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Hydroxyurea (HU) is a ribonucleotide reductase inhibitor most commonly used as a
therapeutic agent in sickle cell disease (SCD) with the aim of reducing the risk of vaso-
occlusion and improving oxygen transport to tissues. Previous studies suggest that HU
may be even beneficial in mild anemia. However, the corresponding effects on skeletal
muscle energetics and function have never been reported in such a mild anemia model.
Seventeen mildly anemic HbAA Townes mice were subjected to a standardized rest-
stimulation (transcutaneous stimulation)-protocol while muscle energetics using
31Phosphorus magnetic resonance spectroscopy and muscle force production were
assessed and recorded. Eight mice were supplemented with hydroxyurea (HU) for
6 weeks while 9 were not (CON). HU mice displayed a higher specific total force
production compared to the CON, with 501.35 ± 54.12 N/mm3 and 437.43 ±
57.10 N/mm3 respectively (+14.6%, p < 0.05). Neither the total rate of energy
consumption nor the oxidative metabolic rate were significantly different between
groups. The present results illustrated a positive effect of a HU chronic
supplementation on skeletal muscle function in mice with mild anemia.
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1 INTRODUCTION

Hydroxyurea, also known as hydroxycarbamide (HU) is a ribonucleotide reductase inhibitor, leading
to a reduced availability of intracellular deoxynucleotide triphosphate which is needed for DNA
synthesis. It reactivates γ-globin synthesis and consequently fetal hemoglobin (HbF) production
(Cokic et al., 2003; Almeida et al., 2012).

HU is the most commonly used treatment in sickle cell disease (SCD) for decades (Platt et al.,
1984; McGann and Ware, 2015). Indeed by inducing HbF production, HU contributes to reduce the
abnormal sickle hemoglobin (HbS) proportion thereby alleviating symptoms of SCD patients
i.e., anemia, vaso-occlusive crisis, acute chest syndrome and transfusion requirement (Charache
et al., 1995). Interestingly, HU is also used in other types of anemias such as β-thalassemia major
(Algiraigri et al., 2017, 2014) or E/β-thalassemia (Algiraigri and Kassam, 2017) in which anemia is
expressed together with microcytosis (Rees et al., 1998; Muncie and Campbell, 2009). For these β-
thalassemias, HU could also enhance HbF production thereby increasing total hemoglobin (Hb) level
and reducing anemia (Fucharoen et al., 1996; Arruda et al., 1997; Singer et al., 2005). The
corresponding improved effectiveness of erythropoiesis has been related to the decreased disease
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severity (Fucharoen et al., 1996; Singer et al., 2005; Algiraigri et al.,
2017; Algiraigri and Kassam, 2017).

Severe anemia (<7 g/dl) is accompanied by multiple
consequences of oxygen reduction. More particularly, anemia
affects the oxygen-carrying capacity of blood with a recognized
impact on oxygen supply and utilization by the active muscles
which ultimately impairs exercise capacity (Woodson et al.,
1978). In that respect, HU has been able to substantially
enhance quality of life of patients (Fucharoen et al., 1996;
Singer et al., 2005; Ballas et al., 2006; Algiraigri et al., 2017).

Interestingly, Algiraigri and colleagues reported that “the
more severe the type of β-thalassemia, the milder the response
to HU” (Algiraigri et al., 2014). From that point of view and
considering 1) the relationship between oxygenation, muscle
energetics and muscle function (including fatigue) (Woodson
et al., 1978; Haseler et al., 1999), 2) the potential beneficial effects
of HU on Hb level and local blood flow previously reported
(Fucharoen et al., 1996; Cokic et al., 2003; Green and Barral,
2014), one could expect that a chronic HU supplementation
could improve muscle energetics and function even in mild
anemia. Interestingly, humanized hα/hα::βA/βA Townes mice
exhibit a slightly lower Hb concentration compared to wild type
mice (Wu et al., 2006) and thus constitutes an excellent model of
mild anemia.

In the present study, we intended to assess the effects of a
chronic HU supplementation on muscle energetics and function
during a standardized rest-exercise-recovery protocol in a mild
anemic murine model.

2 METHODS

2.1 Animal Model, Care and Feeding
Seventeen humanized hα/hα::βA/βA Townes mice of the same
litter/lineage and two (±0.5) months old have been used in the
present study (Jackson Laboratories, Bar Harbor,
United States). These mice are characterized by a lower Hb
concentration (mild anemia) and a reduced MCV as compared
to wild type counterparts (Wu et al., 2006). The study was
performed in conformity with the French guidelines for animal
care and in conformity with the European convention for the
protection of vertebrate animals used for experimental
purposes and institutional guidelines n° 86/609/CEE 24
November 1986. All animal experiments were approved by
the Institutional Animal Care Committee of Aix-Marseille
University (permit number #1841-2019011016466656). Mice
were housed in a controlled-environment facility (12–12 h
light–dark cycle, 22°C) and received water and standard
food ad libitum. Eight out of seventeen mice were
supplemented with HU for 6 weeks (HU). Hydroxyurea was
given every day (50 mg/kg/day) (Lebensburger et al., 2010) in
drinking water and the concentration was adjusted daily
according to the water consumption, we ensured that mice
never lacked water. Previous studies have reported a positive
effect of a similar dose provided acutely or for a 6 week-period
on hematological characteristics (Platt et al., 1984;
Lebensburger et al., 2010). Control mice (CON, n = 9)

received water only over the same period. No animals died
during the experiments.

2.2 Study Design
All mice were investigated after the 6-week period. Mice were
anesthetized and weighted then muscle energetics and function
were assessed in HU and CONmice in response to a standardized
Rest-Stimulation (1 Hz)-Recovery protocol. One week later, mice
were anesthetized in an induction chamber with isoflurane and
then euthanized by cervical dislocation. Gastrocnemius muscle
was harvested and weighted.

2.3 Non-Invasive Investigation of Posterior
Hindlimb Muscles Function and
Bioenergetics
Investigations were conducted using an innovative homebuilt
experimental setup which has been designed to be operational
inside the PharmaScan® AVANCE™ III HD 70/16 US equipped
with a 90 mm BGA09S (760 mT/m) gradient insert (Bruker
BioSpin MRI Gmbh, Ettlinge, Germany). The setup allows 1)
magnetic resonance imaging (MRI), 2) muscle force
measurements and 3) 31P-magnetic resonance spectroscopy
(31P-MRS) (Giannesini et al., 2010). MRI was used in order to
get anatomical information about the hindlimb. The posterior
hindlimb muscles mechanical performance was assessed with a
dedicated homemade ergometer consisting of a foot pedal
coupled to a force transducer (Giannesini et al., 2010).
31P-MRS was used to dynamically monitor the levels of high-
energy phosphorylated compounds and acidosis. We have chosen
to study posterior hindlimb muscles, which form the belly of the
calf, because it is clearly distinct from the other muscles of the leg,
easily accessible for MR coils and large enough to give 31P-MRS
spectra with a good signal to noise ratio in a short time. It has
been shown that the gastrocnemius muscle was preferentially
activated using our experimental protocol (Giannesini et al.,
2010).

2.4 Animal Preparation
Mice were anesthetized in an induction chamber (Equipement
vétérinaire Minerve, Esternay, France) using an air flow (3 L/min)
containing 4% isoflurane. The left hindlimb was shaved and
electrode cream was applied at the knee and heel regions to
optimize electrical contacts. The anesthetized animal was then
placed supine in the experimental setup (Giannesini et al., 2010).
Corneas were protected from drying by applying ophthalmic
cream, and the animal’s head was placed in a facemask
continuously supplied with 1-2% isoflurane mixed in 66%
room air (1 L/min) and 33% O2 (0.5 L/min). Breathing rate
was monitored during the protocol and kept between 100 and
130 breaths/min due to isoflurane concentration adjustment. The
foot was positioned on the ergometer’s pedal and the hindlimb
was centered inside a 16-mm-diameter 1H Helmholtz coil while
the belly of the gastrocnemius muscle was located above an
elliptic (8 × 6 mm2) 31P surface coil. Body temperature was
controlled and maintained at a physiological level throughout
the experiment using a feedback loop including an electrical
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heating blanket, a temperature control unit (ref. 507137, Harvard
Apparatus, Holliston, MA, United States) and a homemade rectal
thermometer.

2.5 Induction of Muscle Contraction and
Contractile Force Measurement
Muscle contractions were induced by electrostimulation using
two transcutaneous surface electrodes connected to a constant-
current stimulator (DS7A, Digitimer, Herthfordshire,
United Kingdom). One electrode was placed at the heel level
and the other one was located just above the knee joint. Electrical
signal coming out from the force transducer of the ergometer was
amplified (Two operational amplifiers: AD620 and OP497,
Analog Devices, Norwood, MA, United States, with a total dB
gain: 70 dB at 0-5 kHz bandwidth) and continuously monitored
and recorded on a personal computer using a Powerlab 16/36
data acquisition system (AD Instruments, Sydney, Australia) and
a dedicated software (LabChart 8, AD Instruments, Sydney,
Australia). The digital signal was converted to force according
to a linear calibration curve and expressed in mN.

2.6 Moderate Exercise Protocol
Function and bioenergetics of the posterior hindlimb muscles
were evaluated throughout a 6-min moderate exercise consisting
of maximal isometric contractions repeated at a frequency of 1Hz,
induced with square wave pulses (0.5 ms duration).

Force parameters were acquired with LabChart software (AD
Instruments, Oxford, United Kingdom). Peak force (Pf, mN) was
quantified. Total force production (TFP) was computed as the
sum of each twitch. Specific values (Pf, TFP) were normalized to
gastrocnemius muscle volume (cm3 or mm3) computed from
anatomic hindlimb MR images.

2.7 Preliminary Adjustments
Before the onset of MR acquisition, the muscle was passively
stretched at rest by adjusting the angle between the foot and the
hindlimb to produce maximal twitch tension in response to
supramaximal square waves pulses (0.5 ms duration).
Individual maximal stimulation intensity was determined by a
progressive increase of the stimulus intensity until there was no
further force increase.

2.8 Multimodal MR Data Acquisition
Ten consecutive non-contiguous axial slices (1 mm thickness,
spaced 0.25 mm) covering the region from the knee to the ankle
were selected across the lower hindlimb. RARE images (Rare
factor = 8, effective echo time = 35.29 ms, actual echo time =
11.76 ms, repetition time = 5,000 ms, one accumulation, 20 ×
20 mm field of view, 256 × 192 matrix size, acquisition time =
3 min 14 s) were recorded at rest in order to assess muscle
volume. Posterior hindlimb muscles region was manually
delineated on each of the 6 largest slices. Then, muscle volume
of each slice was extracted using the FSLeyes software (McCarthy,
2020). Total muscle volume (mm3) was calculated using the
truncated cone volume formula considering slice and gap
volumes.

Multiecho T2-weighted images (16 echo times equally spaced
from 7.28 ms to 116.59 ms, 2000-ms repetition time, one
accumulation, 20 × 30 mm field of view, 256 × 256 matrix
size, total acquisition time = 8.32 min, slice thickness = 1 mm,
slice gap = 1 mm) were recorded at rest. T2-weighted images were
processed to generate T2-maps on a pixel by pixel basis by fitting
the corresponding data with a single exponential function. Mean
T2 values of posterior hindlimb muscles were measured on T2
maps and averaged on the 2 largest consecutive slices from the
outlined regions of interest. The corresponding values were
quantified in total gastrocnemius (GA) muscle, in the tibialis
anterior (TA) region.

31P-MRS spectra (8 kHz sweep width; 2048 data points) from
posterior hindlimb muscles were continuously acquired before
(rest period; 4.7 min duration), during and after (recovery period;
16 min duration) the 6 min moderate exercise. Spectra
acquisition was gated to muscle electrostimulation in order to
reduce potential motion artifacts due to contraction. A total of
800 saturated free induction decays (FID, 1.875 s repetition time)
were acquired. The first 140 FID were acquired in resting muscle
and summed together. The next 450 FIDs were acquired during
exercise and were summed as blocks of 15, allowing a 30 s
temporal resolution. The remaining 210 FIDS were obtained
during the recovery period and were summed as blocks of
30 FIDs.

2.9 MRS Data Processing
MRS data were processed using IDL-based (Interactive Data
Language, Exelis, Visual Information Solutions, Boulder,
CO,United States) custom-written routines (Le Fur et al.,
2010) integrating the AMARES Fortran code (Vanhamme
et al., 1997) from jMRUI (http://www.jmrui.eu/).

Relative concentrations of phosphocreatine (PCr), inorganic
phosphate (Pi) and ATP were obtained from 31P-MRS spectra
using the AMARES-MRUI-based time domain fitting routine
including appropriate prior knowledge for the ATP multiplets.
Absolute amounts of phosphorylated compounds were expressed
taking into account a 5 mM β-ATP basal concentration
(Giannesini et al., 2013). PCr relative concentration was
expressed relative to the PCr content at rest which was set at
100%. Intracellular pH was calculated from the chemical shift of
the Pi signal relative to PCr according to the formula (Arnold
et al., 1984): pH = 6.75 + log [(3.27-δPi)/(δPi-5.69)]. Cytosolic
ADP concentration was calculated, as previously described
(Kemp et al., 1993; Harkema and Meyer, 1997): [ADP] =
([Cr] x [ATP])/([PCr]x10−pH x KCK), using the creatine kinase
equilibrium constant (KCK = 1.66 × 109 M−1) (Kemp et al., 2001a)
and total creatine [Cr] calculated by assuming that PCr represents
~85% of total Cr (Kemp et al., 2007). The rate of PCr degradation
(VPCrstim, in mM/min) at the onset of exercise was calculated as
VPCrstim = ΔPCr/τPCrstim, where ΔPCr is the extent of PCr
depletion measured at the exercise-end (relative to basal value)
and τPCrstim is the time constant of PCr degradation. τPCrstim
was determined by fitting the time course of PCr to a mono-
exponential function using a least-means-squared algorithm.
Force-normalized non-oxidative ATP synthesis (PCrcost
in µmol/N) was calculated as the ratio between VPCrstim and
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the amount of force produced at the beginning of exercise,
considering at that time that PCr is the only source of ATP
production. Similarly, the PCr recovery kinetic parameters
(τPCrrec) were determined during the post-exercise period by
fitting the time course of PCr resynthesis to a mono-exponential
function. Force-normalized oxidative ATP synthesis (PCrrec in
mM/N) was calculated as the ratio between VPCrrec and the
amount of force produced at the end of exercise. As previously
suggested, VPCrrec was considered as the rate of oxidative ATP
production at end of exercise as VPCrrec = ΔPCr/τPCrrec (Boska,
1991; Prompers et al., 2014). The maximal rate of PCr recovery,
Vmax, has been calculated as Vmax = VPCrrec (1 + (Km/
[ADPend])), where Km is the affinity constant of the
mitochondria for ADP (30 μM in gastrocnemius muscle of the
mice), and [ADPend] is the ADP concentration at the end of
exercise.

2.10 Statistics
All values are presented as means ± SD except on graphics for
which SE are displayed for the sake of clarity. Sample distribution
was tested with the Shapiro-Wilk test and visual distribution
(qqnorm plots). Significant differences were assessed using non-
parametric Wilcoxon tests or Welch t-tests. All statistics were
performed using R, on RStudio (4.0.2). The significance level was
set at p < 0.05.

3 RESULTS

3.1 Morphological Characteristics and
Muscle Imaging
Body weight differed significantly between CON and HU groups.
As indicated Table 1, HUmice were heavier (34.26 ± 1.94 g) than
CON (30.91 ± 2.83 g, p = 0.013). Otherwise, relative and absolute
gastrocnemius weights and volumes did not differ between
groups.

T2 values of the gastrocnemius were significantly lower in HU
(29.43 ± 0.84 ms) as compared to CON (30.79 ± 1.70 ms, p =
0.0328, Table 2). Regarding the tibialis anterior, T2 values were

not significantly different between HU (25.33 ± 0.55 ms) and
CON (25.74 ± 0.63 ms) groups (p = 0.0952, Table 2).

3.2 Posterior Hindlimb Muscles
Bioenergetics
Intracellular pH at rest was similar in HU (7.27 ± 0.09) and
CON (7.25 ± 0.08) mice (p = 0.6765, Table 3). During the 6-
min moderate-intensity stimulation period, a transient pHi

elevation was observed, followed by a pHi reduction. This
reduction occurred in both groups with an initial faster
decrease followed by a slower phase (Figure 1A). At the
end of the exercise period, pHi decreased of 0.25 ± 0.10 and
0.28 ± 0.09 pH unit in HU and CON group respectively (p =
0.58). The initial recovery phase started in a steady-state and
continued with a progressive increase towards the resting
value (Figure 1A). At the end of the recovery period, pHi

was not significantly different in HU and CON (7.24 ± 0.04
and 7.31 ± 0.11, respectively, p = 0.0953). The end of exercise
ADP was not significantly different between HU (55.17 ±
12.06 μM) and CON (48.94 ± 8.46 μM, p = 0.23, Table 3)
groups.

As illustrated in Figure 1B, the relative PCr time course can be
divided in 3 phases. An initial progressive decrease occurred
during the first 4 min of exercise, followed by a plateau from
minute 4 to 6 reaching a depletion of −58.68% ± 8.12 and
−56.45% ± 6.14 for HU and CON group respectively (p =
0.53, Table 3). The recovery period was characterized by a
progressive return towards the baseline values.

The rate of PCr degradation (VPCrstim) and the rate of PCr
resynthesis (VPCrrec) were not significantly modified between
HU (4.82 ± 1.25 mM/min and 3.69 ± 1.28 mM/min, respectively)
and CON (5.44 ± 1.03 mM/min and 3.08 ± 0.61 mM/min,
respectively) group (p = 0.2924 and p = 0.2512).

The time constant of PCr degradation (τPCrstim) was not
significantly different between HU (2.03 ± 0.90 min) and
CON (1.57 ± 0.39 min) groups (p = 0.2109). The time
constant of PCr resynthesis (τPCrrec) was similar in HU
(2.12 ± 0.43 min) and CON (2.19 ± 0.42 min) groups (p =
0.7459).

The force-normalized non-oxidative ATP synthesis
i.e., PCrcost strongly tended to be lower in HU compared to
CON (Figure 2A, p = 0.0583). The force-normalized oxidative
ATP synthesis i.e. PCrrec was similar in HU and CON mice
(Figure 2B, p = 0.5216).

The maximal rate of PCr recovery, Vmax, was similar (p = 0.3)
between CON (4.99 ± 0.86 mM/min) and HU (5.68 ± 1.68 mM/
min) groups.

TABLE 1 | Muscles and body weights in HU and CON mice.

CON (n = 9) HU (n = 8)

Body weight (g) 30.91 ± 2.83 34.26* ± 1.94
Gastrocnemius weight (mg) 156.59 ± 24.36 158.31 ± 15.62
Gastrocnemius weight/body weight (mg/g) 5.09 ± 0.79 4.62 ± 0.33
Muscle volume (mm3) 154.76 ± 15.82 158.93 ± 15.41

Results are presented as means ± SD. *significantly different from CON.

TABLE 2 | T2 values in muscles of HU and CON mice.

CON (n = 9) HU (n = 8)

Tibialis anterior 25.74 ± 0.63 25.33 ± 0.55
Whole GA 30.79 ± 1.70 29.43 ± 0.84 *

Results are presented as means ± SD. * significantly different from CON.

TABLE 3 | Metabolic index at rest and exercise.

CON (n = 9) HU (n = 8)

pHirest 7.25 ± 0.08 7.27 ± 0.09
pHiend 7.31 ± 0.11 7.24 ± 0.04
PCr depletion (%) −56.45 ± 6.14 −58.68 ± 8.12

Results are presented as means ± SD. No significant variation was found.
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3.3 Muscle Function
At the onset of stimulation, specific peak force was
significantly higher in HU mice (1,348.17 ± 165.82 N/cm3)
as compared to CON mice (1,121.78 ± 140.78 N/cm3, p =
0.0093, Figure 3).

As illustrated in Figure 3, specific peak force time-course was
biphasic with an initial increase and a peak reached after a 90 s
stimulation period. Afterwards, specific peak force progressively
decreased until the end of stimulation.

As illustrated in Figure 4, HU mice (501.35 ± 54.12 N/mm3)
produced a significantly larger specific total force production over
the 6-min stimulation period as compared to controls (437.43 ±
57.10 N/mm3, p = 0.0318).

4 DISCUSSION

In the present study, we aimed at characterizing the changes
occurring in skeletal muscle energetics and function in response
to a 6-week chronic hydroxyurea supplementation in mildly
anemic mice. Our results showed that HU supplementation 1)
strongly tended to enhance PCrcost, 2) decreased posterior
hindlimb averaged T2 values and 3) increased specific total
force production.

4.1 Effect of HU on Skeletal Muscle
Oxygenation
Considering the well-known effect of HU on fetal Hb production,
we hypothesized that HU could improve muscle oxidative
capacity as a consequence of an increased oxygen delivery.
This hypothesis was supported by the fact that a beneficial
effect of HU treatment has been established on aerobic
capacities. Indeed, sickle cell anemia (SCA) patients receiving
HU decreased their heart rate in response to a standardized
exercise compared to untreated SCA patients (Hackney et al.,
1997). The authors suggested an improved cardiovascular
efficiency without mentioning underlying mechanisms. In
addition, HU supplementation has been related to an
increased NO bioavailability which can have a vasorelaxant
effect and improve muscle oxygenation (Chen et al., 2008;
Roberson and Bennett-Guerrero, 2012; Green and Barral, 2014).

As pH and ADP concentration were similar at the end of
exercise, the initial rate of PCr resynthesis, VPCrrec should reflect
Vmax as previously suggested (Roussel et al., 2000). Therefore,
only VPCrrec will be discussed. In the present study, the
unchanged rate of PCr resynthesis, VPCrrec, quantified during
the post-stimulation period did not support this hypothesis. The
rate of PCr resynthesis and the corresponding kinetic metrics
have been largely acknowledged as illustrative of muscle oxidative

FIGURE1 | (A) pHi time course during the rest-stimulation-recovery protocol in CON and HU. Results are presented asmeans ± SEM. (B)Relative PCr time-course
during the rest-stimulation-recovery protocol in CON and HU. Results are presented as means ± SEM.
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function (McCully et al., 1993; Kemp and Radda, 1994; Conley
et al., 2000; Praet et al., 2007; Lanza et al., 2011). In addition, it has
been shown that PCr recovery kinetics could be modulated by the
oxygenation status. More specifically, PCr recovery kinetics can
be accelerated in hyperoxic conditions in a trained population
(Haseler et al., 1999), whereas hypoxia can reduce the
corresponding rate in a sedentary and trained population
(Haseler et al., 2007, 2004).

Along the same line, it has been previously reported that
patient with peripheral arterial disease (PAD) who suffer from a
decreased skeletal muscle O2 supply displayed a significant
reduced PCr recovery kinetics (Kemp et al., 2001b). Of
interest, it has been reported that hyperoxia was not sufficient
to improve the recovery kinetics in PAD patients (Hart et al.,

2018). However, an improved mitochondrial function was
observed when hyperoxia was combined to reactive hyperemia
(Hart et al., 2018) thereby suggesting that both convective and
diffusive O2 supply may limit mitochondrial oxidative capacity in
PAD patients (Hart et al., 2018). These results are totally
supportive of the present results obtained in anemic
conditions. While HU is expected to increase oxygen supply in
the same way as hyperoxia in PAD patients, we could suggest that
the unchanged PCr recovery kinetics in HU-treated mice is
indicating that anemic muscle is limited not only by oxygen
convection but also by oxygen diffusion to muscle cells.

One can also wonder if the lack of effect of HU in the present
study may be related to the low impact of mild anemia observed
in the used model on the muscle oxidative capacity and

FIGURE 2 | (A) PCrcost at the beginning of the moderate exercise in CON (grey, n = 9) and HU (black, n = 8). results are presented in boxplot. (B) PCrrec at the end of
moderate exercise, results are presented in boxplot.

FIGURE 3 | Time dependent changes in specific peak force throughout the moderate exercise in CON (grey, n = 9) and HU-treated mice (black, n = 8). Results are
presented as means ± SEM.
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mitochondrial function. Moreover, it cannot be excluded that the
lack of difference may be related to compensatory mechanisms
affecting cardiac output and microvascular blood flow could
occur in mild anemic conditions thereby limiting the
deleterious effects of the reduced oxygen delivery (Roberson
and Bennett-Guerrero, 2012). Overall, these compensatory
changes would account for the similar oxidative capacity in
treated and untreated mice. Additional measurements are
warranted in order to decipher the exact mechanisms.

Nevertheless, PCrcost, an index of the non-oxidative ATP
production, tended to be reduced by HU supplementation (p =
0.0583). This can be understood as a reduced glycolytic
contribution and/or a larger oxidative production in
exercising muscle which could support our primary
hypothesis. It would have then to be determined why a
potential improved oxygenation could modulate the aerobic
ATP production during exercise and not during the post-
exercise recovery phase.

4.2 Effect of HU on the ATP Cost of
Contraction
The ATP cost of contraction represents the rate of ATP
utilization for a given muscle activity. The rate of ATP
utilization is actually supported by both oxidative and non-
oxidative contributions. In the present study and as previously
mentioned, PCrcost strongly tended to be reduced in HU mice
compared to CON counterparts (p = 0.058). These results support
those from Bailey et al who obtained a reduced PCr consumption
in humans during an incremental knee-extension test after

beetroot juice (a nitrate provider) supplementation (Bailey
et al., 2010).

This decreased PCrcost can be understood as a lower rate of ATP
utilization for a given force or a faster rate of ATP resynthesis which
mainly relies on oxidative capacity. In the study of Bailey et al, the
PCrcost reduction was explained as a reduced rate of ATP hydrolysis
for a given work (Bailey et al., 2010). Of note, ATP demand is
conditioned by both contractile and non-contractile processes
keeping in mind that non-contractile processes such as
sarcoplasmic Ca2+ pumping can represent up to 20-50% of the
total ATP turnover (Bergstrom and Hultman, 1988).

Nevertheless, a faster oxidative rate of ATP resynthesis by
oxidative pathway cannot be totally excluded. Ferguson et al
(2015) reported a higher microvascular partial pressure of oxygen
(PO2mv) after a dietary nitrate supplementation (Ferguson et al.,
2015) which could be expected to increase the rate of oxidative
wing of ATP production thereby reducing the exercise-induced
PCr consumption (Haseler et al., 1998; Vanhatalo et al., 2011;
Ferguson et al., 2015). Neither the present results nor those from
Bailey et al (2010) indicated an improved rate of PCr resynthesis,
VPCrrec.

Moreover, oxidative stress, which has been reported as
elevated in various anemias (Akohoue et al., 2007; Fibach
and Rachmilewitz, 2008; Nur et al., 2011; Voskou et al.,
2015; Vinhaes et al., 2020), has been previously reported to
impair mitochondrial function (Halestrap et al., 1993; Guo
et al., 2013). Of interest, it has been previously reported that
SCA patients treated with HU displayed a reduced degree of
oxidative perturbation as compared to untreated SCA patients
(Vinhaes et al., 2020). If such a phenomenon was occurring in
HU-treated mice, our results indicate that it did not affect
mitochondrial function.

The reduced PCrcost could result from a reduced rate of ATP
hydrolysis. Accordingly, Hernandez et al suggested that the larger
force production resulting from nitrate ingestion would result from
changes in Ca2+ handling (Hernández et al., 2012), indicating that
the non-contractile ATP demand might be reduced.

4.3 Effect of HU on Force Production
Specific total peak force (total peak force scaled to muscle
volume) developed by HU-treated mice was significantly
higher as compared to CON. Such a direct effect of HU on
force production has never been reported in mild anemic mice.
However, Wali & Moheeb reported a higher absolute force
production of the right hand and leg in HU-supplemented
children compared to healthy controls (Wali and Moheeb,
2011). HU has also been associated to a decreased heart rate
during a treadmill exercise together with a longer exercise time
before exhaustion both indicative of an improved exercise
capacity (Wali and Moheeb, 2011). A similar beneficial effect
on exercise capacity has already been described in HU-treated
SCA patients with an improved performance for the Wingate test
(Hackney et al., 1997). Both results have been directly related to
the increased fetal hemoglobin level with a corresponding
reduction in the HbS level and a reduction of clinical symptoms.

Of interest, in vitromeasurements could suggest some accounting
factors of the force increase. An increased contractile force has been

FIGURE 4 | Specific total force production from during the 6 minutes
moderate exercise in CON (grey, n = 9) and HU (black, n = 8) groups, results
are presented in boxplot. * significantly different from HU group.
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reported in vitro in fast-twitch fibers (dominant fiber type) in mice
supplemented with nitrate, an important NO precursor (Hernández
et al., 2012). Of interest, HU supplementation has been shown to
increase NO production and bioavailability (Jiang et al., 1997; Glover
et al., 1999; Huang et al., 2002). More specifically, HU can oxidize
oxy and deoxy-hemoglobin tomethemoglobin, which can then react
with other HU molecules and form nitrosylhemoglobin (HbNO)
slowly releasing NO (Jiang et al., 1997).

Alternatively, this increased force production might be
related to a larger relative amount of fast-twitch fibers in HU
mice. This means that HU would induce a slow to fast-twitch
fiber transition. The reduced T2 values we quantified in HU
mice compared to CON in the present study might be
supportive of this hypothesis since lower T2 values have
been related to a larger quantity of fast-twitch glycolytic
fibers (Hatakenaka et al., 2001). The averaged T2 of water
protons illustrates the molecular environment together with
the water mobility. Previous studies have mainly reported T2
changes (mainly increase) in a variety of conditions such as
eccentric exercise, inflammatory disorders etc. (Fisher et al.,
1990; Marqueste et al., 2008; Esposito et al., 2013; Bryant et al.,
2014; Zaccagnini et al., 2015), and reduced T2 values have been
scarcely reported.

Considering the beneficial effects of HU in daily activity of
patients (Fucharoen et al., 1996; Singer et al., 2005; Ballas
et al., 2006; Algiraigri and Kassam, 2017), cage activity of
mice in the present study might have increased thereby
accounting for the improved muscle function (Bowden
Davies et al., 2019).

4.4 Effect Mediated by Nitric Oxide
Overall, HU-supplementation was related to a likely reduced
non oxidative cost of contraction and an increased skeletal
muscle force production. On the basis of literature results
and of the well-known effects of HU on NO production, we
strongly pointed out the increased NO bioavailability as a strong
potential accounting factor for the present results. Although NO
measurements would have to be performed as a confirmatory
support, potential underlying effects mediated by NO are of
interest to mention.

The increased bioavailability of NO would improve local blood
flow, fatigue resistance and fiber contractility (Jones et al., 2016). In this
way, the increased contractility may have increased force production
and decreased the cost of non-contractile processes, inevitably reducing
ATP consumption.

5 CONCLUSION

In the present study, we observed a potential ergogenic effect of a
chronic supplementation of hydroxyurea in a group of mice with
mild anemia. HU supplementation improved force production,
modified bioenergetics and reduced the average T2 values.
Further studies are necessary to confirm the underlying
mechanisms of the observed changes.
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