
Serial co-expression analysis of host factors from SARS-CoV viruses highly 

converges with former high-throughput screenings and proposes key 

regulators and co-option of cellular pathways 

Antonio J. Pérez-Pulido1,*, Gualberto Asencio-Cortés, Ana M. Brokate-Llanos1, Gloria Brea-

Calvo3,4, Rosario Rodríguez-Griñolo5, Andrés Garzón1,*, Manuel J. Muñoz1 

1 Centro Andaluz de Biologia del Desarrollo (CABD, UPO-CSIC-JA). Facultad de Ciencias 

Experimentales (Área de Genética), Universidad Pablo de Olavide, 41013, Sevilla, Spain 

2 Data Science & Big Data Lab, Universidad Pablo de Olavide, 41013, Sevilla, Spain 

3 Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013, Sevilla, 

Spain  

4 CIBERER, Instituto de Salud Carlos III, 28000, Madrid, Spain 

5 Dpto. de Economía, Métodos Cuantitativos e Historia Económica. Universidad Pablo de Olavide, 

41013 Sevilla, Spain 

* To whom correspondence should be addressed. Tel: +34 952 348 652; email: ajperez@upo.es; 

agarvil@upo.es 

Authors 

• A.J.P. (ORCID: 0000-0003-3343-2822) – ajperez@upo.es 

• G.A. (ORCID: 0000-0003-0874-1826) – guaasecor@upo.es 

• A.M.B. (ORCID: 0000-0003-1715-8579) – ambrolla@upo.es 

• G.B. (ORCID: 0000-0001-5536-6868) – gbrecal@upo.es 

• R.R. (ORCID: 0000-0002-3312-0848) – mrrodgri@upo.es 

• A.G. (ORCID: 0000-0003-4299-7198) – agarvil@upo.es 

• M.J.M. (ORCID: 0000-0002-0111-1541) – mmunrui@upo.es 

Abstract  

The current genomics era is bringing an unprecedented growth in the amount of gene 

expression data, only comparable to the exponential growth of sequences in databases 

during the last decades. This data now allows the design of secondary analyses that take 

advantage of this information to create new knowledge through specific computational 

approaches. One of these feasible analyses is the evaluation of the expression level for a 

gene through a series of different conditions or cell types. Based on this idea, we have 

developed ASACO, Automatic and Serial Analysis of CO-expression, which performs 

expression profiles for a given gene along hundreds of normalized and heterogeneous 
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transcriptomics experiments and discover other genes that show either a similar or an 

inverse behavior. It might help to discover co-regulated genes, and even common 

transcriptional regulators in any biological model, including human diseases or microbial 

infections. The present SARS-CoV-2 pandemic is an opportunity to test this novel approach 

due to the wealth of data that is being generated, which could be used for validating results. 

In addition, new cell mechanisms identified could become new therapeutic targets. Thus, we 

have identified 35 host factors in the literature putatively involved in the infectious cycle of 

SARS-CoV and/or SARS-CoV-2 and searched for genes tightly co-expressed with them. We 

have found around 1900 co-expressed genes whose assigned functions are strongly related 

to viral cycles. Moreover, this set of genes heavily overlap with those identified by former 

laboratory high-throughput screenings (with p-value near 0). Some of these genes aim to 

cellular structures such as the stress granules, which could be essential for the virus 

replication and thereby could constitute potential targets in the current fight against the 

virus. Additionally, our results reveal a series of common transcription regulators, involved 

in immune and inflammatory responses, that might be key virus targets to induce the 

coordinated expression of SARS-CoV-2 host factors. All of this proves that ASACO can 

discover gene co-regulation networks with potential for proposing new genes, pathways and 

regulators participating in particular biological systems. 
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Highlights 

• ASACO identifies regulatory associations of genes using public transcriptomics data. 

• ASACO highlights new cell functions likely involved in the infection of coronavirus. 

• Comparison with high-throughput screenings validates candidates proposed by 

ASACO. 

• Genes co-expressed with host’s genes used by SARS-CoV-2 are related to stress 

granules. 

Introduction  

Genes are team players that rarely act in solitude but require the cooperation of others to 

carry out their physiological functions. Groups of genes are usually expressed together when 

necessary, under the conduction of regulatory proteins, conforming the so-called regulatory 

networks. In higher organisms, augmented complexity requires an increase in the number of 

biological functions. This is mainly achieved by expanding regulatory relationships rather 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2020. ; https://doi.org/10.1101/2020.07.28.225078doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225078
http://creativecommons.org/licenses/by-nc-nd/4.0/


than the number of participating genes (Long et al., 2016; Rogers and Bulyk, 2018). The 

combinatorial or regulatory activity of proteins on structural genes seem to account for the 

genetic plasticity required for development, organ functional diversity, responses to 

environmental changes and other emergent properties of multicellularity (Lobo, 2008; Spitz 

and Furlong, 2012). One gene might play different roles in different regulatory contexts, but it 

will always be accompanied by other genes involved in that function. We hypothesize that, 

even under this complex scenario, this regulatory linkage among proteins sharing biological 

functions and pathways can be brought to light by carefully analysing co-expression profiles 

from functional genomics and transcriptomic experiments.  

The genomics era is generating a wealth of information about gene expression in many 

different biological processes and experimental approaches. Although designed to address 

specific questions, genomic expression data (as those from microarrays or RNA-Seq 

experiments), can provide a huge amount of information regarding regulatory relationships, 

usable to address different unrelated problems. One of the main obstacles encountered 

when analysing data from different experimental sources is standardization. Lately, curated 

databases have been deployed to gather and normalize genomics experimental data. 

Expression Atlas is one of them (Papatheodorou et al., 2020). As of July 2020, it holds 

normalized data from 1403 human transcriptomics experiments. These data contain valuable 

information on regulatory relationships that can be exploited to gain insights into any human 

biological system.  

With all this in mind, we have devised a bioinformatics method based on an algorithm called 

Automatic and Serial Analysis of CO-expression (ASACO) that analyses information of 

multiple human transcriptomics experiments from Expression Atlas to predict novel 

regulators and functional partners of a given function. To challenge this algorithm, we have 

addressed the analysis of several known human proteins that are important to Severe Acute 

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection cycle and predicted new 

possible partners and regulators of these functions. The rationale behind this choice is the 

amount of experimental high-throughput genomic data, which is being produced because of 

the interest generated by the COVID-19 pandemics, providing an excellent opportunity to 

benchmark our in silico output. Moreover, we must also value the possibility of generating 

new knowledge on SARS-CoV-2 infection process. The virus infection cycle rests on the 

host’s physiological functions to take place, requiring the sequestration or co-option of 

multiple host factors. In the first place, it is clearly stated the general inhibition activity 

exerted by SARS viruses on host´s mRNAs translation (Kamitani et al., 2009; Thoms et al., 

2020). But also other aspects of the host physiology are used or modified by the virus, such 

as the general RNA metabolism, protein synthesis, cell cycle regulation, cell membrane 

dynamics, autophagy, apoptosis, unfolded protein response, MAP kinases, innate immunity 
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and inflammatory response (Fung and Liu, 2018; Sanche et al., 2020). The infection cycle 

heavily relies on tight interactions with the host endomembrane organelles. Coronaviruses 

enter the host cell by an endocytic mechanism involving the fusion between its coat 

membrane and the cell plasma membrane. This fusion is mediated by plasma membrane 

receptor recognition through the virus spike (S) protein (Belouzard et al., 2012; Boulant et 

al., 2015; Heald-Sargent and Gallagher, 2012). Moreover, interaction with endoplasmic 

reticulum-derived membrane structures is essential for gene expression and proper 

nucleocapsid formation. Both posttranslational modifications (Fung and Liu, 2018) and 

folding assistance by cell chaperones are important for correct virus functions (Fukushi et al., 

2012). Virus assembly takes place on the endoplasmic reticulum�Golgi intermediate 

compartment (ERGIC), where they are engulfed in membrane-bound vesicles to be finally 

secreted out of the host cell (Fung and Liu, 2019; Masters, 2006).  

Understanding the basis of interactions of these pathways is crucial to fight infection. 

Translatomics and proteomics analysis of the response to viral infection have recently 

revealed cellular functions possibly involved in the infection process (Bojkova et al., 2020). In 

the same way, interactomics using viral proteins as baits to find human proteins physically 

interacting with them, have also revealed possible new therapeutic targets (Gordon et al., 

2020). Even more complex network analysis combining protein-protein interactions and 

transcriptomics pointed to new potential targets as well (Yadi Zhou et al., 2020). It is also 

noteworthy a study made on SARS-CoV knocking down kinases by sRNAi treatment. This 

study highlighted cellular kinases that are important to SARS-CoV virus infection and 

possibly crucial for SARS-CoV-2 as well (de Wilde et al., 2015). Notably, not only the cellular 

but also the systemic response to the virus infection is important, and it seems to play a 

relevant role in SARS-CoV-2 infection as in many other viral cycles. Evidence is arising 

suggesting that SARS viruses are able to exploit the organism´s innate immune response on 

its own benefit, co-opting some components of the response, as stress granules and 

processing bodies (Fung et al., 2016; Moosa and Banerjee, 2020; Sola et al., 2011), and 

recruiting as host factors those genes co-expressed with the innate immune response (Pinto 

et al., 2020; Sungnak et al., 2020; Ziegler et al., 2020). This evidence stresses the necessity 

of research to a broader systemic landscape to explain, for instance, SARS-CoV-2 influence 

on the inflammatory response (Giamarellos-Bourboulis et al., 2020; Huang et al., 2020; 

Yonggang Zhou et al., 2020). 

To help identifying functional companions in regulatory networks for a given gene we have 

refined our algorithm to search for genes co-expressed with that initial gene along many 

unrelated transcriptomic experiments. We have applied this analysis to 35 human genes 

experimentally shown to play a role in SARS-CoV and/or SARS-CoV-2 infections. Here, we 

present the results of this test, compare with those from several experimental high-
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throughput genomic analysis and suggest some new functions possibly involved in SARS-

CoV-2 biology. 

  
Materials and methods 

Seed and expression data collecting 

We searched in PubMed for human genes involved in the infection cycle of SARS-CoV-2 

and SARS-CoV, and both the gene names and UniProtKB entry identifiers were collected. 

We called these genes as seeds. Then, we used the gene name in the Expression Atlas 

database to download the experiments where the seed was differentially expressed. This 

database provides 1352 standardized human transcriptomics experiments with a total of 

3744 comparisons of different biological conditions coming from published results 

(Papatheodorou et al., 2020). Then, we used a program written in Python language to get 

the expression matrices from all the considered experiments. These matrices contain the 

logarithm in base 2 of the fold change value (log2FC) for each gene within the experiments. 

We took the log2FC from all the genes with this value higher than 1 or lower than -1, and p-

value lower than 0.05, in at least one of the collected experiments, and created a matrix of 

log2FC with the genes and the experiments. Finally, the Pearson correlation coefficient was 

independently calculated with the expression profile, for all the experiments, between the 

seed and each of the other genes. 

ASACO algorithm 

The ASACO algorithm (Automatic and Serial Analysis of CO-expression) involves a 

methodology to select genes that share similar behavior in terms of expression with the 

seed. The algorithm is based on fold change signs, as it is described as follows. The 

procedure begins with the matrix of fold change values extracted from the experiments of the 

Expression Atlas database in which the seed appears with a fold change value. 

First, we only consider experiments where the absolute value of fold change for the seed is 

equal or higher than 1, in order to consider only experiments with significant expression 

changes. Let be ��  with 1 � � � � the fold change of the seed for the experiment j and m is 

the number of experiments after the above-mentioned removal. Therefore, ���� � 1, 	�: 1 �

� � �. 

The remaining genes which appears at least once in any of the experiments are considered 

to select co-expressed genes with the seed. Let be ���  the matrix of fold changes of those 

genes, with 1 � � �  and 1 � � � �. Specifically, let be ���  the fold change of the gene i in 

the experiment j, being n the number of genes. 
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The following metrics were defined for each gene �� . First, ��  is the proportion of fold 

changes of the gene �� that have the same sign than the seed in the same experiments. ��  

is defined as it is shown in Equation 1. It is assumed that the function sign() returns 1 if the 

sign of its operand is positive, and -1 otherwise. 

�� � �

�
� ∑ ������� � ���� � 1��

���      (1) 

In second place, �� is defined as the proportion of fold changes of the gene ��  that have 

distinct sign than the seed in the same experiments. �� is defined as it is shown in Equation 

2. 

�� � �

�
� ∑ ������� � ���� � �1��

���      (2) 

Then, �� is the proportion of experiments in which the gene ��  does not have any fold 

change annotated in the database. �� is defined as it is shown in Equation 3. 

�� � �

�
� ∑ ���� � ���

���      (3) 

As metrics were defined, �� � �� � �� � 1 for 1 � � � . Then, a p-value ����� was computed 

for each ��  from the sample distribution of �� . Similarly, a p-value ����� was computed for 

each �� from the distribution of ��. 

The p-value of �� , �����, is the probability that there are values greater than or equal to ��  in 

the distribution of �, given the sample obtained from the experiment data base. Analogously 

the p-value of ��, ��N��, is the probability that there are values greater than or equal to �� in 

the distribution of �. 

Finally, selected genes were divided into two groups: a) those that are directly correlated in 

terms of the sign of their fold changes, and b) those that are inversely correlated.  

The first group is defined as � �  ��! for each k such that ����� � .01 and 1 � $ � |�|, 

where |�| is the number of selected directly correlated genes. Analogously, the second 

group of selected genes is defined as & �  ��! for each k such that ����� � .01 and 

1 � $ � |&|, where |&| is the number of selected inversely correlated genes. 

In this way, selected directly correlated genes are those which fold change signs are mostly 

the same than the seed in the same experiments, since their value of P is significantly high 

and, therefore, the probability of finding genes with a higher value of P is very low (� .01). 

Analogously, selected inversely correlated genes are those which fold change have mostly 

the opposite sign than the seed in the same experiments, since their value of � is 
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significantly high and, therefore, the probability of finding genes with a higher value of � is 

very low. 

The ASACO algorithm is written in R language and available at 

https://github.com/UPOBioinfo/asaco 

Functional annotation and pathway analysis 

Functional annotation for both seeds and co-expressed genes were obtained from Biomart 

(Durinck et al., 2009). The functional enrichment were made with KEGG Pathway (Kanehisa 

et al., 2017), and Reactome (Jassal et al., 2020), using the R libraries biomaRt, 

clusterProfiler, and ReactomePA, and a p-value cutoff of 0.05. 

To find pathways with a significant averaged correlation with the seeds, all human genes 

were grouped by the Reactome pathway where they belong. A Wilcoxon test was calculated 

by each pathway and the p-value was adjusted by the FDR method. Finally, only the 

pathways with p-value equal or lower than 1e-05, and a median correlation higher than the 

third quartile of the distribution of all the analyzed genes were considered as significant 

pathways. 

To discover transcription factors into the gene datasets, the gene ontology term ‘DNA-

binding transcription factor activity’, together with those of ‘regulation of DNA-binding 

transcription factor activity’ were searched (GO:0003700, GO:0051090, GO:0051091, 

GO:0043433). 

Comparison with high-throughput experiments 

Supplementary files with genes from the published interactome of SARS-CoV-2 (Gordon et 

al., 2020) and both translatome and proteome (Bojkova et al., 2020) were downloaded, and 

gene identifiers were mapped to UniProt accession numbers. Then, co-expressed proteins 

from ASACO were independently compared to every dataset. To calculate the number of 

expected matches we take 21489 as the number of total proteins in the human proteome, 

based on the Biomart gene type ‘protein_coding’. To calculate the p-value of the number of 

found matches, a hypergeometric test was used (dhyper function in R). 

Genes regulated by interferon and genes related to stress granules 

To check if a gene was induced or repressed by interferon, its expression was evaluated 

using the Interferome database v2.01 (Rusinova et al., 2013). Only experiments where a 

gene had a fold change higher than 2 were considered. When a gene appeared differently 

expressed in more than one experiment, the average value was calculated. 
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Genes related to stress granules were extracted from the MSGP database (Mammalian 

Stress Granules Proteome), that store a total of 464 proteins (Nunes et al., 2019). Available 

gene names were mapped to UniProt accession numbers. 

Results 

Genes involved in well-known pathways from host factors show a positive correlation 

to these factors over hundreds of experiments  

A set of human genes are known to be involved in the infectious cycle of SARS-CoV and 

SARS-CoV-2. We searched the literature and found 35 protein-coding genes that participate 

in different stages of their infection (Table 1). Then, we classified those host factors by the 

viral activity where they are involved (entry, replication, or vesicle fusion), and created two 

subgroups according to their type of function (proviral or antiviral). Proteins encoded by 

these genes show common cellular functions (Fig. 1). The three most populated groups of 

genes encode for: five replication proteins involved in metabolism of RNA, mainly mRNA 

splicing (DDX1, DDX5, HNRNP1, PPIH, and ZCRB1), three proteins of vesicle fusion 

involved in endoplasmic reticulum to Golgi apparatus trafficking (COPB1, COPB2, and 

GBF1), and a large number of proteins involved in immune system, mainly interferon and 

cytokine signaling. This latter group includes five antiviral proteins (EIF2AK2, BST2, IFITM1, 

IFITM2, and IFITM3), together with the replication proteins IMPDH1, IMPDH2, and PPIA, 

and the vesicle protein VAPA. Furthermore, around the proteins of this group appear several 

proteins relevant for the virus entry into the host cell such as the proteases FURIN and 

cathepsin L1 (CTSL), as well as BSG and PIKFYVE. In fact, CTSL that improves the 

efficiency of the viral entry, is known to be involved in both adaptive and innate immune 

system (Zavašnik-Bergant et al., 2004).  

All these proteins are part of autochthonous cell processes where they interact with others. 

Those proteins involved in the same biological processes frequently share expression 

profiles, which suggests they are co-regulated, often even showing common regulators. To 

study the expression relationships between the previous host factors and their co-expressed 

genes, we obtained transcriptomics experiments where they appear to be differentially 

expressed (Fig. 2). Starting from these host factors, that we named as seeds from now on, a 

total of 1381 different experiments were analyzed, 116 of them related to conditions 

involving viruses different from SARS-CoV-2. Then, the correlation value between the 

expression profile of these seeds versus all the other human genes through the different 

experiments was calculated. 
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It is expected that genes participating in the same biological process than the seed show a 

high correlation with it. Thus, we separated the correlation values for all the genes versus a 

given seed by the pathway they belong, and those pathways with a high average correlation 

value were analyzed. As a result, the most significant obtained pathways were usually those 

corresponding to the ones already annotated for the corresponding seed (Fig. 3a), which 

would support the previous assumption that genes participating in the biological process 

where the seed is involved show a positive correlation with the seed. In addition, the most 

significant pathways found when analyzing all the seeds are once again discriminating those 

involved in replication (mainly metabolism of RNA, and cell cycle) from those related to 

vesicle fusion, including the main five antiviral genes (Fig 3b). Remarkably, seeds involved in 

cell entry appeared linked to these groups of genes. TPCN2 and BSG are linked to the 

group of replication seeds by the mitochondrial translation pathway, while NRP1 and CTSL 

appear linked to the group of antiviral genes, once again by both interferon and cytokine 

signaling pathways (Fig. 3b). These two groups would highlight the two important cell 

interactions with the virus: functions essential for its infectious cycle such as mRNA splicing, 

and the cytokine antiviral response. 

Genes with expression profiles like the seed ones present common pathways as well 

as others related to viral infections 

To assess the agreement of functions from the best correlated genes to the ones of seeds, 

the expression profile of each seed was constructed using the available transcriptomic 

conditions. Genes with a similar expression profile (co-expressed genes) as well as genes 

with an inverse profile (inversely expressed genes) were obtained (Fig. 4). The total number 

of found co-expressed genes was 2567, although several of them were common to different 

seeds. Thus, the number of different co-expressed genes was 1899, while the number of the 

inversely expressed ones was 1578 (Suppl. Fig. S1, Suppl. Table S1). 

Co-expressed genes present common functions again related to those of the seeds (Fig. 5). 

Pathways related of cytokine response such as interleukin or interferon signaling appear 

enriched to the expected antiviral genes IFITM1, IFITM2, IFITM3, EIF2AK2, and BST2, but 

also to the entry gene CTSL, and the replication genes PPIB and DDX1. In fact, the protease 

CTSL presented several interleukins as co-expressed genes, such as Interleukin-1 beta 

(IL1B), and the X-C-C motif chemokines 2 and 3 (CXCL2, CXCL3). Other shared pathways 

are those related to the cell cycle. Five genes show enrichment in cell cycle checkpoints 

(DDX1, PPIB, PPIH, PRKCI, and ZCRB1). The cell cycle disarrangement is an action that 

many viruses perform in the infected cells, where they induce a cell cycle arrest. For 

example, the coronavirus avian infectious bronchitis virus (IBV) activates the cell ATR 
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signaling, which contributes to S-phase arrest and is required for efficient virus replication 

and progeny production (Xu et al., 2011). Genes of vesicle fusion such as COPB1, COPB2, 

OSBP, together with PPIB, are enriched in the expected processes of trafficking between the 

endoplasmic reticulum and the Golgi apparatus, glycosylation or the unfolded protein 

response. Other highlighted pathway is related to the nuclear export protein (NEP/NS2) of 

Influenza A virus that helps the transport of viral ribonucleoprotein complexes from the 

nucleus (Boulo et al., 2007), and it is enriched from the correlators of DDX1, PPIB, and 

PPIH. Other unexpected pathways were those relating DDX1, IMPDH2, PPIH, and ZCRB1 

to mitochondrial translation. Noteworthy, this latter pathway appeared previously related to 

PPIB, as well as the entry genes BSG and TPCN2, in the previous analysis of pathway 

average correlations (Fig. 3b). Finally, the most remarkable common pathway in the 

inversely expressed genes was interferon-alpha/beta pathway, which appeared for both 

HNRNPA1 and PPIH genes. These genes are involved in mRNA splicing, that is one of the 

essential host functions for the virus, so it is expected that the cell response try to silence 

them, and because of this we expect that their negative correlators were related to cytokine 

response. 

The best seeds’ correlators overlap with results of high-throughput experiments on 

SARS-CoV-2 

To evaluate the list of co-expressed genes obtained, we compared them against genes 

identified in high-throughput laboratory experiments performed upon viral infection or in the 

presence of viral proteins. A recent work has completed the interactome of viral versus 

human proteins, and they found 332 human proteins interacting with viral proteins which are 

candidates to be involved in the viral infectious cycle (Gordon et al., 2020). In addition, other 

experimental group has published both the translatome and proteome in human cells  

infected by the virus (Bojkova et al., 2020), and they describe proteins that differentially 

change during the infection. 

Two thirds of the positively correlated genes proposed by our approach appear in any of 

those experimental datasets (1212 out of 1899), while the expected random value would be 

29 proteins in the interactome, 239 in the translatome, and 493 proteins in the proteome 

(Fig. 6a). However, 682 of our proposed genes did not appear as results in these 

experimental analyses. To assess whether these new genes could perform virus related 

functions their associated pathways were analyzed. In fact, a good number of genes are 

involved in processes related to the infectious cycle of other viruses such as Influenza A, 

Epstein-Barr, Hepatitis B and C, and Measles (Fig. 6b). Another function found was the 

homology directed repair (HDR), which is also used for the Epstein-Barr (Sugimoto et al., 
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2011). Furthermore, it is noteworthy the enrichment in the ubiquitin-proteasome system (Fig. 

6c), since the ubiquitin mediated proteolysis is important during various stages of 

coronavirus infectious cycle (Raaben et al., 2010). Finally, there are functions related with 

the immune system which respond to virus infections such as class I MHC mediated antigen 

processing and presentation, and interferon/interleukin signaling. 

These results suggest that co-expressed genes found by our approach can offer an accurate 

landscape of the cellular pathways and proteins affected by the virus when the infection is 

progressing, even though it is based on heterogeneous experiments from many different 

conditions that do not include coronavirus infections.  

Transcription factors co-expressed with seeds are regulated by interferon and could 

induce the expression of genes involved in cell entry 

The coincidence in the assigned pathways for seeds and their correlators suggests that 

SARS-CoV-2 host factors may belong to common regulatory networks, possibly sharing 

transcriptional regulators. Moreover, these regulators could be co-regulated with seeds as 

well. To test this hypothesis, transcription factors were identified from the correlators. So, 

116 transcription factors, or putative upstream regulators, were found among the co-

expressed genes, and 155 in the inversely expressed genes. Among them, 23 co-expressed 

regulators were common to two or more seeds (Fig. 7a). They form an interrelated network 

with the main antiviral genes (EIF2AK2, BST2, IFITM1, IFITM2, and IFITM3), but some of 

them also appeared co-expressed with proviral genes involved in vesicle fusion such as 

COPB1, COPB2, and VAPA, replication, as DDX5, and entry, suggesting common 

regulatory features. Related to viral entry, the transcription factor NUPR1, a stress-response 

protein induced by the Hepatitis B virus (Bak et al., 2015), is co-expressed with the protease 

TMPRSS2. Moreover, the factor ZNF267, which is an antiviral zinc finger protein (Huntley et 

al., 2006), is co-expressed with the kinase ABL2. Finally, TRIM14, which is a member of a 

family of E3 ubiquitin ligases linked to the mitochondria that plays an important role in innate 

defense against viruses facilitating the interferon response (Tan et al., 2017), is co-

expressed with both the receptor ACE2 and the lysosomal channel TPCN2. Remarkably, all 

the regulators connecting the antiviral seeds with several proviral activities, including the cell 

entry, are genes induced by interferon. However, other transcription factors mainly 

connecting replication genes are contrarily repressed by interferon. For example, YEATS4 is 

co-expressed with DDX1, IMPDH2, and ZCRB1, that were co-expressed with genes 

involved in mitochondrial translation. Other remarkable co-expressed gene is CEBPZ, which 

belongs to a family of CCAAT/enhancer-binding proteins, some of them related to immune 

and inflammatory response (Kinoshita et al., 1992). CEBPZ is a gene co-expressed with the 
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replication seeds DDX1 and PPIG, but also inversely expressed with the protease FURIN. 

Other correlators from this protein family are CEBPD, that is a co-expressed gene of IFITM3, 

but inversely expressed with COPB2, and CEBPB that is a co-expressed gene of the 

protease CTSL. 

Conversely, regulators inversely expressed with seeds are mainly interferon repressed 

genes (Fig. 7b). Among these genes, three zinc-finger proteins that act as antivirals against 

Herpex simplex virus 1 stand out in this dataset (Melchjorsen et al., 2009): ZNF91 inversely 

expressed with CTSL, IFITM2, IFITM3, and VAPA, that is not induced or repressed by 

interferon, is a transcription factor specifically required to repress SINE-VNTR-Alu (SVA) 

retrotransposons (Jacobs et al., 2014); the transcription factor ZNF550, which is repressed 

by interferon and appeared inversely correlated with the entry genes FURIN and BSG; and 

ZNF768, that appeared as inversely expressed to the genes involved in vesicle fusion 

COPB1 and OSBP. Two others inversely expressed genes were the transcriptional 

repressors YBX3 and CREBRF, that are repressed by interferon and link the entry genes 

ACE2 and TPCN2. Y-Box-Binding Protein 3 (YBX3) restricts Influenza A virus by impairing 

viral ribonucleoprotein complexes (Qin et al., 2020), and also controls amino acid levels by 

regulating solute carrier amino acid transporter (SLC) mRNA abundance, a pathway that is 

related with inversely expressed genes of HPRNPA1 (Fig. 5b). 

To further analyze the interferon signaling related with the seeds, the response to interferon 

was independently evaluated for each seed, together with their co-expressed and inversely 

expressed genes. As expected, the main interferon induced genes, the antivirals IFITM1-3, 

BST2, and EIF2AK2, presented an important activation together with its co-expressed 

genes, and a repression of their inversely expressed genes (Fig 7c). Unexpectedly, proviral 

genes involved in entry, ACE2, ABL2, and CTSL, together with the replication gene PPIB, 

present a similar interferon response, suggesting an undesired effect of interferon promoting 

SARS-CoV-2 infection. On the other hand, the seeds HNRNPA1, COPB2, and VAPA 

present a reversed profile. Specifically, HNRNPA1 is a gene involved in mRNA splicing, 

which is moved towards the stress granules during viral infection. This structures include 

ribonucleprotein complexes together with the cell translation machinery, and is proposedly 

used by the virus to perform its replication (Perdikari et al., 2020). These cytosolic particles 

seem to be targeted by the viral nucleocapsid protein (N). The N protein interact with 15 

human proteins (Gordon et al., 2020), and 3 of them were found as co-expressed genes of 

COPB1 and COPB2 (FAM98A), EIF2AK2 (MOV10), and HNRNPA1 and IMPDH2 

(PABPC4). These three proteins have been associated to the stress granules, together with 

DDX1, EIF2AK2, and HNRNPA1, which reinforce the relation of the N viral protein with this 

stress structures (Burgess et al., 2011; Goodier et al., 2015; Ozeki et al., 2019). In fact, the 
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antiviral seed EIF2AK2 has been seen as the kinase activated by double-stranded RNA of 

viruses that activate the formation of the stress granules (Burgess and Mohr, 2018). 

Currently, 464 proteins are known to form part of this liquid-liquid structures, and the seed 

co-expressed genes include 131 of them (41 were expected by chance; 4.6e-35) (Fig. 7d), 

21 from the interactome (7 expected; 7.7e-06), and 372 from the proteome (119 expected; 

3.1e-137), which support the importance of these structures in the SARS-CoV-2, as well as 

the fact that the virus could use them for its replication and mRNA translation. 

Discussion 

Currently, databases sharing gene expression data are exponentially growing due to the 

universalization of transcriptomics techniques (Athar et al., 2019). A secondary analysis of 

this data allows to reconstruct gene networks based on co-expressed genes using the so-

called reverse engineering (Basso et al., 2005; He and Tan, 2016). We have developed a 

new in silico method called ASACO based on standardized gene expression data analysis. 

Starting from an initial seed gene, it finds the closest neighbors in terms of transcriptional 

regulation. Compared to other previous procedures, it has the advantage of evaluating 

thousands of experiments whose outcomes are normalized, allowing co-expression analysis 

for different heterogeneous genes over hundreds of experimental conditions (Cardozo et al., 

2019; Gibbs et al., 2013). We have used this strategy on a selection of 35 cellular genes 

reportedly involved in SARS-CoV and/or SARS-CoV-2 infection, identifying their closest co-

expressed genes. Even though the experiments employed to find them are not focused on 

coronaviruses infection, the functional enrichment of the co-expressed genes identify many 

of the already known pathways for these seeds (Fig. 3). Furthermore, both seeds and 

correlators fairly match most of the cellular pathways relevant to the infection cycle (Fig. 5). 

Moreover, these co-regulated genes show a high coincidence with the ones identified in 

recent high-throughput studies on cell responses to SARS-CoV-2 infection (Fig. 6a). This 

match can be interpreted as a cross-validation of both, experimental and in silico 

approaches, providing relevance to our identified functions and supporting the idea that co-

regulation, as we identify it, can be a hallmark of co-function. 

When viruses enter the host, one of the first systems that respond to the infection is the 

interferon signaling pathway, that induces the expression of interferon stimulated genes 

(ISG). Five of the seeds used in this study, considered as antiviral genes, are ISGs. 

EIF2AK2 inhibits viral replication via the integrated stress response, and blocks the cellular 

and viral translation through the phosphorylation of EIF2α (Kang et al., 2009). BST2 blocks 

the release of viruses by directly tethering nascent virions to the membranes of infected cells 

(Dafa-Berger et al., 2012). Finally, the transmembrane proteins IFITM1-3 inhibit the entry of 
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enveloped virus by preventing vesicle fusion, though they also could facilitates the infection 

of other viruses (Lim et al., 2016). As expected, genes positively correlated with these 

antiviral genes consistently belong to interferon and interleukins response pathways (Fig. 

5a), and our co-expression analysis links them to regulators as STAT1, STAT3 or TRIM21 

(Fig. 7ac). Surprisingly, several proviral seeds, remarkably those involved in virus entry 

(ACE2, TPCN2, ABL2, and TMPRSS2), are found to be linked to these antiviral genes by 

means of common co-expressed transcriptional regulators. The main viral receptor, ACE2, 

has already been found as induced by interferon, and this fact has been interpreted as 

“evidence that coronaviruses, as well as other viruses, have evolved to leverage features of 

the human IFN pathway” (Ziegler et al., 2020). This could be true for other entry genes. 

TRIM14 is one of the regulators found in common to ACE2, TPCN2, and four out of five 

antivirals (excluding IFITM2). This regulator is known to interact with MAVS at the outer 

mitochondria membrane and attenuates the antiviral response by the type I interferon 

response (Zhou et al., 2014). Since TRIM14 is co-expressed with ACE2, it could be 

responsible of, or related to, the receptor’s positive response to interferon. Interestingly, not 

only ACE2 seems to be induced by interferon, but also its positive correlators, as well as 

those of ABL2 (which could be induced by the ISG ZNF267 according to our results), and 

the cathepsin L protease, CTSL. All of these are genes involved in the viral entry, and the 

latter activates the membrane fusion function of the spike viral protein S of SARS-CoV 

(Bosch et al., 2008), and could substitute to the TMPRSS2 protease in cell types different to 

lung cells (Liu et al., 2020). CTSL co-expressed genes are not only interferon but also 

interleukin induced genes, and three cytokines are co-expressed with it (IL1B, CXCL2, and 

CXCL3). In addition, it shares with IFITM2, IFITM3 and the vesicle gene VAPA links to the 

transcriptional repressor ZNF91. All of this points to both ZNF91 and TRIM14 as putative 

regulators responsible for the presumptive interferon and interleukin dependent induction of 

entry proviral genes and pinpoints them as useful pharmacological targets to interfere with 

the viral infection. In fact, the cellular response to SARS-CoV-2 have been shown to be 

lightly induced by interferon, but strongly by chemokines (Blanco-Melo et al., 2020). 

Furthermore, CTSL appeared also linked to the co-expressed transcription factor CBPB that 

regulates the expression of genes involved in immune and inflammatory responses 

(Kinoshita et al., 1992). This transcription factor can form heterodimers with CEBPD, which 

is also a co-expressed gene of IFITM3, but inversely expressed gene of the vesicle protein 

COPB2. It suggests that the interleukin response could repress proviral genes such as 

COPB2, but undesirably induce CTSL. 
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Contrarily, genes required for viral replication such as PPIG, DDX1, ZCRB1, IMPDH2, 

GSK3A, and GSK3B, are bound to interferon repressed transcriptional regulators such as 

RFX7 and YEATS4, which could negatively affect the infection in the presence of interferon. 

One essential cellular pathway needed by the virus is the mRNA splicing. In this function, 

HNRNPA1 is a key gene (Luo et al., 2005). Interferon triggers EIF2AK2-dependent 

HNRNPA1 protein translocation to stress granules resulting in mRNA translation inhibition. 

Until now, 464 different human proteins have been identified to participate in this liquid-liquid 

cytosolic structures (Nunes et al., 2019). Remarkably, proteins from stress granules show a 

broad convergence with our host factors co-expressed genes (131 out of 464), as well as 

those from the high-throughput experiments. Thus, 46 proteins out of 332 from the viral 

interactome are also components of stress granules. From these 46 proteins, 9 interact with 

the N nucleocapsid protein that seems the viral protein most related to these structures 

(Savastano et al., 2020). Furthermore, 20 of these proteins interact with the viral polymerase 

complex (nsp12, nsp7, and nsp8), and with the helicase nsp13 that in turn seems to interact 

with our seed DDX5 in SARS-CoV (Chen et al., 2009a). Since virus infection leads to the 

hijacking of the translation machinery into the stress granules, this is a beneficial place for 

the translation of viral mRNA molecules, where viruses such as the respiratory syncytial 

virus take advantage of this (Lindquist et al., 2010). Thus, the general emergence of 

interferon and cytokine related genes (Blanco-Melo et al., 2020; Ziegler et al., 2020), as well 

as stress granules related genes (Perdikari et al., 2020; Savastano et al., 2020), revealed by 

this and other studies strongly suggests that SARS-CoV-2 could also use the interferon-

induced stress granules as replication factory, which points to this structure as a new target 

for the development of therapeutic approaches to treat COVID-19. 

Conclusions 

We here presented ASACO, an algorithm with the capacity to generate key functional 

knowledge on specific genes based on their co-expressed genes. We have tested this 

algorithm with host factors involved in the SARS-CoV-2 infection, by means of the analysis 

of co-expression data extracted from public transcriptomics databases. Although further 

experiments using in vitro and in vivo approaches will be required to further confirm the 

results obtained here, our results have allowed the discovery of relevant gene networks and 

cell pathways, and pointed to a series of transcription regulators as potential targets useful in 

the fighting against SARS-CoV-2. The consistency of our results with those obtained by   

other experimental approaches represent a proof of concept of the utility of this algorithm, 

which could be used for the study in other pathologies where there is still a need for 

discovering new functional knowledge. 
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Tables 

Table 1. Gene targets which are expected to be essential for the infectious cycle of 

SARS-CoV-2. Human genes used for the ASACO analysis. Their probable activity and the 

type of function observed in the tested virus are indicated. 

Gene 
name 

UniProt 
Entry Viral activity 

Type of 
function Virus Reference 

ABL2 P42684 Entry Proviral SARS-CoV (Coleman et al., 2016) 
ACE2 Q9BYF1 Entry Proviral SARS-CoV-2 (P. Zhou et al., 2020) 
BSG P35613 Entry Proviral SARS-CoV (Wang et al., 2020) 
CTSL P07711 Entry Proviral SARS-CoV-2 (Ou et al., 2020) 
FURIN P09958 Entry Proviral SARS-CoV-2 (Coutard et al., 2020) 
NRP1 O14786 Entry Proviral SARS-CoV-2 (Daly et al., 2020) 
PIKFYVE Q9Y2I7 Entry Proviral SARS-CoV-2 (Ou et al., 2020) 
TMPRSS2 O15393 Entry Proviral SARS-CoV-2 (Hoffmann et al., 2020) 
TPCN2 Q8NHX9 Entry Proviral SARS-CoV-2 (Ou et al., 2020) 
CDK6 Q00534 Replication Antiviral SARS-CoV (de Wilde et al., 2015) 
DDX1 Q92499 Replication Proviral SARS-CoV (Wu et al., 2014) 
DDX5 P17844 Replication Proviral SARS-CoV (Chen et al., 2009b) 
EIF2AK2 P19525 Replication,Translation Antiviral SARS-CoV (de Wilde et al., 2015) 
EZR P15311 Replication Antiviral SARS-CoV (Millet et al., 2012) 
GSK3A P49840 Replication Proviral SARS-CoV (Wu et al., 2009) 
GSK3B P49841 Replication Proviral SARS-CoV (Wu et al., 2009) 
HNRNPA1 P09651 Replication,Transcription Proviral SARS-CoV (Luo et al., 2005) 
IMPDH1 P20839 Replication Proviral SARS-CoV (Saijo et al., 2005) 
IMPDH2 P12268 Replication Proviral SARS-CoV (Saijo et al., 2005) 
PPIA P62937 Replication Proviral SARS-CoV (Pfefferle et al., 2011) 
PPIB P23284 Replication Proviral SARS-CoV (Pfefferle et al., 2011) 
PPIG Q13427 Replication Proviral SARS-CoV (Pfefferle et al., 2011) 
PPIH O43447 Replication Proviral SARS-CoV (Pfefferle et al., 2011) 
TOP3B O95985 Replication Proviral SARS-CoV-2 (Prasanth et al., 2020) 
ZCRB1 Q8TBF4 Replication Proviral SARS-CoV (Tan et al., 2012) 
BST2 Q10588 Vesicle fusion Antiviral SARS-CoV (Taylor et al., 2015) 
COPB2 P35606 Vesicle fusion Proviral SARS-CoV (de Wilde et al., 2015) 
COPB1 P53618 Vesicle fusion Proviral SARS-CoV (de Wilde et al., 2015) 
GBF1 Q92538 Vesicle fusion Proviral SARS-CoV (de Wilde et al., 2015) 
IFITM1 P13164 Vesicle fusion Antiviral SARS-CoV (Huang et al., 2011) 
IFITM2 Q01629 Vesicle fusion Antiviral SARS-CoV (Huang et al., 2011) 
IFITM3 Q01628 Vesicle fusion Antiviral SARS-CoV (Huang et al., 2011) 
OSBP P22059 Vesicle fusion Proviral SARS-CoV (Amini-Bavil-Olyaee et al., 2013) 
PRKCI P41743 Vesicle fusion Proviral SARS-CoV (de Wilde et al., 2015) 
VAPA Q9P0L0 Vesicle fusion Proviral SARS-CoV (Amini-Bavil-Olyaee et al., 2013) 

 

Figure legends 

Fig. 1. Reactome pathways shared between three or more seeds. Seeds are highlighted by 

its type of activity (proviral or antiviral), and its function in the infection (entry, replication, or 

vesicle fusion). Seeds with none shared pathways are not showed (PPIG, TOP3B, 

TMPRSS2). 

Fig. 2. Workflow followed by ASACO; Automatic and Serial Analysis of CO-

expression. Transcriptomics experiments where seeds are differently expressed are 

searched in the Expression Atlas database. Different experiments can be found for a given 

seed, along with its fold change value (log2FC). Then, experiments are downloaded and the 
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complete expression matrix by experiment is obtained. In this matrix, other genes can be 

differentially expressed and their log2FC are also extracted. The log2FC values are used to 

create expression profiles for each gene. When the expression profiles have a positive 

correlation with that of the seed, their corresponding genes are expected to be co-regulated 

and functionally related to the seed (gene 2, gene 5, gene 7), and when the expression 

profiles have a negative correlation with that of the seed (gene 4, gene 6, gene 8), they are 

expected to have an inverse behavior in terms of expression. 

Fig. 3. Significative pathways found by ASACO. a) Distribution of correlation values of 

genes belonging to the most significant pathways (maximum 10) for 6 of the seeds. 

Pathways already annotated for the seed are highlighted in red color. The number of the 

genes that the pathway has annotated is shown in brackets. The solid line marks correlation 

0, and the dashed line marks the median of the correlation for all the genes. b) Significative 

pathways shared between three or more seeds. Seeds are highlighted by its type of activity 

(proviral or antiviral), and its function in the infection (entry, replication, or vesicle fusion). 

Seeds with none shared pathways are not showed (ABL2, ACE2, COPB1, DDX5, EZR, 

FURIN, GBF1, GSK3A, GSK3B, IMPDH1, OSBP, PIKFYVE, TMPRSS2, VAPA). Pathways 

already annotated for any seed are highlighted in red color. 

Fig. 4. Expression profile of all seeds together with their positive and negative 

correlated genes. The black colored line represents the expression profile for the target 

gene through the different experiments (X axis), which are ordered from its higher to lower 

log2FC. Correlated genes are labeled in green (co-expressed genes), or red (inversely 

expressed genes), together with its deviation (Q1 an Q3 quartiles). Note that the number of 

ticks on the X axis is relative to the number of experiments for that seed. 

Fig 5. Functional enrichment of the positively (a) and negatively (b) correlated genes 

for all the seeds. Reactome pathways were used, with those already annotated for a seed 

highlighted in red color. Pathways related with interferon or interleukin signaling are 

highlighted with a darker line. The color of the seed name is related to their viral function 

(entry=orange, replication=blue, vesicle=green). Seeds without any enriched pathway are 

not shown. 

Fig. 6. Overlapping between co-expressed proteins found by ASACO and other 

proteins related with the SARS-CoV-2 infection from high-throughput experiments. a) 

Co-expressed genes found by ASACO are shown inside the blue box. The interactome 

obtained by Gordon et al., 2020 is displayed in the green box, the translatome and the 

proteome by Bojkova et al., 2020 are shown in the pink and the yellow boxes respectively. 
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The total number of proteins in each dataset is shown inside the boxes as well as the 

number of overlapping proteins (n), the number of coincidences expected by chance (e), and 

the p-value calculated with the hypergeometric distribution (p). Results for positively (green 

color), and negatively (red color) correlated genes are separated. The table represents the 

number of proteins found by ASACO for each seed, together with those that overlap with any 

other dataset in brackets and separated by the correlation sign. The total number of proteins 

is indicated below together with the total number of shared proteins and the number of 

positively correlated proteins exclusively found by ASACO. Outside the blue box, the number 

of proteins shared by the four datasets is shown. Note that the 2703 proteins in the 

translatome also appear in the proteome. b) KEGG pathway enrichment for genes 

exclusively found by ASACO. c) Reactome pathway enrichment for genes exclusively found 

by ASACO. 

Fig. 7. Transcription factor network from co-expressed genes, and relation with 

interferon and stress granules. a) Positively expressed transcription factors common to, at 

least, two seeds. Seeds are highlighted by its type of activity (proviral or antiviral), and its 

function in the infection (entry, replication, or vesicle fusion). Transcription factor induced by 

interferon are highlighted in red color and those repressed by interferon in blue color. b) The 

same as a) but for the negatively expressed transcription factors. c) Average interferon 

induced fold change of seeds, together with the value for both positively and negatively 

expressed genes. d) Number of genes related to stress granules in both positively and 

negatively expressed genes for each seed. The first column of the heatmap shows if the 

seed is related or not to stress granules. 

Supplementary files 

Suppl. Fig. S1. Common co-expressed genes among seeds. 

Suppl. Table S1. Positively and negatively expressed genes by seed, together with their 

functional annotation. 
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a)

b) c)

   Total = 2703

Total = 5583

Total = 332

Interactome
(Gordon et al., 2020)

Translatome
(Bojkova et al., 2020)

Proteome
(Bojkova et al., 2020)Shared into the four datasets = 43+ / 13-

No. proteins
Seed (+) (-)
ABL2 47 (17) 41 (25)
ACE2 57 (25) 95 (58)
BSG 85 (71) 24 (6)
BST2 75 (25) 19 (12)
CDK6 5 (4) 1 (1)
COPB1,2 180 (133) 246 (44)
CTSL 40 (17) 16 (8)
DDX1,5 209 (175) 42 (11)
EIF2AK2 150 (78) 38 (21)
EZR 6 (5) 3 (1)
FURIN 31 (18) 127 (47)
GBF1 0 (0) 15 (11)
GSK3A,B 146 (69) 189 (80)
HNRNPA1 116 (107) 57 (25)
IFITM1,2,3 254 (54) 115 (49)
IMPDH1,2 215 (174) 62 (16)
NRP1 8 (4) 0 (0)
OSBP 102 (52) 117 (65)
PIKFYVE 144 (71) 7 (3)
PPIA,B,G,H 318 (255) 193 (54)
PRKCI 17 (12) 101 (25)
TMPRSS2 42 (23) 21 (9)
TOP3B 122 (55) 58 (30)
TPCN2 28 (16) 61 (19)
VAPA 98 (81) 160 (21)
ZCRB1 73 (49) 79 (23)

n=76
e=29

p=4.4e-15

n=730
e=239

p=2.4e-204

n=1205
e=493

p=3.8e-287

Total = 3198 (1899+ / 1578-)  
(1212 shared & 682 ASACO)

n=29
e=24

p=0.05

n=253
e=198

p=5.0e-6

n=572
e=410

p=2.2e-21
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