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Abstract: In developmental biology, transcription factors are involved in regulating the 
process of neural development, controlling the differentiation of nerve cells, and affecting the 
normal functioning of neural circuits. Transcription factors regulate the expression of multi-
ple genes at the same time and have become a key gene category that is recognized to be 
disrupted in neurodevelopmental disorders such as autism spectrum disorders. This paper 
briefly introduces the expression and role of PAX2 in neurodevelopment and discusses the 
neurodevelopmental disorders associated with Pax2 mutations and its possible mechanism. 
Firstly, mutations in the human Pax2 gene are associated with abnormalities in multiple 
systems which can result in neurodevelopmental disorders such as intellectual disability, 
epilepsy and autism spectrum disorders. Secondly, the structure of Pax2 gene and PAX2 
protein, as well as the function of Pax2 gene in neural development, was discussed. Finally, 
a diagram of the PAX2 protein regulatory network was made and a possible molecular 
mechanism of Pax2 mutations leading to neurodevelopmental disorders from the perspec-
tives of developmental process and protein function was proposed. 
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Introduction
Transcription factors (TFs) play an important role in the developing and adult 
mammalian brain. In the early stage of embryonic development, TFs determine 
the expression and relative abundance of guide molecules, mediating progenitor cell 
differentiation into different types of nerve cells. In the adult stage, TFs are still 
involved in neurogenesis. The latest research suggests that TFs are responsible for 
the production of glutamatergic neurons in the adult dentate gyrus of mice.1 

Dysregulation of TFs has been implicated in a number of diseases, including 
neurodevelopmental disorders2–4 and neurodegenerative diseases.5,6 Using viral 
tools to deliver certain TFs in the mouse brain to reduce the expression of key 
genes at the transcription level can rescue neuronal damage.4

Here, we focus on paired box 2 (PAX2), a member of the paired box (PAX) 
transcription factor family expressed mainly in the kidney and central nervous system. 
The crucial role of the Pax2 genes in brain development and function have become 
apparent in recent reports on Pax2-related diseases in a Japanese population describing 
that the patients with Pax2 mutations exhibit developmental abnormalities, including 
autism spectrum disorders (ASDs), language delay, or mental retardation.7,8 Emerging 
evidence demonstrates that PAX2 proteins execute important functions during central 
nervous system development and in adult neurogenesis.9–15 However, the molecular 
mechanisms required to establish and maintain these functional connections are not 
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yet fully understood. This review examines the role of Pax2 
in brain development and the clinical phenotypes related to 
neurological aspects in patients with Pax2 mutation, focus-
ing on the expression patterns of PAX2 at different stages. 
A better understanding of these factors will aid in the devel-
opment of novel treatments to prevent and/or treat diseases 
associated with Pax2 mutations.

Pax2-Related Neurodevelopmental 
Disorders
Developmental biology studies have confirmed that the reg-
ulation of transcription levels is involved in the process of 
neurodevelopment, and TFs has become a key gene category 
that is recognized to be disrupted in neurodevelopmental 
disorders in the form of a single gene.2 For example, Pax5 
and Pax6 in the same gene family as the Pax2 were reported 
by exome sequencing research to be two candidate risk 
genes for ASDs,16–18 which is a neurodevelopmental disor-
der characterized by continuous social interaction and social 
communication skills deficits and restricted and repetitive 
behavior patterns, interests or activities.19

Pax2-related diseases are inherited in an autosomal 
dominant manner. Patients with Pax2 mutations show renal 
and eye abnormalities, such as renal dysplasia or optic nerve 
coloboma,20–22 as well as neurodevelopmental disorders 
such as ASDs, intellectual disability, epilepsy and develop-
mental delay (Figure 1; Table 1), 7,8,23–30 According to the 
Leiden Open Variation Database (www.lovd.nl/Pax2), the 
total number of public variants of the Pax2 gene currently 

reported is 334, including deletions, insertions, substitutions 
and duplications of cDNA reference sequences, these varia-
tions are mostly located in exons 2, 3, 7, and 8. The most 
frequently occurring mutation described is c.76dup of exon 
2 (previously called c.619insG), which introduces a stop 
codon 27 amino acids downstream from the homoguanine 
tract. Nevertheless, the molecular mechanism of how these 
mutations affect protein function and lead to neurodevelop-
mental disorders is not clear. Understanding the expression 
and function of the Pax2 gene may give some clues.

Nuclear Transcription Factor PAX2
Pax was first isolated and identified through its functions 
in the Drosophila segmentation gene.31 Based on sequence 
homology with the Drosophila paired box, nine murine 
genes containing the paired box have since been isolated, 
termed Pax1 to Pax9, which together constitute the Pax 
gene family.32 Throughout the evolutionary process, the 
Pax gene family has remained highly conserved among 
different organisms, such as humans, mice, zebrafish33 and 
chickens.34 The encoded nuclear TFs have a similar struc-
ture, with a DNA binding domain of 128 amino acids 
(paired domain, PD) at the amino-terminal and 
a transactivation domain (TD) at the carboxyl-terminal. 
The protein contains a conserved octapeptide (OP) motif 
and a partial or full homeodomain (HD).35 According to 
the protein structure, the Pax gene family is divided into 
four subgroups (Pax1 and Pax9, Pax2, Pax5 and Pax8; 
Pax3 and Pax7; Pax4 and Pax6).36 The Pax2 gene is 

Figure 1 Pax2 mutation spectrum (NM_003987.5) and the structure of protein in human. (A) Pax2 mutation spectrum. Mutations identified in patients with neurodevelop-
ment disorders are indicated with red characters, most common mutation identified in patients with renal and eye abnormalities is in blue. (B) PAX2 protein contains 
a DNA binding domain of 128 amino acids (paired domain, PD, yellow) at the amino-terminal and a transactivation domain (TD, Orange) at the carboxyl-terminal, and 
a conserved octapeptide (OP, purple) motif and a homeodomain (HD, brown). The exons 1–4 encode the PD, exon 5 encodes the OP, and exons 8–11 encode the TD of the 
PAX2 protein.
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a member of the second subgroup, located on mouse 
chromosome 19 and human chromosome 10q24. In 
humans, Pax2 consists of 12 exons, with a total length of 
approximately 70 kb, exons 1–4 encode the PD, exon 5 
encodes the OP sequence, and exons 8–11 encode the TD 
of the PAX2 protein (Figure 1). Mutation or deletion of the 
OP leads to increased transactivation.37 For example, the 
deletion of cytosine in exon 5 of patient 13 causes 
increased gene expression and exhibits seizures 
(Table 1). The insertion of guanine in exon 2 of patients 
3–6, which may cause premature termination of transcrip-
tion and change the DNA binding function of PD,21 result-
ing in insufficient PAX2 haplotypes, affecting protein 
function, and may cause patients to exhibit developmental 
delays and intellectual disability. While Pax2 consists of 
10 exons spanning approximately 91.7 kb in mice, the 
corresponding translated peptide sequences of human and 
mouse exon 6 are identical. Studies have shown that the 
mouse Pax2 gene has 63–67% homology with Drosophila 
and 69–72% homology with the human gene.38

Alternative splicing is an important mechanism by 
which eukaryotic genes express a variety of complex pro-
teins. Alternative splicing of PAX2 mRNAs lead to four 
isoforms in human and mice, including PAX2a, PAX2b, 
PAX2c, and PAX2d.39–41 PAX2a and PAX2b were first 
identified in mice, and PAX2c was subsequently discov-
ered in human and mouse kidney. Neither PAX2b nor 
PAX2c contain exon 6. PAX2c contains an added exon 

10 containing 83 bp, causing an exon 11 reading frame 
migration that leads to the early termination of transcrip-
tion. PAX2d was also found in the human kidney cDNA 
library. In this isoform, the first 19 bp of exon 12 are 
deleted, resulting in the stop codon of the PAX2d tran-
script being 64 bp downstream of the conventional stop 
codon. This alternative splicing generates a new reading 
frame and an extended coding region at the carboxyl 
terminus, which is widely conserved between human and 
mice.

Pax2 Gene and Neural 
Development
Some studies on rodents and human embryos have deter-
mined the expression pattern of PAX2 protein in the devel-
opmental stage, and the results indicate that expression of 
the PAX2 protein in the spinal cord and brain during 
human embryonic development and the description of the 
role of PAX2 in rodent neurogenesis are very homologous. 
Pax2 is involved in the early development of mouse 
embryos, it is expressed in the two borders of the neural 
plate at E7.5,42 then, neural plate folds to form the neural 
groove and then closes to generate the neural tube.43 PAX2 
is expressed during the development of the neural plate 
into the neural tube, the neural tube is subdivided into the 
forebrain, midbrain, hindbrain, and spinal cord.44 

Subsequently, PAX2 is expressed in the forebrain,45 mid-
brain-hindbrain boundary,46 hypothalamus, spinal cord,47 

Table 1 List of Pax2 Variants in Neurodevelopmental Disorders

Patient Sex Exon DNA Change (cDNA) Protein Phenotype Reference

1 M 2 c.68delT p.Leu23fs Growth retardation [22]
2 F 2 c.76delG p.Val26fs Developmental delay; Intellectual disability; 

Microcephaly

[24]

3 M 2 c.76dup p.Val26GlyfsTer28 Autism spectrum disorder [7]
4 F 2 c.76dup p.Val26GlyfsTer28 Hydrocephalus resulting from a Chiari 

malformation type 1

[28]

5 M 2 c.76dup p.Val26GlyfsTer28 Developmental delay; Delayed myelination [8]
6 M 2 c.76dup p.Val26GlyfsTer28 Moderately intellectual disability; Microcephalic [27]

7 M 2 c.129–150del22 p.Glu43fs Seizures
8 F 2 c.129–150del22 p.Glu43fs Seizures; Abnormal EEG [22]

9 M 2 c.129–150del22 p.Glu43fs Intellectual disability

11 M 3 c.343C>T p.Arg115Ter Growth retardation [24]
10 M 3 c.392delG p.Pro130His Intellectual disability [23]

12 M 4 c.497–2A>G splice site Autism spectrum disorder [7]

13 M 5 c.561delC p.Asn188fs Seizures [26]
14 F – Long arm deletion on 

chromosome 10

– Inadequate psychomotor development [29]
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and cerebellum,48 The best studied brain areas in relation 
to Pax2 are the midbrain-hindbrain, spinal cord, and the 
cerebellum. The specific function of Pax2 in the hypotha-
lamus is still unclear. The gene dosage of Pax2 and Pax5 
in the same subgroup is vital for the function of the 
organizing center at the midbrain-hindbrain boundary.49 

The Pax2 mutant phenotype is strongly influenced by the 
genetic background of the mouse strain in which it is 
analyzed. In the C3H/He strain, the hindbrain and cerebel-
lum were completely absent, while in the C57BL/6 strain, 
brain development was almost normal.50,51 In Pax2 and 
Pax5 double mutant embryos, the midbrain and hindbrain 
and cerebellum are absent, however, mutations in Pax2 
gene alone do not necessarily affect the production of 
abnormal phenotypes., suggesting that Pax2 and Pax5 
compensate for each other.52

During later embryonic stages (maintenance phase), 
Pax2, Wnt1 and Fgf8 work together to maintain the mid-
brain-hindbrain boundary function.49 In the midbrain, the 
Pax2 expression domain is the source of midbrain dopami-
nergic neurons.53,54 In the spinal cord and cerebellum, the 
Pax2 gene was found to be closely related to GABAergic 
neurons.55 GABAergic interneurons derived from PAX2- 
positive cells expressed in the cerebellar parenchyma at 
E13.5 subsequently proliferated to produce different types 
of inhibitory interneurons, including Golgi and Lugaro cells 
in the granular layer and basket and stellate cells in the 
molecular layer.56,57 Studies have shown that PAX2 is 
expressed in newborn GABAergic neurons on the dorsal 
spinal cord and is considered a key marker of GABAergic 
neurons.47 PAX2 acts together with other transcription fac-
tors, PTF1A, PRDM13 and LBX1, to participate in the 
differentiation of GABA precursor neurons and promote 
the fate of GABAergic neurons,58–61 maintaining continu-
ous expression in GABAergic neurons in adult rats.15 

A recent study also concluded that PAX2 is an effective 
inhibitor of the expression of the Purkinje cell marker 
FOXP2 and the Purkinje cell differentiation program, and 
its expression seems to induce the differentiation program 
characteristics of inhibitory interneurons.62 In our recent 
research, using CRISPR/Cas9 technology, a Pax2 heterozy-
gous gene deletion mouse (Pax2± KO mice) was con-
structed. The results of autism-related behavioral tests 
showed that Pax2± KO mice had significantly increased 
self-grooming behavior.63 Further study to explore the reg-
ulatory mechanism of Pax2 gene deletion leading to autism- 
like behavior will help to understand the pathogenesis of 
Pax2-related diseases.

Excitation-inhibitory (E-I) imbalance is considered to 
be a characteristic of various neurodevelopmental disor-
ders. Large-scale exome sequencing results have revealed 
that risk genes are enriched in the excitatory and inhibitory 
neuron lineages.64 GABA is a major inhibitory neurotrans-
mitter widely distributed in the brain and plays an impor-
tant role in maintaining E-I balance.65–68 It has been 
reported that GABA or GABA receptor levels in multiple 
brain regions of children or adults with ASDs are signifi-
cantly reduced.69–72 Exome sequencing has demonstrated 
that mutations in the gene that encodes the GABAA 
receptor subunit disrupt GABA transmission in epilepsy 
and in people with intellectual disabilities.73–76 Pax2 reg-
ulates the cell fate of GABAergic precursor neurons dur-
ing the development of the cerebellum and spinal cord. 
Mutation or deletion of Pax2 may lead to impaired tran-
scription regulation, altered GABA levels in the central 
nervous system, impaired synaptic E-I balance, and neural 
circuit abnormalities resulting in neurodevelopmental dis-
orders (Figure 2).

Transcriptional Networks 
Associated with PAX2
The PAX2 recognizes its target gene through the DNA 
binding function of the pairing domain. Transcription 
ability is determined by the C-terminal fragment module, 
which consists of an activation sequence and an inhibitor 
sequence.77 Therefore, the PAX2 transcription factor acts 
as both a transcriptional activator and a repressor. The 
downstream expansion target genes and binding genes of 
PAX2 have been gradually discovered (Figure 3). It has 
been reported that GDNF is the target gene of PAX2 in 
medulloblastoma.78 The complex of transforming factors 
EYA1 and PAX2 upregulates Six2 and GDNF, which 
was identified by cDNA microarray analysis. The five 
genes restricted by PAX2 in the midbrain-hindbrain 
boundary are En2, Brn1, Sef, Tapp1 and Ncrms.79 

PAX2 activates these genes to control the development 
of the midbrain and cerebellum. Among them, En2 and 
Brn1 are risk genes for ASDs;80–82 A recent study 
revealed that PAX2 induces the expression of cyclin 
D1 by activating AP-1 and promotes the proliferation 
of colon cancer cells;83 PAX2 activates WNT4 during 
the development of mammals expression.84 At the same 
time, PAX2 is also regulated by upstream transcription 
factors. PAX2 is the direct transcription target of P53;85 

the tumor suppressor MENIN inhibits PAX2 through 
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WT1;86 ASH2L participates in the promotion of endo-
metrial cancer progression by upregulating transcription 
of PAX2.87 During early neurogenesis, PRDM13 regu-
lates and suppresses PAX2, a neuron-specific factor in 
the neuronal lineage. PAX2 binding sites have also been 

continuously discovered, including IL-5, PTIP, EYAL, 
LIM1, PLAC8.87,88 We speculate that Pax2 mutations 
may affect some factors in the transcriptional network, 
resulting in abnormal development of the midbrain and 
hindbrain leading to neurodevelopmental disorders.

Figure 2 A possible mechanism by which Pax2 mutations leads to neurodevelopmental disorders. On the one hand, Pax2 gene mutations affect the normal formation of the 
midbrain and hindbrain boundary leading to neurodevelopmental disorders, such as autism spectrum disorders. On the other hand, Pax2 gene disrupts the excitation- 
inhibitory (E-I) balance in the brain leading to neurodevelopmental disorders by regulating the cell fate of GABAergic interneurons.

Figure 3 PAX2-associated transcriptional networks and PAX2-binding proteins. As a gene encoded transcription factor, PAX2 is not only regulated by upstream 
transcription factors, but also can activate or inhibit the expression of downstream genes. +: activate; -: inhibit.
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Conclusion
In the nervous system, the PAX2 protein participates in 
the formation of the mid- hindbrain boundary during 
development, regulates fate determination of precursor 
neurons, and retains expression in mature cells. 
However, the specific molecular mechanism of Pax2 
regulation remains unclear. Does Pax2 continue to reg-
ulate the fate of inhibitory interneurons in the cerebral 
cortex and other brain regions after development? Which 
downstream target genes does Pax2 specifically regulate, 
and how do they function? These questions can be 
addressed using the latest single-cell transcriptome 
sequencing technology. Patients with Pax2 mutations 
exhibit neurodevelopmental disorders, but it is unclear 
which neurodevelopmental processes affected. The con-
struction of Pax2 conditional gene knockout mice may 
help to further clarify the pathogenesis of neurodevelop-
mental disorders in patients with Pax2 mutations.
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