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Abstract. We have examined the distribution of 
mannose-6-phosphate (Man6P) receptors (215 kD) for 
lysosomal enzymes in cultured Clone 9 hepatocytes at 
various times after the addition or removal of lyso- 
somotropic weak bases (cMoroquine or NH4CI). Our 
previous studies demonstrated that after treatment with 
these agents, Man6P receptors are depleted from their 
sorting site in the Golgi complex and accumulate in 
dilated vacuoles that could represent either endosomes 
or lysosomes (Brown, W. J., E. Constantinescu, and 
M. G. Farquhar, 1984, J. Cell Biol., 99:320-326). We 
have now investigated the nature of these vacuoles by 
labeling NH4Cl-treated cells simultaneously with 
anti-Man6P receptor IgG and lysosomal or endosomal 
markers. The structures in which the immunolabeled 
receptors are found were identified as endosomes 
based on the presence of endocytic tracers (lucifer 
yellow and cationized ferritin). The lysosomal mem- 
brane marker, lgpL20, was associated with a separate 
population of swollen vacuoles that did not contain 
detectable Man6P receptors. When cells were allowed 
to recover from weak base treatment, the receptors 

reappeared in the Golgi cisternae of most cells 
(",,90%) within •20 min, indicating that as the intra- 
endosomal pH drops and lysosomal enzymes dissoci- 
ate, the entire population of receptors rapidly recycles 
to Golgi cisternae. When NI-LCl-treated cells were al- 
lowed to endocytose Man6P, a competitive inhibitor of 
lysosomal enzyme binding, the receptors also recycled 
to the Golgi cisternae, suggesting that lysosomal en- 
zymes can dissociate from the receptors under these 
conditions (high pH + presence of competitive inhibi- 
tor). From these results it can be concluded that (a) 
the intracellular itinerary of the 215-kD Man6P recep- 
tor involves its cycling via coated vesicles between the 
Golgi complex and endosomes, (b) ligand dissociation 
is both necessary and sufficient to trigger the recycling 
of Man6P receptors to the Golgi complex, and (c) en- 
dosomes rather than secondary lysos0mes represent 
the junction where endocytosed material and primary 
lysosomes carrying receptor-bound lysoSomal enzymes 
meet. The implications of these findings for the bio- 
genesis of secondary lysosomes are discussed. 

M 
ANNOSE-6-PHOSPHATE (Man6P) 1 receptors (215 
kD) are known to function in the targeting and 
transport of newly synthesized lysosomal enzymes 

(for reviews see references 11 and 43). To identify the trans- 
port pathway followed by the 215-kD Man6P receptor, we 
previously localized these receptors in a variety of cell types 
by immunocytochemistry (4, 5, 7) and showed that they are 
concentrated in the Golgi complex, in small vesicles (often 
with clathrin-like coats), and in larger vacuoles. These or- 
ganelles were assumed to represent the sorting site, the car- 
rier, and the delivery site, respectively, for lysosomal en- 
zymes. We also reported that treatment of cells for 3 h with 
lysosomotropic weak bases (chloroquine or NILCI) causes 
depletion of Man6P receptors from the sorting site in the 
Golgi complex and their accumulation at the delivery site in 

1. Abbreviations used in this paper: Glu6P, glucose-6-phosphate; IE 
immunofluorescence; IP, immunoperoxidase; ManlE mannose-l-phos- 
phate; Man6P, mannose-6-phosphate; MEM/FCS, Eagle's minimum essen- 
tial medium/fetal calf serum. 

large, dilated vacuoles (7). The identity of the vacuoles was 
not determined, but they were assumed to represent lyso- 
somes, endosomes, or a mixture of the two. The ability to 
trap the receptors at the delivery site and the fact that the 
effects of treatment with lysosomotropic weak bases are re- 
versible enabled us to investigate the following questions: (a) 
Is the delivery site for 215-kD Man6P receptors an endo- 
some, a lysosome, or both? (b) Do these receptors recycle 
back to the sorting site in the Golgi complex after removal 
of lysosomotropic agents? and, (c) If recycling does occur, 
what triggers this event? We present here evidence on all 
three of these questions. 

Materials and Methods 

Materials 

Rat Clone 9 hepatocytes were obtained from Dr. David Sabatini, New York 
University. Chloroquine diphosphate, NH4CI, cycloheximide, lucifer yel- 
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low, Man6P, and diaminobenzidine were purchased from Sigma Chemical 
Co. (St. Louis, MO). Minimal essential medium (Earle's salts) and fetal calf 
serum were from Gibco (Grand Island, NY). Fluorescein- or rhodamine- 
conjugated goat anti-mouse IgG and rhodamine-conjugated goat anti-rabbit 
IgG were from Cooper Biomedical, Inc. (Malveru, PA) and Fab fragments 
of sheep anti-rabbit IgG conjugated to horseradish peroxidase were from 
Biosys (Compiegne, France). Cationlzed ferritin (pI >~8.5) was from Miles 
Scientific Div., Miles Laboratories Inc. (Naperville, IL). 

Antibodies 
Rabbit polyclonal anti-Man6P receptor IgG was characterized previously 
(4). It was shown to recognize by immtmoprecipitation (4) and by immuno- 
blotting (unpublished data) only the 215-kD Man6P receptor. Monoclonal 
anti-lgpl20 was kindly provided by Dr. Ira Mellman (Yale University). It 
was shown to recognize a 120-kD glycoprotein by immunoprecipitation (33) 
and to stain membranes of lysosomes but not endosomes in baby hamster 
kidney (33) and rat kidney proximal tubule (39) cells. 

Cell Culture 
Clone 9 cells were grown in minimal essential medium (Earle's salts) with 
10 % fetal calf serum (MEM/FCS) in an atmosphere of 95 % air, 5 % CO2. 
Cells were plated onto glass coverslips for immunofluorescence OF) or 35- 
mm plastic petri dishes for immunoperoxidase (IP) staining and were cul- 
tured for 3-4 d. 

Incubation with Lysosomotropic Weak Bases 

Clone 9 cells were incubated with chloroquine (25 I~M) or NI-I4CI (10 or 
50 mM) in MEM/FCS for 5, 10, 15, 30, 60, 120, or 180 rain at 37°C. These 
agents, which cause a rise in the internal pH and vacuolization of endosomes 
and lysosomes (20, 34, 37, 38), lead to the accumulation of Man6P receptors 
in large, dilated vacuoles and their depletion from the Golgi complex (7). 
For electron microscopy, cells were treated with 10 mM NI-LCI, whereas 
for light microscopy, they were treated with 50 mM NI-I4C1 to generate 
larger vacuoles that were easier to visualize. The cells were then either fixed 
for immunocytochemistry or subjected to further experimental manipula- 
tions. 

Recovery Experiments 
Cells that had been treated with chloroquine or NI-hC1 for at least 180 min 
as described above were quickly washed five times (total time 2-3 rain) with 
MEM/FCS at 37°C and incubated in weak base-free media for 5 min to 6 h 
at 37°C. During this washout or recovery period, lysosomes and endosomes 
rapidly re-acidify (20, 34, 37). Cells were then fixed and processed for IF 
or IP as necessary. 

In some experiments, cycloheximide (2 ~g/ml final concentration) was 
added to cells that had been incubated with MEM/FCS plus NI-hC1 for 
3 h, and the incubation was continued for another 30 min. They were then 
washed free of weak bases, incubated with MEM/FCS plus cycloheximide 
for up to 2 h, and fixed for IF or IR 

Labeling of Endosomes for Light 
and Electron Microscopy 
Endosomes were labeled by allowing them to take up the fluorescent marker 
lucifer yellow or the electron-dense marker cationized ferritin. Clone 9 cells 
that had been treated with weak bases as described above were incubated 
with either lucifer yellow (10-15 mg/ml in MEM/FCS) or cationized ferritin 
(50 gg/ml), for 15 or 30 min at 37°C in the continuous presence of either 
chloroqnine or NI-I4CI. Cells were then fixed and processed for IF or IP, 
respectively. Lucifer yellow has been shown to be an excellent, fluorescent 
fluid-phase marker which is taken up sequentially into endosomes (at 5-15 
rain) and lysosomes (at 20-30 min) (46). It did not bind appreciably to cell 
membranes and was not toxic at the concentrations used. 

Incubation of NH, Cl-treated Cells with Man6P 
Cells treated with MEM/FCS containing NI-~CI for >--3 h were incubated 
in the same media containing either 50 mM Man6P, mannose-l-phosphate 
(ManlP), or glucose-6-phosphate (GlutP) for up to 3 h at 37°C. Man6P is 
known to competitively inhibit lysosomal enzyme binding to Man6P recep- 
tors, whereas ManlP and GlutP do not (43). Cells were then fixed and 
processed for IF or IP. 

Immunofluorescence 
Clone 9 cells were fixed on coverslips in 3.7% formalin in PBS for 45 rain 
at room t,~mperature and permeabilized with 0.05 % saponin in PBS. Cells 
were then incubated for 1 h either with anti-receptor IgG (50 ttg/ml) fol- 
lowed by rhodamine-labeled goat anti-rabbit IgG (diluted 1:50) for 1 h, or 
antMgp120 (ascites fluid, diluted 1:100) followed by fluorescein-labeled goat 
anti-mouse IgG (1:50) for I h. Ceils were doubly labeled by incubating 
them sequentially with anti-receptor IgG, anti-lgpl20, rhodamine-labeled 
anti-rabbit IgG, and fluorescein-labeled anti-mouse IgO. 

In the case of cells that had been incubated with lucifer yellow before 
fixation, rhodamine-labelcd anti-mouse IgG was used to detect anti-lgp120. 
Coverslips were mounted in p-phenylenediamine to reduce fading (31) and 
photographed in a Zeiss Photomicroseope HI equipped with epifluorescence 
illumination and appropriate barrier filters to prevent overlap of the two flu- 
orescent signals. 

Immunoperoxidase 
Cells cultured in petri dishes were fixed in McLean and Nakane's fixative 
and permeabilized with 0005 % saponin as previously described (7). They 
were then incubated for 1 h or overnight in either anti-receptor IgG (50 
ttg/ml) or anti-lgp120 IgG (as above) followed by Fab fragments of either 
sheep anti-rabbit or anti-mouse IgG (1:50 dilution) for 1 h, after which they 
were then fixed in glutaraldehyde, incubated in diaminobenzidine medium, 
and processed as previously described (5). Ultrathin sections were stained 
with lead citrate and examined at 601N in either a Philips 301 or 410 electron 
microscope. 

Quantitation of Man6P Receptor Distribution 
The number of cells in which receptors were concentrated in the jux- 
tanuclear, Golgi region versus those in which receptors were concentrated 
in large, dilated vacuoles were counted at various times after NI-I4CI treat- 
ment or its removal. Cells were scored as having either a "Golgi'- or 
"vacuole"-type staining pattern in IF preparations stained for Man6P recep- 
tors. At least 200 cells were scored at each time point in four to seven sepa- 
rate experiments. 

Results 

Man6P Receptors Are Trapped in Endosomes 
by Treatment with Lysosomotropic Weak Bases 
As was previously shown (4), in control (untreated) Clone 
9 hepatocytes, by IF 215-kD Man6P receptors are typically 
concentrated in the Golgi region (Fig. 1 a), where they can 
be localized by IP at the electron microscopic level in one 
or two Golgi cisternae, in associated vesicles, and in larger 
vacuoles (Fig. 2, a and b). After treatment with lysosomotrop- 
ic weak bases, they are depleted from Golgi cisternae and ac- 
cumulate in large, dilated vacuoles (Figs. 1, b and c and 2 
c). To determine the identity of the dilated vacuoles where 
the receptors accumulate, we performed double-labeling by 
IF and compared the distribution of the receptor to that of 
a lysosomal marker (lgpl20) and an endosomal marker (lu- 
cifer yellow) in chloroquine- or NI~Cl-treated cells. 

In treated cells, which had been incubated for 15 rain with 
lucifer yellow (to allow its uptake into endosomes) and then 
fixed and stained with anti-lgpl20 by indirect IE there was 
staining of large vacuoles with both markers, but there was 
little or no overlap between lucifer yellow-labeled endo- 
somes and the anti-lgpl20 stained lysosomes (Fig. 3, a and 
b). However, in cells incubated for 30 rain in lucifer yellow, 
there was some overlap between the two signals (not shown). 
This demonstrates that in Clone 9 cells, as in macrophages 
(46), lucifer yellow is a valid endosomal marker at 15 min 
after its uptake, and that both endosomes and lysosomes be- 
come vacuolated after treatment with lysosomotropic weak 

The Journal of Ceil Biology, Volume 103, 1986 1236 



Figure 1. Immunofiuorescence localization of Man6P receptors in Clone 9 hepatocytes after the addition of NI-L~C1. Pairs of micrographs 
are shown of the same field by fluorescence (a-c) or phase-contrast (ag-c') microscopy. Control, untreated cells (a and a'). By phase contrast 
an increase in the size and number of phase-lucent vacuoles is evident, and by immunofluorescence a change in the distribution of Man6P 
receptors is seen at 2 h (b and b') or 3 h (c and c') after addition of NI-hCl. There is a change from a juxtanuclear "Golgi" staining pattern 
in controls (arrows in a) to a "vacuolar" (endosome) staining pattern (arrowheads in c). Note that only some of the dilated vacuoles contain 
detectable receptors. Bar, 10 Bin. 

bases. In cells doubly labeled by indirect IF for Man6P 
receptors and lgpl20, the staining patterns clearly did not 
coincide: some of the numerous large vacuoles contained re- 
ceptors, and others contained the lysosomal marker (Fig. 3, 
d and e). When NH4Cl-treated cells were allowed to inter- 
nalize lucifer yellow for 15 min and then stained for Man6P 
receptors, the patterns of staining for the endocytic marker 
and the receptors clearly overlapped (Fig. 3, g and h). The 
results show that staining for Man6P receptors and the endo- 
somal marker, lucifer yellow, are nearly identical, whereas 
staining for the receptor and the lysosomal marker, lgpl20, 
are quite different. We conclude that the majority of im- 
munodetectable Man6P receptors become trapped in endo- 
somes, rather than in lysosomes after incubation with lyso- 
somotropic weak bases, and accordingly, endosomes, not 
lysosomes, represent the delivery site for newly synthesized 
lysosomal enzymes transported via the 215-kD receptor in 
NI-hCl-treated Clone 9 cells. 

The presence of Man6P receptors and an endocytic marker 
in the same vacuole was verified by electron microscopy in 
NH4Cl-treated cells allowed to take up cationized ferritin 
for 15 min. Cationized ferritin binds to the cell surface and 
is taken up by endocytosis in coated or smooth vesicles and 
is delivered to endosomes (Fig. 4, a-c). When such cells 
were stained for Man6P receptors by IP, the cationized fen-i- 
tin and diaminobenzidine reaction product were regularly 
detected in the same dilated vacuoles (Fig. 4, a-c). The mor- 
phology of the dilated endosomes containing both trapped 
receptors and cationized ferritin was variable, but typically 

they appeared electron lucent with internal vesicles and thus 
could be classified as multivesicular endosomes (Fig. 4, 
a-d). 

Man6P Receptors Recycle from Endosomes to 
the Golgi Complex after NH4CI Removal 
To determine the fate of Man6P receptors trapped in endo- 
somes upon recovery from NI-hC1 treatment, their distribu- 
tion was determined in cells transferred to fresh (NI-hC1- 
free) media. By phase-contrast microscopy (Fig. 5, a'-c'), it 
was apparent that there was a progressive diminution in 
the size of the large dilated vacuoles (endosomes plus lyso- 
somes) over a period of 1-2 h. The decrease in size was first 
evident by ~30 rain (Fig. 5 c'), but for the cell to completely 
return to normal, ,x,2 h was required (not shown). However, 
by IF, receptors could already be detected in the juxtanuclear 
(Golgi) region of some cells as early as 5 rain after washout 
(Fig. 5 a), and after 15-30 min (Fig. 5, b and c), the pattern 
of staining in most cells was indistinguishable from that of 
untreated cells (see Fig. 1 a). In virtually every cell, recep- 
tors were clustered in the Golgi region and were not detect- 
able in the remaining dilated, cytoplasmic vacuoles. The pat- 
tern of staining remained unchanged in cells allowed to 
recover for up to 6 h. The results were the same whether or 
not cycloheximide was included in the washout media. The 
findings indicate that although endosomes and lysosomes re- 
main dilated up to 2 h after NFLC1 removal, the receptors 
rapidly recycle to the Golgi region, and this recycling occurs 
in the absence of protein synthesis. 
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Figure 2. lmmunoperoxidase localization of Man6P receptors in control (a and b) and chloroquine-treated (c) Clone 9 hepatocytes. In 
control cells, the receptors are found in a single stacked Golgi cisterna (arrows), in small vesicles (ve), and in endocytic vacuoles (en) 
concentrated in the Golgi region. After chloroquine treatment, the receptors are found exclusively in the large, dilated vacuoles and are 
depleted from Golgi cisternae (Gc). Often smaller vesicles are seen in the lumen of some of the dilated multivesicular bodies (Fig. 3 c). 
Bars, 0.2 I.tm. 

The nature of  the compartments in the Golgi region to 
which the recycling Man6P receptors are delivered was 
checked by electron microscopy. By 5 min after removal of 
NI-I4CI, immunoreactive receptors could already be detect- 
ed in their normal locations in the stacked Golgi cisternae 

and associated vesicles of  many cells (Fig. 6 a). As in con- 
trols, reaction product was largely restricted to several cister- 
nae on one side, identified as cis Golgi elements in these cells 
by analysis of  Golgi subfractions (6) and immunoelectron 
microscopy (7). Labeling was more extensive, however, than 
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Figure 3. Fluorescence double-labeling of vacuolated, NI-L, Cl-treated (3 h) Clone 9 cells with rabbit polyclonal anti-Man6P receptor anti- 
bodies and either with mouse monoclonal anti-lgpl20, a lysosomal membrane marker, or lucifer yellow, an endosomal marker, as described 
in the Materials and Methods. In each case, the right panel shows the phase contrast and the two left panels the fluorescence micrographs 
of the same group of cells. (a-c) Cells that had been allowed to take up the fluorescent dye lucifer yellow for 15 min after which they 
were fixed and labeled by indirect immunofluorescence with anti-lgpl20 and rhodamine-labeled anti-mouse IgG. There is very little or 
no overlap between the distribution of the lysosomal marker, lgpl20 (a), and the endosomal marker, lucifer yellow (b). Lysosomes are 
typically located more peripherally, whereas endosomes are located in the juxtanuclear Golgi region. (d-f) Cells fixed and doubly immuno- 
labeled with anti-Man6P receptor IgG detected with rhodamine-conjugated anti-rabbit IgG (d), and anti-lgpl20 IgG detected with 
fluorescein-eonjugated anti-mouse IgG (e). The labeling patterns of the two markers are very different: receptors are found in a population 
of swollen vacuoles (arrows) that differs from that of lysosomes labeled by lgpl20 (arrowheads). (g-i) Cells allowed to endoeytose lucifer 
yellow for 15 min after which they were fixed and stained by indirect immunofluorescence with anti-Man6P receptor IgG detected with 
rhodamine-labeled anti-rabbit IgG. The overall labeling patterns are nearly identical; both Man6P receptors (g) and endosomes (h) are 
concentrated in the juxtanuclear region. Many of the cytoplasmic vacuoles contain both receptors (arrows) and lucifer yellow (arrowheads), 
demonstrating that Man6P receptors are trapped in the endosomes of NI-hCl-treated cells. Bar, 10 ~tm. 

in controls because typically more than one (rather than one) 
cisterna was labeled. The distribution of  receptors within 
Golgi elements remained the same throughout the course of  
the recovery period (Figs. 6, b and c). During the same 
period, endosomal staining decreased until by ~1 h after 
washout, little or no diaminobenzidine reaction product was 

seen in the few remaining larger vacuoles or in the more 
numerous remaining smaller vacuoles (Fig. 6, b and c). Note 
that at early time points (5 min), receptors were frequently 
detected in coated invaginations, apparently captured in the 
process of  budding from endosomes, and in small vesicles, 
some with clathrin-like coats, located throughout the cyto- 
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Figure 4. Co-localization of Man6P receptors and the endocytic tracer, cationized ferritin, in the dilated endosomes of NI-hCl-treated 
Clone 9 cells. Portions of three cells (a-c) treated with NI-I4CI, incubated with cationized ferritin for 15 min, and then fixed and processed 
to visualize Man6P receptors by indirect immunoperoxidase. In all three fields both ferritin molecules and DAB reaction product are found 
in large, dilated endosomes (en). A portion of one of the vacuoles in c is enlarged (d). Typically, these doubly labeled endosomes are 
of the multivesicular type because they contain internal vesicles (re). Ferritin is also seen in a coated pit (cp) at the cell surface and in 
endocytic vesicles (ve) which do not contain immunodetectable receptors. Note that immunoreactive receptors are depleted from Golgi 
cisternae (Gc). Bars, 0.1 lain. 
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Figure 5. Redistribution of Man6P receptors at various intervals after removing NI-I4CI. Cells were treated for 3 h with NI-hCI, after 
which they were incubated in NI-hCl-free medium and then fixed and labeled with anti-receptor IgG detected with rhodamine-conjugated 
anti-rabbit IgG. By 5 min atter removing NI-hCI (a and a'), many cells have a "Golgi" staining pattern (arrow), indicating receptors have 
already recycled back to the Golgi region. By 15 rain, a greater number of cells showed a Golgi staining pattern (b and b') and by 30 min 
(c and c') the pattern of staining was indistinguishable from untreated cells (Fig. 1 a). However, note that the cells remained vacuolated 
up to 30 min (a'-c'). Bar, 10 Ixm. 

plasm (inset, Fig. 6 a). These observations demonstrate that 
upon removal of NI-hC1, the receptors return to the stacked 
Golgi cisternae and suggest that their return is via coated 
vesicles. 

Depletion of Man6P Receptors from the Golgi Complex 
after NH4CI Treatment Is Slow 

To determine the time required for their depletion from the 
Golgi complex and delivery to endosomes, the distribution 
of Man6P receptors was followed with time after NI-hCI 
addition by determining the percentage of cells with primar- 
ily a "Golgi" signal versus those with primarily a "vacuole" 
(endosome) signal (Fig. 7). The results demonstrate that 
there is a lag phase o f * 3 0  min, after which there is a gradual 
increase in the number of "vacuole'-stained cells. The con- 
version of the cell population from a "Golgi"- to an endo- 
some-type staining pattern was slow (t,~ = 75 min): >90% 
of the cells still showed a "Golgi" staining pattern 1 h after 
addition of NI-hCI. After 2 h, '~35% of the cells still 
showed this pattern, but by 3 h few, if any, did. By this time 
receptors were mainly associated with dilated endosomes 
(see also Fig. 1 c). The pattern remained the same in ceils 
treated with weak bases for up to 15 h (data not shown). 

Recycling of Man6P Receptors from Endosomes to 
Golgi Cisternae after NH4CI Washout Is Rapid 

The time required for Man6P receptors to be depleted from 
endosomes and returned to the Golgi region after NI-hCI 

removal was similarly determined by scoring receptor- 
labeled cells by IF as "Golgi'- or "vacuole'-stained (Fig. 7). 
Within 5-10 min after washout, ~50% of the cells already 
showed a "Golgi" pattern of receptor staining (see Fig. 5), 
and by 30 min *90% of the cells showed predominantly a 
"G61gi" pattern with a concomitant decrease in those with a 
"vacuole'-staining pattern (Fig. 7). Thus, the conversion 
of "vacuole"- to "Golgi'-staining occurred rapidly (t,~ = 10 
min). Although qualitatively similar results were obtained 
after recovery from chloroquine treatment, data obtained 
with this drug were more variable, and the cells recovered 
somewhat more slowly. However, after removal of both of 
these agents receptors rapidly returned to the Golgi region 
in the majority of cells. 

Ligand Dissociation Triggers the Recycling of Man6P 
Receptors to the Golgi Complex 

The recycling of receptors that occurs after recovery from 
treatment with lysosomotropic weak bases might be attrib- 
utable to a direct effect of low pH on the receptor, or alterna- 
tively, to the dissociation of lysosomal enzymes from their 
receptors that occurs with the re-establishment of an acidic, 
intra-endosomal environment. To determine the effect of re- 
ceptor occupancy on recycling, Man6P, a competitive inhibi- 
tor of receptor-enzyme binding (18), was added directly to 
the culture media of NI-hCl-treated cells with the expecta- 
tion that Man6P (like lucifer yellow and cationized ferritin) 
would be internalized by endocytosis and delivered to endo- 
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Figure 6. Immunoperoxidase localization of Man6P receptors in Clone 9 cells allowed to recover from NI-hC1 treatment. By 5 rain after 
removing NH4CI from the medium (a), receptors can be detected in two of the Golgi cisternae (Gc), indicating that they have already 
recycled back to the Golgi complex. Receptors can also be detected in vesicles with clathrin-like coats (cv) and vesicular protrusions appar- 
ently budding from vacuolated endosomes (arrowhead), as shown in the inset. After 1 h of recovery (b and c), receptors are found almost 
exclusively in the stacked Golgi cisternae. In c, two to three cisternae contain immunodetectable receptors. Little if any reaction product 
was seen in multivesicular bodies (mv) present here. In these experiments, cycloheximide was added to the culture medium after removing 
NH4C1 to prevent synthesis of new receptors. Bars, 0.2 ~tm. 

somes where it would cause dissociation of lysosomal en- 
zymes from their receptors. After 1 h incubation with 
50 mM Man6P, the cells remain vacuolated (Fig. 8 b'), but 
Man6P receptors could be detected by IF in the Golgi region 
of many cells (Fig. 8 b). The staining pattern resembled that 
seen when cells were merely washed free of weak base (see 
Fig. 5, b and c). 

When NI-hCl-treated cells were similarly incubated in 
the presence of 50 mM ManlP or 50 mM Glu6P (Figs. 8, 

c and c'), sugars that do not inhibit the binding of lysosomal 
enzymes to Man6P receptors, no changes in the distribution 
of the receptor were detected. 

Electron microscopy confirmed that in NI-hCl-treated 
cells incubated for 1 h in the presence of Man6P, the recep- 
tors reappeared in Golgi cisternae (Fig. 9 a). During this. 
period, images of endosomes with budding coated pits were 
often seen (Fig. 9 b) similar to those observed in cells washed 
free of weak bases (inset, Fig. 6 a). Also, endosomes with 
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Figure 7. Graph expressing the percent of"Golgi'-versus "vacuolC- 
stained Cone 9 cells at various times after NI-hCI addition and 
removal (arrows). At the time points indicated, cells were fixed, 
stained by immunofluorescence for Man6P receptors, and scored 
as being either "Golgi"- (1) or "vacuole"- ([]) stained (see Fig. 1 
for examples). In controls, >95 % of the cells are "Golgi'-stained. 
When NH4CI was added, after a lag of '~30 rain, there was a 
gradual increase in the number of "vacuolC-stained cells over 3 h 
at which time virtually no "Golgi'-stained cells were seen (t~ = 
75 rain). After NI-hCI removal there was a very rapid increase in 
the number of "Golgi'-stained cells and a concomitant loss of 
"vacuole'-stained cells, indicating that MantP receptors rapidly 
recycle (t~ = 10 min) back to the Golgi complex. 

protruding, tail-like extensions containing reaction product 
were commonly seen (Fig. 9 c). Thus, the findings after 
Man6P addition were the same as in cells placed in weak 
base-free medium except that the endosomes remained di- 

lated throughout the experiment (due to the continued pres- 
ence of NH4CI) and reversal occurred more slowly: return 
to a Golgi staining pattern required 1-3 h for completion. 

When the percent of NI-hCl-treated cells with "Golgi" 
staining was determined by IF 2 h after addition of sugars 
to the media, ,,o75 % of the cells showed this pattern with 
Man6P, whereas few cells (10-20 %) showed "Golgi" staining 
after incubation with ManlP or GIu6P (Fig. 10). These find- 
ings indicate that the reversal effect was specific for Man6P, 
and that the receptors remained trapped in the dilated endo- 
somes in cells incubated with ManlP or Glu6P. The simplest 
explanation of these results is that Man6P is delivered to en- 
dosomes by endocytosis and causes dissociation of lyso- 
somal enzymes from their receptors thereby allowing the 
receptors to recycle, via coated vesicles, back to the Golgi 
cisternae. The delivery of Man6P to endosomes probably oc- 
curs by fluid phase- or adsorptive (nonspecific) endocytosis 
rather than via 215-kD Man6P receptors because our IF 
results suggest that in Clone 9 cells (data not shown) as in 
human fibroblasts (27) the cell surface is depleted of recep- 
tors after chloroquine treatment. Also, recycling to the Golgi 
was concentration dependent as would be expected if uptake 
were by fluid phase pinocytosis: it was detected with 50 mM 
Man6P but not 5 mM Man6P (data not shown). Preliminary 
results obtained with acridine orange (a fluorescent dye that 
labels acidic compartments) indicate that the Man6P effect 
is not due to the re-acidification of endosomes (or lyso- 
somes) because no significant accumulation of the dye was 
detected in weak base-treated cells incubated with Man6P 
(data not shown). We conclude that ligand dissociation-not 
a pH effect-triggers the recycling of Man6P receptors. 

Figure 8. Effect of incubation in Man6P, a competitive inhibitor of lysosomal enzyme binding, on Man6P receptor recycling in Clone 9 
cells. (a and a') Cells treated with NH4C1 for 3 h, showing the typical "vacuolC-type (endosomal), MantP receptor, labeling pattern. (b 
and b') Similar NI-hCl-treated cells incubated with Man6P for 1 h. Although they remain heavily vacuolated (b'), most cells have a 
"Golgi"-type, receptor staining pattern (b) indicating that MantP receptors have recycled back to the Golgi complex. (c and c') NI-hCI- 
treated cells incubated for 1 h in Glu6E a sugar that does not inhibit the binding of lysosomal enzymes to the receptor. The staining pattern 
is the same as in a, indicating that there is no change in the distribution of Man6P receptors. Bar, 10 Ixm. 
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Figure 9. Immunoperoxidase localization of Man6P receptors in NI-hCl-treated Clone 9 cells incubated for 1 h with Man6P. Receptors 
are found mainly in Golgi cisternae (Gc), one of which is dilated, and associated vesicles (ve). Many of the multivesicular bodies (my) 
no longer contain detectable receptors. Endosomes with reactive coated pits (cp) or tail-like extensions (arrow in c) were often seen, suggest- 
ing that Man6P receptors are collected and concentrated in coated pits and/or tubular extensions for recycling back to the Golgi complex. 
Bars, 0.2 ~tm. 

Discussion 

In this paper we have studied the intraceUular traffic of 215- 
kD Man6P receptors for lysosomal enzymes taking advan- 
tage of our previous finding that treatment of cells with 
lysosomotropic weak bases results in the accumulation of 
receptors in dilated vacuoles, which form as a result of this 
treatment, and their depletion from Golgi cisternae (7). The 
main findings that have emerged are as follows: (a) the deliv- 
ery site where Man6P receptors with their bound lysosomal 
enzymes are trapped by weak base treatment has been 
identified as an endosome, not a lysosome; (b) after weak 
base removal Man6P receptors were demonstrated to recycle 
from endosomes to the Golgi complex and to do so very rap- 
idly; (c) evidence was obtained that coated vesicles serve as 
carriers for transport of recycling, unoccupied Man6P recep- 
tors back to the Golgi cisternae; and, (d) that Man6P recep- 
tor recycling is triggered by ligand dissociation. These 

findings provide new information on the intracellular itiner- 
ary of the 215-kD Man6P receptor and their cargo of newly 
synthesized lysosomal enzymes and have a bearing on the 
mode of formation of secondary lysosomes. 

Recently, many of the events that occur during the biosyn- 
thesis of lysosomal enzymes (15, 26, 28) and their targeting 
to lysosomes via Man6P receptors (11, 43) have been eluci- 
dated, and two different populations of Man6P receptors (215 
and 46 kD) have been described (30, 42). Little is known as 
yet about the distribution of the 46-kD receptor, but the 215- 
kD Man6P receptor (4, 7, 21) and lysosomal enzymes bear- 
ing the Man6P recognition marker (24, 47) have been shown 
to be concentrated in the Golgi complex where the sorting 
and packaging of newly synthesized lysosomal enzymes oc- 
curs (reviewed in references 11, 16, and 43). 

Our finding that the bulk of the immunore~ctive 215-kD 
Man6P receptors are trapped in endosomes after weak base 
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Figure 10. Effect of incubation in Man6P and other sugars on dis- 
tribution of Man6P receptors. Clone 9 cells were treated with 
NI-L,C1 for 3 h followed by either recovery in normal media for 1 h 
(WashouO, or incubated in the continuous presence of NI-L,CI with 
50 mM Man6P (NH, CI + M6P), ManlP (NH4CI + bliP), or 
Glu6P (NH, CI + G6P). They were then fixed, stained by IF for 
Man6P receptors, and the number of"Golgi"-stained cells was de- 
termined. A significant increase in the number of "Golgi'-stained 
cells is seen after removal or "washout" of NIL,el ('o90% of con- 
trol) or after addition of Man6P (,o75% of control) but not after 
addition of ManlP or Glu6P. In the presence of NI-hC1, recycling 
of Man6P receptors to the Golgi cisternae occurs only when Man6P 
is added. 

treatment suggests that at least some of the newly synthesized 
acid hydrolases are delivered to endosomes and implies that 
secondary lysosomes can arise from endosomes. 

According to the original lysosome concept (13), a primary 
lysosome contains only newly synthesized lysosomal en- 
zymes derived from the Golgi complex, whereas a sec- 
ondary lysosome contains both acid hydrolases and appro- 
priate substrates (i.e., ingested materials undergoing deg- 
radation). Thus, by these definitions the coated vesicle 
carder is a primary lysosome, and an endosome (which reg- 
ularly contains substrates taken up by endocytosis) becomes 
converted into a secondary lysosome upon fusion with 
coated vesicles bearing receptor-bound lysosomal enzymes. 
There is general agreement at present (16) that in most cell 
types, coated vesicles serve to transport newly synthesized 
acid hydrolases from some part of the Golgi complex to their 
delivery site of action. It is usually assumed that the delivery 
site for lysosomal enzymes is a secondary lysosome, al- 
though there is little or no direct evidence on this point. Our 
results suggest that this is not the case because in NI-I4C1- 
treated Clone 9 hepatocytes, the target organelle with which 
coated vesicles serving as primary lysosomes fuse is an en- 
dosome. Based on our results, we envisage the occurrence 
of the following sequence of events: A coated vesicle carry- 
ing newly synthesized lysosomal enzyme precursors bound 
to Man6P receptors fuses with an endosome, the lysosomal 
enzymes dissociate from their receptors due to the low pH 
(,,o5-5.5) environment encountered there (20, 34), leaving 
the immature precursor enzymes free in the lumen (where 
they are proteolytically converted to their mature forms [15, 

28]), and allowing the receptors to recycle back to the Golgi 
complex. Our observations suggest that to convert an endo- 
some into a secondary lysosome an additional step is re- 
quired: the endosomal membrane must be replaced with a 
lysosomal membrane, since the two appear to be different 
(14, 33, 39). NI-hCI treatment appears to interfere with this 
conversion, which could be accomplished either by fusion 
with pre-existing secondary lysosomes (followed by removal 
of the endosomal membrane components via the pinching off 
of small vesicles), or by replacement of the endosome-type 
membrane with lysosome-type membrane, e.g., by fusion of 
multiple small vesicles composed of lysosomal membrane 
components with the endosome. 

Various points of view have been put forth concerning how 
endosomes are related to lysosomes. Our data, indicating 
that primary lysosomes fuse with endosomes, favor the so- 
called "maturation model" alternative put forth by Helenius 
et al. (29), which states that endosomes are not permanent 
structures but are intermediates on their way to becoming 
lysosomes. 

A number of findings are consistent with the above con- 
clusions: (a) Electron microscopic studies in which acid 
phosphatase was used as a lysosomal marker have demon- 
strated that multivesicular bodies, a type of endosome, are 
initially acid phosphatase-negative, but after incorporation 
of tracers by endocytosis gradually become acid phospha- 
tase-positive (19, 36, 44). (b) Recent studies by Geuze et al. 
(22) have confirmed that Man6P receptors accumulate in the 
swollen vacuoles of NI-L, Cl-treated cells and have demon- 
strated by double immunogold labeling that lysosomal en- 
zymes are associated with the trapped receptors. (c) By cell 
fractionation lysosomes from human fibroblasts can be sepa- 
rated into two populations-a high density fraction that typi- 
cally contains most of the lysosomal enzyme activity and is 
composed of structures that resemble electron-dense lyso- 
somes, and a low density fraction that contains a mixture of 
organelles including acid phosphatase-positive multivesicu- 
lar bodies (40). (d) When fibroblasts were incubated with 
endocytic tracers, the internalized molecules were found ini- 
tially in the low density fraction and later appeared in the 
high density fraction, both with lysosomal enzyme activity 
(35). (e) Newly synthesized, but proteolytically cleaved, 
lysosomal enzymes first appeared in low density fractions 
and were later chased into high density fractions which con- 
tained most of the lysosomal enzyme activity in several cell 
types (3, 23, 50). (f) In Chinese hamster ovary cells, Man6P 
receptors were found predominantly in mixed Golgi/endo- 
some-enriched fractions, whereas lysosome fractions had al- 
most no detectable receptor activity (41). All of these data 
can be explained by assuming that Man6P receptors with 
their bound, newly synthesized lysosomal enzymes are de- 
livered to endosomes, which are thereby transformed into 
secondary lysosomes. More specifically, endosomes, or 
some subpopulation of endosomes, represent the junction 
point between the biosynthetic pathway for newly synthe- 
sized lysosomal enzymes (215-kD Man6P receptor-medi- 
ated) and the endocytic pathways to lysosomes. 

Data on the turnover of Man6P receptors indicate their t,~ 
---20-24 h, suggesting that the receptors are reused for more 
than one round of lysosomal enzyme transport (10, 25, 41). 
The data presented here provide evidence that Man6P recep- 
tors do in fact cycle intracellularly, from the Golgi complex 
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to endosomes and back again. Based on our analysis it is 
clear that it takes the receptor population as a whole longer 
to travel from the Golgi complex to endosomes (t,~ = 75 min 
for the bulk of the population) than to recycle from endo- 
somes back to the Golgi complex (t,~ = 10 min). The rea- 
son for the differences in the apparent transit time to and 
from endosomes is not apparent, however, it should be kept 
in mind that the measurement of the time spent in the Golgi- 
to-endosome leg actually represents the cumulative time it 
takes for the pool of Golgi receptors (as well as those return- 
ing from endosomes) to become loaded with incoming, new- 
ly synthesized lysosomal enzymes, as well as the time re- 
quired for their transport to endosomes. By contrast, on the 
return leg, unloading and transit are synchronized; removal 
of lysosomotropic weak bases causes a rapid drop in intra- 
endosomal pH which triggers dissociation of lysosomal en- 
zymes simultaneously from the entire population of trapped 
receptors. Assuming that the maximum time it takes for a 
round trip time is •85 min, based on a receptor half-life of 
,,o24 h in Clone 9 cells (unpublished data), a single Man6P 
receptor could make at least 18-20 round trips. Recycling of 
cell surface receptors, such as those for low density lipopro- 
teins (1), transferrin (12, 32), and asialoglycoproteins (2, 45, 
48, 49), is well documented; however, the Man6P receptor 
is the only known example of a receptor that performs its 
main function while cycling largely or exclusively (in cell 
types that lack surface receptors [4]) in transport between 
intracellular compartments. 

It should be pointed out that Clone 9 cells, like human 
fibroblasts (11, 43), have cell surface Man6P receptors that 
can mediate the uptake of the appropriate ligands, and these 
surface receptors exchange with those in the intracellular 
pool. However, in Clone 9 hepatocytes (unpublished data) as 
well as many other cell types (11, 17, 43), surface receptors 
normally account for only *10% of the total receptors, with 
the remaining 90% being intracellular. Moreover, we have 
observed that in Clone 9 cells, as in human fibroblasts (27), 
Man6P receptors become depleted from the cell surface 
and are trapped intracellularly after chloroquine or NI-LCI 
treatment. Thus, it follows that the contribution of cell sur- 
face receptors to the intracellular recycling seen here by IF 
must be minimal, i.e., <10% of the total signal. 

A key finding was that when Man6P, a competitive inhibi- 
tor of lysosomal enzyme binding to Man6P receptors, was 
added to the culture medium of living, NI-hCl-treated cells, 
it could induce the recycling of receptors back to the Golgi 
complex. This is most readily explained by the fluid phase 
pinocytic uptake of the sugar into endosomes where it causes 
dissociation of lysosomal enzymes from their receptors. Ap- 
parently, Man6P can displace lysosomal enzymes while at 
the same time allowing the receptors to behave as though 
they are unoccupied (i.e., to recycle). This is in keeping 
with previous work indicating that monvalent ligands (i.e., 
Man6P) can competitively dissociate pre-bound, multivalent 
ligands (i.e., lysosomal enzymes with Man6P residues), but 
unlike the latter, they bind with low affinity to Man6P recep- 
tors and do not induce the pinocytosis of surface receptors 
(18). From these results, along with those obtained after 
NI-hCI removal, we conclude that ligand dissociation is all 
that is required for triggering the recycling of unoccupied 
Man6P receptors back to the Golgi complex. Previously, we 
have obtained evidence that ligand loading is important in 

triggering receptor movement from Golgi cisternae to endo- 
somes (5, 7). These observations imply that (a) structural in- 
formation must reside within Man6P receptors which serves 
to target them to endosomes when occupied and to the Golgi 
complex when unoccupied and (b) ligand binding must in- 
duce appropriate changes in the receptor which initiate these 
events. 

During recovery from NI-I4CI treatment, coated vesicles 
bearing Man6P receptors were often observed budding from 
endosomes, suggesting that they serve as the carriers for 
transporting unoccupied receptors to the Golgi complex. 
Rome and co-workers (8, 9) have found both occupied and 
unoccupied 215-kD Man6P receptors in coated vesicle- 
enriched fractions from rat brain and liver which probably 
correspond, respectively, to those traveling from the Golgi 
complex to endosomes and those traveling from endosomes 
back to the Golgi complex, as well as some derived from the 
cell surface. 

In summary, the data obtained provide evidence that the 
215-kD Man6P receptor, which functions in the sorting out 
and transport of newly synthesized lysosomal enzymes, cy- 
cles between the Golgi complex and endosomes, and that en- 
dosomes represent the junction point where the biosynthetic 
pathway for lysosomal enzymes (Man6P receptor-mediated) 
and endocytic pathway to lysosomes converge. 
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