolysis at 100 ◦C using a ferrous salt (FeSO4) as catalyst according to the
Bate-Smith reaction and expressed as mg of cyanidin chloride/L of wine. Monomeric and oligomeric
forms of flavanols were evaluated as flavanols reactive to vanillin (FRV) and expressed as mg of
(+)-catechin/L of wine. Total anthocyanins were determined by measuring absorbance at 536–540 nm
after dilution with a hydroalcoholic solution composed of ethanol: water: 37% hydrochloric acid
(70:30:1, v/v) and expressed as mg of malvidin-3-glucoside chloride/L of wine [39].

Flavanols contributing to astringency perception were evaluated following the Adams–Harbertson
protein precipitation assay [40], modified by Boulet et al. [32]. Briefly, the wine was diluted with a
buffer solution adjusted to pH 3.2, containing 12% v/v of ethanol and 5 g/L of tartaric acid. Then,
0.5 mL of diluted wine was added either with 1 mL of a buffer solution at pH 4.9 composed by 200 mM
of acetic acid and 170 mM of NaCl or with 1 mL of the same buffer solution at pH 4.9 containing
also 1 mg/mL of bovine serum albumin (BSA). After incubation at room temperature for 15 min with
continuous agitation, the sample was centrifuged at 13,500× g for 5 min. The supernatants were diluted
with 2% of hydrochloric acid and absorbance was measured at 280 nm. The BSA index was calculated
as the difference between the two absorbance values and expressed as mg of (+)-catechin/L of wine.

3.5. Color Characteristics after Wine Fining

After the acquisition of visible spectra of undiluted samples using 1-mm optical path cuvettes,
color intensity was calculated as the sum of absorbance measured at 420, 520, and 620 nm (A420 + A520

+ A620 on an optical path of 10 mm) and hue was obtained as the ratio of absorbances measured at
420 and 520 nm (A420/A520) following the method OIV-MA-AS2-07B [41]. The wine color was also
evaluated by the CIE L*a*b* parameters, namely lightness (L*), red/green color coordinate (a*), and
yellow/blue color coordinate (b*), according to the method OIV-MA-AS2-11. The total color difference
(∆E*) between two samples (for example between a fined wine and the respective control wine)
was calculated using the following expression: ∆E* = [(∆L*)2 + (∆a*)2 + (∆b*)2]1/2 [41]. A UV-1800
spectrophotometer (Shimazdu Corporation) was used.

3.6. Sensory Analysis after Wine Fining

Sensory analysis was conducted by nine tasters (6 males and 3 females) aged between 30 and
55 years from the University of Turin researchers and professors with experience in wine sensory
analysis. Panelists were trained during twelve sessions (1 h per session, three times per week) to
recognize, standardize, and rate the perceived intensity of astringency. During the training sessions,
panelists were asked to mark when they began to feel some stimuli and to order the samples on
the basis of the perceived intensity. Triangle, duo-trio, and intensity tests on structured (1–10) and
unstructured (10 cm) scales were performed using enological tannin (0.1–1 g/L) dissolved in water
and wine.

Wine samples were then evaluated in five formal sessions to identify and rate the astringency
perception. In the first session, the control wines were assessed to establish the astringency intensity
of each non-treated wine. Then, all wines (control and fined) from the same variety were arranged
in one session of 1 h, randomly presented to avoid a likely effect of context stimuli on ratings, and
identified with three-digit random codes. A constant volume of 30 mL for each wine was evaluated in
wine-taster glasses at 12 ◦C as described by the International Organization for Standardization (ISO)
3591 Norm (1977) [42]. Panelists recorded their perceived intensity on a 10-cm unstructured linear
scale. To minimize carryover effects, panelists eat crackers between samples and then rinsed the mouth
with natural water.

3.7. Statistical Analysis

Statistical analysis was conducted using R statistic software (R Core Team [43]). For each studied
variable, one-way analysis of variance (ANOVA) using the Tukey HSD post-hoc test was used to
evaluate significant differences among treatments. Levene’s and Shapiro–Wilk’s tests were applied for
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assessing the homogeneity of variance and normality of ANOVA residuals, respectively. Moreover,
multiple comparison Dunnett’s test was performed to investigate significant differences between
each fined wine and the respective control. Principal component analysis (PCA) using the R package
“factoextra” [44] was performed on the ANOVA significant chemical parameters determined (p < 0.05)
and therefore A280, PRO, FRV, TA, color intensity, and hue were the variables. To compare the effect
of fining agents in varieties with different phenolic composition while minimizing the contribution
of different phenolic content and profile, each value of the chemical parameters in fined wines was
subtracted to that of the respective control wine and the difference was then normalized as z-scores
before multivariate analysis.

4. Conclusions

Gelatin is the most commonly used fining agent in wine production, and results showed its
ability and efficiency in the reduction of wine flavanol components, counter parted by a loss of
anthocyanins to a different extent depending on the studied variety characteristics and the treatment
dose. Plant-derived protein finings have been proposed to be a possible alternative. In particular,
those derived from potato and pea could be useful for vegan-friendly, allergen-free wine production.
The study tested the performance of several plant-derived agents on the red wine fining compared
to gelatin.

In this study, fining agents derived from plants gave different results on phenolic compounds
reduction, depending on their origin, formulation, dose applied, and also on the studied wine
characteristics in terms of phenolic content and profile. Indeed, using four different monovarietal red
wines exhibiting different phenolic features allowed us to highlight the effect of the wine composition,
particularly on the phenolic characteristics, on the effectiveness of the fining treatment. Furthermore,
the results suggest the necessity of preliminary trials for wine fining, possibly accompanied by
instrumental measurements in terms of flavanols, astringency, and color.

Supplementary Materials: The following are available online, chemical composition of initial wines and CIE
L*a*b* coordinates of control and treated wine.
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